
May 20, 2009 17:20 WSPC/INSTRUCTION FILE 00104

International Journal of Shape Modeling
Vol. 14, No. 1 (2008) 15–37
c© World Scientific Publishing Company

A Sorting Approach to Indexing Spatial Data∗

HANAN SAMET

Center for Automation Research
Institute for Advanced Computer Studies

Computer Science Department
University of Maryland

College Park, Maryland 20742, USA
hjs@cs.umd.edu

http://www. cs. umd. edu/ ~hjs

Spatial data is distinguished from conventional data by having extent. Therefore, spatial
queries involve both the objects and the space that they occupy. The handling of queries
that involve spatial data is facilitated by building an index on the data. The traditional
role of the index is to sort the data, which means that it orders the data. However, since
generally no ordering exists in dimensions greater than 1 without a transformation of
the data to one dimension, the role of the sort process is one of differentiating between
the data and what is usually done is to sort the spatial objects with respect to the space
that they occupy. The resulting ordering is usually implicit rather than explicit so that
the data need not be resorted (i.e., the index need not be rebuilt) when the queries
change (e.g., the query reference objects). The index is said to order the space and the
characteristics of such indexes are explored further.
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1. Introduction

The representation of multidimensional data is an important issue in solid modeling

as well as in many other diverse fields including computer-aided design (CAD), com-

putational geometry, finite-element analysis, and computer graphics (e.g., 73,74,76).

The main motivation in choosing an appropriate representation is to facilitate oper-

ations such as search. This means that the representation involves sorting the data
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in some manner to make it more accessible. In fact, the term access structure or in-

dex is often used as an alternative to the term data structure in order to emphasize

the importance of the connection to sorting.

The most common definition of “multidimensional data” is a collection of points

in a higher dimensional space (i.e., greater than 1). These points can represent

locations and objects in space as well as more general records where each attribute

(i.e., field) corresponds to a dimension and only some, or even none, of the attributes

are locational. As an example of nonlocational point data, consider an employee

record that has attributes corresponding to the employee’s name, address, gender,

age, height, weight, and social security number (i.e., identity number). Such records

arise in database management systems and can be treated as points in, for this

example, a seven-dimensional space (i.e., there is one dimension for each attribute),

although the different dimensions have different type units (i.e., name and address

are strings of characters; gender is binary; while age, height, weight, and social

security number are numbers some of which have are associated with different

units). Note that the address attribute could also be interpreted in a locational sense

using positioning coordinates such as latitude and longitude readings although the

stringlike symbolic representation is far more common.

When multidimensional data corresponds to locational data, we have the ad-

ditional property that all of the attributes usually have the same unit (possibly

with the aid of scaling transformations), which is distance in space. In this case,

we can combine the distance-denominated attributes and pose queries that involve

proximity. For example, we may wish to find the closest city to Chicago within the

two-dimensional space from which the locations of the cities are drawn. Another

query seeks to find all cities within 50 miles of Chicago. In contrast, such queries

are not very meaningful when the attributes do not have the same type. Neverthe-

less, other queries such as range queries that seek, for example, all individuals born

between 1940 and 1960 whose weight ranges between 150 and 200 pounds are quite

common and can be posed regardless of the nature of the attributes.

When the range of multidimensional data spans a continuous physical space (i.e.,

an infinite collection of locations), the issues become more interesting. In particular,

we are no longer just interested in the locations of objects, but, in addition, we are

also interested in the space that they occupy (i.e., their extent). Some example

objects with extent include line segments (e.g., roads, rivers), intervals (which can

correspond to time as well as space), regions of varying shape and dimensionality

(e.g., lakes, counties, buildings, crop maps, polygons, polyhedra), and surfaces. The

objects (when they are not points) may be disjoint or could even overlap.

The fact that the objects have extent has a direct effect on the type of indexes

that we need. This can be best understood by examining the nature of the queries

that we wish to support. For example, consider a database of objects. There are

three types of queries that can be posed to such a database 35. The first is the

set of queries about the objects themselves such as finding all objects that contain

a given point or set of points, have a non-empty intersection with a given object,
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have a partial boundary in common, have a boundary in common, have any points

in common, contain a given object, included in a given object, etc. The second

consists of proximity queries such as the nearest object to a given point or object,

and all objects within a given distance of a point or object (also known as a range

or window query). The third consists of queries involving non-spatial attributes of

objects such as given a point or object, finding the nearest object of a particular

type, the minimum enclosing object of a particular type, or all the objects of a

particular type whose boundary passes through it.

Being able to support the different types of queries described above has a direct

effect on the type of indexes that are useful for such data. In particular, recall our

earlier observation that a record in a conventional database may be considered as

a point in a multidimensional space. For example, a straight line segment object

having endpoints (x1, y1) and (x2, y2) can be transformed (i.e., represented) as

the point (x1, y1, x2, y2) in a 4-d space (termed a corner transformation 83)a. This

representation is good for queries about the line segments (the first type), while it is

not good for proximity queries (i.e., the second and third type) since points outside

the object are not mapped into the higher dimensional space. In particular, the

representative points of two objects that are physically close to each other in the

original space (e.g., 2-d for line segments) may be very far from each other in the

higher dimensional space (e.g., 4-d), thereby leading to large search regions. This

is especially true if there is a great difference in the relative size of the two objects

(e.g., a short line segment in proximity to a long line segment as in Figure 1). On the

other hand, when the objects are small (e.g., their extent is small), then the method

works reasonably well as the objects are basically point objects. The problem is that

the transformation only transforms the space occupied by the objects and not the

rest of the space (e.g., the query point). Proponents of the transformation method

argue that this problem can be overcome by projecting back to original space and

indexing on the projection (e.g., 90). However, at this point, it is not unreasonable

to ask why we bother to make the transformation in the first place.

Figure 1: Example of two objects that are close to each other in the original

space but are not clustered in the same region of the transformed space when

using a transformation such as the corner transformation.

It is important to observe that our notion of sorting spatial objects is more

aAlthough for ease of visualization, our discussion and examples are in terms of line segment
and rectangle objects, it is applicable to data of arbitrary dimension such as polyhedra and
hyperrectangles.
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one of differentiating between the objects which is different from the conventional

one which is intimately tied to the notion of providing an ordering. As we know,

such an ordering implies a linearization which restricts the underlying data to one

dimension, and such an ordering usually does not exist in dimensions d higher than

one save for a dominance relationship (e.g., 55) where point a = {ai|1 ≤ i ≤ d}

is said to dominate point b = {bi|1 ≤ i ≤ d} if bi ≤ ai, 1 ≤ i ≤ d. On the other

hand, it is clear that the rationale for our discussion is that the data in which we

are interested is of dimension greater than one. This leads to the conclusion that

what is needed is an index that sorts (i.e., differentiates) between objects on the

basis of spatial occupancy (i.e., their spatial extent). In other words, it sorts the

objects relative to the space that they occupy, and this is the focus of the rest of

this paper.

Before choosing a particular index we should also make sure that the following

requirements are satisfied. First of all, the index should be compatible with the type

of data (i.e., spatial objects) that is being stored. In other words, it should enable

users to distinguish between different objects as well as render the search efficient

in terms of pruning irrelevant objects from further consideration. Second, we must

have an appropriate zero or reference point. In the case of spatial occupancy, this is

usually some easily identified point or object (e.g., the origin of the multidimensional

space from which the objects are drawn). Most importantly, given our observation

about the absence of an ordering, it is best to have an implicit rather than an

explicit index.

In particular, an implicit index is needed because it is impossible to foresee

all possible queries in advance. For example, in the case of spatial relationships

such as left, right, up, down, etc. it is impractical to have a data structure which

has an attribute for every possible spatial relationship. In other words, the index

should support the ability to derive the spatial relationships between the objects.

It should be clear that an implicit index is superior to an explicit index, which, for

example in the case of two-dimensional data such as the locations of cities, sorts

the cities on the basis of their distance from a given point. The problem is that

this sorting order is inapplicable to other reference points. In other words, having

sorted all of the cities in the US with respect to their distance from Chicago, the

result is useless if we want to find the closest city to New Orleans that satisfies

a particular condition like having a population greater than 50,000 inhabitants.

Therefore, having an implicit index means that we don’t have to resort the data

for queries other than updates.

2. Methods Based on Spatial Occupancy

The indexing methods that are based on sorting the spatial objects by spatial oc-

cupancy essentially decompose the underlying space from which the data is drawn

into regions called buckets in the spirit of classical hashing methods, with the dif-

ference that the spatial indexing methods preserve order. In other words, objects
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Figure 2: (a) Example collection of straight line segments embedded in a 4×4

grid, (b) the object hierarchy for the R-tree corresponding to the objects in (a),

and (c) the spatial extent of the minimum bounding rectangles corresponding

to the object hierarchy in (b). Notice that the leaf nodes in the (c) also store

bounding rectangles although this is only shown for the nonleaf nodes.

in close proximity should be placed in the same bucket or at least in buckets that

are close to each other in the sense of the order in which they would be accessed

(i.e., retrieved from secondary storage in case of a false hit, etc.).

There are two principal methods of representing spatial data. The first is to use

an object hierarchy that initially aggregates objects into groups, preferably based

on their spatial proximity, and then uses proximity to further aggregate the groups

thereby forming a hierarchy, where the number of objects that are aggregated in

each node of the hierarchy is permitted to range between parameters m ≤ dM/2e

and M . The rationale for choosing this type of a range is for the hierarchy to mimic

the behavior of a B-tree (e.g., 19), where each element of the hierarchy acts like a

disk page and thus is guaranteed to be half full, provided that m = dM/2e.

Note that the object hierarchy is not unique as it depends on the manner in

which the objects were aggregated to form the hierarchy (e.g., minimizing overlap

between objects or coverage of the underlying space). Queries are facilitated by also

associating a minimum bounding box with each object and group of objects as this
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enables a quick way to test if a point can possibly lie within the area spanned by

the object or group of objects. A negative answer means that no further processing

is required for the object or group while a positive answer means that further

tests must be performed. Thus the minimum bounding box serves to avoid wasting

work. Equivalently, it serves to differentiate (i.e., “sort”) between occupied and

unoccupied space. Data structures that make use of axis-aligned bounding boxes

(AABB) such as the R-tree 31 and the R∗-tree 12 illustrate the use of this method,

as well as the more general oriented bounding box (OBB) where the sides are

orthogonal, while no longer having to be parallel to the coordinate axes (e.g., 30,56).

In addition, some data structures use other shapes for the bounding boxes such

as spheres (e.g., SS-tree 51,98), combinations of hyperrectangles and hyperspheres

(e.g.,SR-tree 41), truncated tetrahedra (e.g., prism tree 54), as well as triangular

pyramids which are 5-sided objects with two parallel triangular faces and three

rectangular faces forming a three-dimensional pie slice (e.g., BOXTREE 11). These

data structures differ primarily in the properties of the bounding boxes, and their

interrelationships, that they use to determine how to aggregate the bounding boxes,

and, of course, the objects. Aggregation is an issue when the data structure is used in

a dynamic environment, where objects are inserted and removed from the hierarchy

thereby leading to elements that are full or sparse vis-a-vis the values of m and M .

As an example of an R-tree, consider the collection of straight line segment

objects given in Figure 2(a) shown embedded in a 4 × 4 grid. Figure 2(b) is an

example of the object hierarchy induced by an R-tree for this collection, with m =

2 and M = 3. Figure 2(c) shows the spatial extent of the bounding rectangles

of the nodes in Figure 2(a), with heavy lines denoting the bounding rectangles

corresponding to the leaf nodes, and broken lines denoting the bounding rectangles

corresponding to the subtrees rooted at the nonleaf nodes.

The drawback of the object hierarchy approach is that from the perspective of a

space decomposition method, the resulting hierarchy of bounding boxes often leads

to a non-disjoint decomposition of the underlying space. This means that if a search

fails to find an object in one path starting at the root, then it is not necessarily the

case that the object will not be found in another path starting at the root. This is

the case in Figure 2(c) when we search for the line segment object that contains Q.

In particular, we first visit nodes R1 and R4 unsuccessfully, and thus need to visit

nodes R2 and R5 in order to find the correct line segment object i.

The second method is based on a decomposition (usually recursive) of the un-

derlying space into disjoint blocks so that a subset of the objects is associated

with each block. There are several ways to proceed. The first is to simply redefine

the decomposition and aggregation associated with the object hierarchy method

so that the minimum bounding boxes are decomposed into disjoint boxes, thereby

also implicitly partitioning the underlying objects that they bound. In this case, the

partition of the underlying space is heavily dependent on the data and is said to be

at arbitrary positions. The k-d-B-tree 58 and the R+-tree 84 are examples of such an

approach, with the difference being that in the k-d-B-tree, the entire space which
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contains the objects is decomposed into subspaces and it is these subspaces that

are aggregated, while in the R+-tree, it is the bounding boxes that are decomposed

and subsequently aggregated.

Figure 3 is an example of one possible R+-tree for the collection of line segments

in Figure 2(a). This particular tree is of order (2,3) although in general it is not

possible to guarantee that all nodes save for the root node will always have a

minimum of 2 entries. In particular, the expected B-tree performance guarantees

are not necessarily valid (i.e., pages are not guaranteed to be m/M full) unless we

are willing to perform very complicated record insertion and deletion procedures.

Notice that in this example line segment objects c, h, and i appear in two different

nodes. Of course, other variants are possible since the R+-tree is not unique.
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Figure 3: (a) R+-tree for the collection of line segments in Figure 2 (a) with

m=2 and M=3, and (b) the spatial extents of the bounding rectangles. Notice

that the leaf nodes in the index also store bounding rectangles although this

is only shown for the nonleaf nodes.

The second way is to partition the underlying space into cells (i.e., blocks) at

fixed positions so that all resulting cells are of uniform size, which is the case when

using the uniform grid (e.g., 13,45,59), also the standard indexing method for maps.

Figure 2(a) is an example of a 4 × 4 uniform grid in which a collection of straight

line segments has been embedded. One drawback of the uniform grid is the possi-

bility of a large number of empty or sparsely-filled cells when the objects are not

uniformly distributed, as well as the possibility that most of the objects will lie in

a small subset of the cells. This is resolved by making use of a variable resolution

representation such as one of the quadtree variants (e.g., 76) where the subset of the

objects that are associated with the cells is defined by placing an upper bound on

the number of objects that can be associated with each cell. The cells that comprise
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the underlying space are recursively decomposed into congruent sibling cells when-

ever this upper bound is exceeded. Therefore, the upper bound serves as a stopping

condition for the recursive decomposition process. An alternative, as exemplified by

the PK-tree 75,95, makes use of a lower bound on the number of objects that can

be associated with each cell (termed an instantiation or aggregation threshold). De-

pending on the underlying representation that is used, the result can also be viewed

as a hierarchy of congruent cells (see, e.g., the pyramid structure 5,92, a family of

representations that make use of multiple resolution and can be characterized as

image hierarchies 76).

The PR quadtree 52,74 is one example of a variable resolution representation

for point objects where the underlying space in which a set of point objects lie is

recursively decomposed into four equal-sized square-shaped cells until each cell is

empty or contains just one object (i.e., the objects are sorted into the cells which

act like bins). For example, Figure 4 is the PR quadtree for the set of point objects

A–F and P. The PR quadtree represents the underlying decomposition as a tree

although our figure only illustrates the resulting decomposition of the underlying

space into cells (i.e., the leaf nodes/blocks of the PR quadtree).

P

12 10 6 7

11 9 1 3 5

2 4

13 8

D

E C

A
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F

Figure 4: Block decomposition induced by the PR quadtree for the point objects

A–F and P.

Turning to more complex such objects such as line segments, which have ex-

tent, we consider the PM1 quadtree 81. It is an example of a variable resolution

representation for a collection of straight line segment objects such as the polyg-

onal subdivision given in Figure 2(a). In this case, the stopping condition of its

decomposition rule stipulates that partitioning occurs as long as a cell contains

more than one line segment unless the line segments are all incident at the same

vertex, which is also in the same cell (e.g., Figure 5(a)), The PM1 quadtree and

its variants are ideal for representing polygonal meshes as they provide an access
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structure to enable the quick determination of the polygon that contains a given

point (i.e., a point location operation). In particular, the PM2 quadtree 81, which

differs from the PM1 quadtree by permitting a cell c to contain several line seg-

ments as long as they are incident at the same vertex v regardless of whether or

not v is in c (e.g., Figure 5(b)), is particularly suitable for representing triangu-

lar meshes 20. A similar representation to the PM1 quadtree has been devised for

collections of three-dimensional objects such as polyhedra images (e.g., 10 and the

references cited in 76). The decomposition criteria are such that no cell contains

more than one face, edge, or vertex unless the faces all meet at the same vertex

or are adjacent to the same edge. The above representations are said to be vertex-

based. The bucket PM quadtree 76 (also termed a bucket PMR quadtree in 46)

and the PMR quadtree 49,50 are examples of edge-based representations where the

decomposition criteria only involve the number of edges b (faces in three dimensions

although the discussion below is in terms of two dimensions). In particular, in the

former, the decomposition halts whenever a cell contains b or less edges while in

the latter a cell is decomposed once and only once when it contains more than b

edges. In this way, there is no need to split forever when b or more edges meet at

a vertex.

(a) (b)

Figure 5: (a) PM1 quadtree and (b) PM2 quadtree for a collection of straight

line segment objects that form a triangulation.

The above variants of the PM quadtree and PM octree represent an object by

its boundary. The region quadtree 38,44 and region octree 37,48 are variable reso-

lution representations of objects by their interiors. In particular, the environment

containing the objects is recursively decomposed into four or eight, respectively,

rectangular congruent blocks until each block is either completely occupied by an

object or is empty. For example, Figure 6(b) is the block decomposition for the
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region quadtree corresponding to the result of embedding the two-dimensional ob-

ject in Figure 6(a) in an 8 × 8 grid, while Figure 7(b) is the block decomposition

for the region octree corresponding to the three-dimensional staircaselike object in

Figure 7(a).

1

2 3
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7 8
9 10

13

11 12

14

15 16

17 18
19

(a) (b)

Figure 6: (a) Sample object, and (b) its region quadtree block decomposition

with the blocks of the object being shaded, assuming that it is embedded in

an 8 × 8 grid.

Region Quadtrees and octrees make it easy to implement algorithms for a num-

ber of basic operations in computer graphics, image processing, as well as numer-

ous other applications (e.g., 70). etc. In particular, algorithms have been devised

for converting between region quadtrees and numerous representations such as bi-

nary arrays 60, boundary codes 24,61, rasters 62,68,86, medial axis transforms 67,69,

and terrain models 88, as well as for many standard operations such as connected

component labeling 64, perimeters 63, distance 65, image dilation 4, and computing

Euler numbers 23. Algorithms have also been devised for converting between region

octrees and boundary models 91 and constructive solid geometry (CSG) 80.

Region octrees are also known as volumetric or voxel representations and are

useful for medical applications. They are to be contrasted with procedural repre-

sentations such as constructive solid geometry (CSG) 57 where primitive instances

of objects are combined to form more complex objects by use of geometric trans-

formations and regularized Boolean set operations (e.g., union, intersection). A

disadvantage of the CSG representation is that it is not unique. In particular, there

are frequently several ways of constructing an object (e.g., from different primitive

elements). In addition, there is no overall notion of geometry except of the prim-

itives that form each of the objects and thus there is no easy correlation between

the objects and the space in which they are embedded unless techniques such as

the PM-CSG tree 99 are used.

The principal drawback of the disjoint method is that when the objects have

extent (e.g., line segments, rectangles, and any other non-point objects), then an

object is associated with more than one cell when the object has been decomposed.
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Figure 7: (a) Example three-dimensional object, and (b) its region octree block

decomposition.

This means that queries such as those that seek the length of all objects in a

particular spatial region will have to remove duplicate objects before reporting the

total length. Nevertheless, methods have been developed that avoid these duplicates

by making use of the geometry of the type of the data that is being represented

(e.g., 6,7,21). Note that the result of constraining the positions of the partitions

means that there is a limit on the possible sizes of the resulting cells (e.g., a power

of 2 in the case of a quadtree variant). However, the result is that the underlying

representation is good for operations between two different data sets (e.g., a spatial

join 36,40) as their representations are in registration (i.e., it is easy to correlate

occupied and unoccupied space in the two data sets, which is not easy when the

positions of the partitions are not constrained as is the case with methods rooted in

representations based an object hierarchy even though the resulting decomposition

of the underlying space is disjoint). For a recent empirical comparison of these

representations with respect to multidimensional point data, see 43.

The PR, PM, and region quadtrees make use of a space hierarchy of where each

level of the hierarchy contains congruent cells. The difference is that in the PR

quadtree, each object is associated with just one cell, while in the PM and region

quadtrees, the extent of the objects causes them to be decomposed into subobjects

and thereby possibly be associated with more than one cell, although the cells

are disjoint. At times, we want to use a space decomposition method that makes

use of a hierarchy of congruent cells while still not decomposing the objects. In

this case, we relax the disjointness requirement by stipulating that only the cells

at a given level (i.e., depth) of the hierarchy must be disjoint. In particular, we

recursively decompose the cells that comprise the underlying space into congruent

sibling cells so that each object is associated with just one cell, and this is the

smallest possible congruent cell that contains the object in its entirety. Assuming

a top-down subdivision process that decomposes each cell into four square cells

(i.e., a quadtree) at each level of decomposition, the result is that each object is
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associated with its minimum enclosing quadtree cell. Subdivision ceases whenever

a cell contains no objects. Alternatively, subdivision can also cease once a cell is

smaller than a predetermined threshold size. This threshold is often chosen to be

equal to the expected size of the objects. We use the term MX-CIF quadtree 1,42

(see also the multilayer grid file 89, R-file 39, filter tree 85, and SQ-histogram 3) to

describe such a decomposition method.

In order to simplify our presentation, we assume that the objects stored in

the MX-CIF quadtree are rectangles, although the MX-CIF quadtree is applicable

to arbitrary objects in arbitrary dimensions in which case it keeps track of their

minimum bounding boxes. For example, Figure 8(b) is the tree representation of

the MX-CIF quadtree for a collection of rectangle objects given in Figure 8(a). Note

that objects can be associated with both terminal and non-terminal nodes of the

tree.

(a) (b)
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D B

(c) (d)

Figure 8: (a) Collection of rectangle objects and the cell decomposition induced

by the MX-CIF quadtree; (b) the tree representation of (a); the binary trees

for the y axes passing through the root of the tree in (b), and through (d) the

NE son of the root of the tree in (b).

Since there is no limit on the number of objects that are associated with a par-

ticular cell, an additional decomposition rule is sometimes provided to distinguish

between these objects. For example, in the case of the MX-CIF quadtree, a one-di-

mensional analog of the two-dimensional decomposition rule is used. In particular,

all objects that are associated with a given cell b are partitioned into two sets:

those that intersect (or whose sides are collinear) with the vertical axis passing

through the center of b, and those that intersect (or whose sides are collinear) with

the horizontal axis passing through the center of b. Objects that intersect with the

center of b are associated with the horizontal axis. Associated with each axis is

a one-dimensional MX-CIF quadtree (i.e., a binary tree), where each object o is

associated with the node that corresponds to o’s minimum enclosing interval. For

example, Figure 8(c) and Figure 8(d) illustrate the binary trees associated with the

y axes passing through the root and the NE son of the root, respectively, of the

MX-CIF quadtree of Figure 8(b). Thus we see that the two-dimensional MX-CIF
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quadtree acts like a hashing function with the one-dimensional MX-CIF quadtree

playing the role of a collision resolution technique.

The MX-CIF quadtree can be interpreted as an object hierarchy where the

objects appear at different levels of the hierarchy and the congruent cells play the

same role as the minimum bounding boxes. The difference is that the set of possible

minimum bounding boxes is constrained to the set of possible congruent cells. Thus,

we can view the MX-CIF quadtree as a variable resolution R-tree. An alternative

interpretation is that the MX-CIF quadtree provides a variable number of grids,

each one being at half the resolution of its immediate successor, where an object is

associated with the grid whose cells have the tightest fit. In fact, this interpretation

forms the basis of the filter tree 85 and the multilayer grid file 89, where the only

difference from the MX-CIF quadtree is the nature of the access structure for the

cells (i.e., a hierarchy of grids based on a regular decomposition for the filter tree

and based on a grid file for the multilayer grid file, and a tree structure for the

MX-CIF quadtree).

One of the main drawbacks of the MX-CIF quadtree is that the size (i.e., width

w) of the cell c corresponding to the minimum enclosing quadtree cell of object o’s

minimum enclosing bounding box b is not a function of the size of b or o. Instead,

it is dependent on the position of o. In fact, c is often considerably larger than b

thereby causing inefficiency in search operations due to a reduction in the ability to

prune objects from further consideration. This situation arises whenever b overlaps

the axes lines that pass through the center of c, and thus w can be as large as the

width of the entire underlying space.

There are several ways of overcoming this drawback. One easy way is to intro-

duce redundancy (i.e., representing the object several times thereby replicating the

number of references to it) by decomposing the quadtree cell c into smaller quadtree

cells, each of which minimally encloses some portion of o (or, alternatively, some

portion of o’s minimum enclosing bounding box b) and contains a reference to o.

The expanded MX-CIF quadtree 2 is a simple example of such an approach where

c is decomposed once into four subblocks ci, which are then decomposed further

until obtaining the minimum enclosing quadtree cell si for the portion of o, if any,

that is covered by ci. A more general approach. used in spatial join algorithms 40,

sets a bound on the number of replications, (termed a size bound 53 and used in the

GESS method 22) or on the size of the covering quadtree cells resulting from the

decomposition of c that contain the replicated references (termed an error bound 53).

Replicating the number of references to the objects is reminiscent of the manner

in which the non-disjointness of the decomposition of the underlying space resulting

from the use of an object hierarchy was overcome, and thus has the same shortcom-

ing of possibly requiring the application of a duplicate object removal step prior to

reporting the answer to some queries. The cover fieldtree 26,27, and the equivalent

loose quadtree (loose octree in three dimensions) 94, adopt a different approach at

overcoming the independence of the sizes of c and b drawback. In particular, they

do not replicate the objects. Instead, they expand the size of the space that is
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spanned by each quadtree cell c of width w by a cell expansion factor p (p > 0) so

that the expanded cell is of width (1 + p) · w. In this case, an object is associated

with its minimum enclosing expanded quadtree cell. It has been shown that given a

quadtree cell c of width w and cell expansion factor p, the radius r of the minimum

bounding box b of the smallest object o that could possibly be associated with c

must be greater than pw/4 94. However, the utility of the loose quadtree is best

evaluated in terms of the inverse of this relation (i.e., the maximum possible width

w of c given an object o with minimum bounding box b of radius r) as reducing w is

the primary motivation for the development of the loose quadtree as an alternative

to the MX-CIF quadtree.

It has been shown 78 that the maximum possible width w of c given an object

o with minimum bounding box b of radius r is just a function of r and p and is

independent of the position of o. More precisely, taking the ratio of cell to bounding

box width w/(2r), we have 78:

1/(1 + p) ≤ w/(2r) ≤ 1/p.

In particular, the range of possible ratios of width w/(2r) as a function of p for

p ≥ 1 takes on at most two values, and usually just one value 78.

The ideal value for p is 1 94. The rationale is that using cell expansion factors

much smaller than 1 increases the likelihood that the minimum enclosing expanded

quadtree cell is large (as is the case for the MX-CIF quadtree, where p = 0), and

that letting p be much larger than 1 results in the areas spanned by the expanded

quadtree cells being too large, thereby having much overlap. For example, letting

p = 1, Figure 9 is the loose quadtree corresponding to the collection of objects in

Figure 8(a) and its MX-CIF quadtree in Figure 8(b). In this example, there are

only two differences between the loose and MX-CIF quadtrees:

(1) Rectangle object E is associated with the SW child of the root of the loose

quadtree instead of with the root of the MX-CIF quadtree.

(2) Rectangle object B is associated with the NW child of the NE child of the root

of the loose quadtree instead of with the NE child of the root of the MX-CIF

quadtree.

Note that the loose quadtree (cover fieldtree) is not the only approach at over-

coming the drawback of the MX-CIF quadtree. In particular, the partition field-

tree 26,27 is an alternative method of overcoming the drawback of the MX-CIF

quadtree. The partition fieldtree proceeds by shifting the positions of the centroids

of cells at successive levels of subdivision by one-half the width of the cell that is

being subdivided. Figure 10 shows an example of such a subdivision. This subdivi-

sion rule guarantees that the width w of the minimum enclosing quadtree cell for

the minimum bounding box b for object o is bounded by eight times the maximum

extent r of b 27,76. The same ratio is obtained for the cover fieldtree when p = 1/4,

and thus the partition fieldtree is superior to the cover fieldtree when p < 1/4 76.
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Figure 9: (a) Cell decomposition induced by the loose quadtree for a collec-

tion of rectangle objects identical to those in Figure 8(a), and (b) its tree

representation.

Figure 10: Example of the subdivision induced by a partition fieldtree.

3. Examples of the Utility of Sorting

As an example of the utility of sorting spatial data suppose that we want to de-

termine the nearest object to a given point (i.e., a “pick” operation in computer

graphics). In order to see how the search is facilitated by sorting the underlying

data, consider the set of point objects A–F in Figure 4 which are stored in a PR

quadtree 52,74, and let us find the nearest neighbor of P. The search must first

determine the leaf that contains the location/object whose nearest neighboring ob-

ject is sought (i.e., P). Assuming a tree-based index, this is achieved by a top-down

recursive algorithm. Initially, at each level of the recursion, we explore the subtree

that contains P. Once the leaf node containing P has been found (i.e., 1), the dis-

tance from P to the nearest object in the leaf node is calculated (empty leaf nodes

have a value of infinity). Next, we unwind the recursion so that at each level, we



May 20, 2009 17:20 WSPC/INSTRUCTION FILE 00104

30 H. Samet

search the subtrees that represent regions overlapping a circle centered at P whose

radius is the distance to the closest object that has been found so far. When more

than one subtree must be searched, the subtrees representing regions nearer to P

are searched before the subtrees that are farther away (since it is possible that an

object in them might make it unnecessary to search the subtrees that are farther

away).

In our example, the order in which the nodes are visited is given by their labels.

We visit the brothers of the node 1 containing the query point P (and all remaining

nodes at each level) in the order of the minimum distance from P to their borders

(i.e., SE, NW, and NE for node 1). Therefore, as we unwind for the first time, we

visit the eastern brother of node 1 and its subtrees (nodes 2 and 3 followed by

nodes 4 and 5), node 6, and node 7. Note that once we have visited node 2, there

is no need to visit node 4 since node 2 contains A. However, we must still visit

node 3 containing point B (closer than A), but now there is no need to visit node

5. Similarly, there is no need to visit nodes 6 and 7 as they are too far away from P

given our knowledge of A. Unwinding one more level reveals that due to the distance

between P and A, we must visit node 8 as it could contain a point that is closer to

P than A; however, there is no need to visit nodes 9, 10, 11, 12, and 13.

The algorithm that we described can also be adapted to find the k nearest

neighbors in which case the pruning of objects that cannot serve as the k nearest

neighbors is achieved by making use of the distance to the kth nearest object that

has been found so far. Having retrieved the k closest objects, should we be interested

in retrieving an additional object (i.e., the k + 1th nearest object), then we have to

reinvoke the algorithm to find the k + 1 nearest objects. An alternative approach

is incremental and makes use of a priority queue 32,33,34 so that there is no need

to look again for the neighboring objects that have been reported so far. Note that

although in the above proximity is measured in terms of as “the crow flies”, these

methods can also be used to support finding nearest neighbors in a graph such as

a road network (e.g., 79,82).

There are many other applications where the sorting of objects is useful, and

below we review a few that arise in computer graphics. For example, sorting forms

the basis of all operations on z buffers, visibility calculations (e.g., BSP trees 28), as

well as back-to-front and front-to-back display algorithms. Sorting also forms the

basis of Warnock’s hidden-line 96 and hidden-surface 97 algorithms that repeatedly

subdivide the picture area into successively smaller blocks while simultaneously

searching it for areas that are sufficiently simple to be displayed. In addition, sorting

is used to accelerate ray tracing by finding ray-object intersections (e.g., 9) using

neighbor finding techniques 66,72 for quadtrees and octrees 29,71.

4. Concluding Remarks

An overview has been given of the rationale for sorting spatial objects in order

to be able to index them thereby facilitating a number of operations involving
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search in the multidimensional domain. A distinction has been made between spatial

objects that could be represented by traditional methods that have been applied to

point data and those that have extent thereby rendering the traditional methods

inapplicable.

Sorting is also used as the basis of an index in an environment where the data

is drawn from a metric space rather than a vector space. In this case, the only

information that we have is a distance function d (often a matrix) that indicates

the degree of similarity (or dissimilarity) between all pairs of objects, given a set of

N objects. Usually, it is required that d obey the triangle inequality, be nonnegative,

and be symmetric, in which case it is known as a metric and also referred to as a

distance metric. Indexes in such an environment are based on either picking one

distinguished object p and a value r, and then recursively subdividing the remaining

objects into two classes depending on a comparison of their distance from p with

r, or by choosing two distinguished objects p1 and p2 and recursively subdividing

the remaining objects into two classes depending on which of p1 or p2 is closer

(e.g., 76,93). The difference between these methods and those for data that lies in

a vector space is that the subdivision lines in the embedding space from which the

objects are drawn are explicit for the vector space while they are implicit for the

metric space (see 76 for more details).

The functioning of these various spatial sorting methods can be experienced

by trying VASCO 14,15,16,18, a system for Visualizing and Animating Spatial Con-

structs and Operations. VASCO consists of a set of spatial index JAVATM (e.g., 8)

applets that enable users on the worldwide web to experiment with a number of

hierarchical representations (e.g., 73,74,76) for different spatial data types, and see

animations of how they support a number of search queries (e.g., nearest neigh-

bor and range queries). The VASCO system can be found at http://cs.umd.edu/

~hjs/quadtree/. For an example of their use in a spatial database/geographic in-

formation system (GIS), see the SAND Spatial Browser 17,25,77 and the QUILT

system 87. Such systems find use in a number of alternative application domains

(e.g., digital government 47).
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