Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237-248 1

Incremental Distance Join Algorithms
for Spatial Databases*

Gisli R. Hjaltason and Hanan Samet
Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
grh@cs.umd.edu and hjs@cs.umd.edu

Abstract fies arorder on the result, based on distance. The distanceis usually
defined in terms of spatial attributes, but this need not be the case.
Two new spatial join operationsljstance join anddistance semi- When the distance of the resulting pairs is limited to a range, we
join, are introduced where the join output is ordered by the distance have a generalization of a spatial join based on a within predicate.
between the spatial attribute values of the joined tuples. IncrementalThe “distance semi-join” is a useful special case of the distance join
algorithms are presented for computing these operations, which canwhich for each object im finds the nearest object iB. Figure 1

be usedin a pipelined fashion, thereby obviating the need to wait for defines the distance join and distance semi-join operations using a
their completion when only a few tuples are needed. The algorithms syntax loosely adapted from SQL-92, including 8FEOP AFTER

can be used with a large class of hierarchical spatial data structuresclause extension proposed in [10]. TWEERE andSTOP AFTER

and arbitrary spatial data types in any dimensions. In addition, any clauses, specifying limits on the distance and/or the number of result
distance metric may be employed. A performance study using R- tuples, are optional. These basic queries could be made more com-
trees shows that the incremental algorithms outperform non-incre- plicated by adding further selection conditions in WHERE clause.
mental approaches by an order of magnitude if only a small part of

the result is needed, while the penalty, if any, for the incremental

processing is modest if the entire join result is required. SELECT = .

FROM R1, R2, distance(Rl.sl, R2.s2) AS
. d

1 Introduction [WHERE d >= <dnin> AND d <= <dnmax>]
ORDER BY d

The spatial join operation is similar to the join operation in rela- [STOP AFTER <n>]

tional databases. It is defined on two sets of objects, and computes

a subset of the Cartesian product of the two sets, determined by a @

spatial predicate, which prescribes a certain spatial relationship be- SELECT *, mi n(d)

tween the objects in the result. The most common spatial predi- FROM R1, R2, distance(Rl.sl, R2.s2) AS

cate isintersect, i.e., the geometry of the objects are required to d

intersect [1, 7, 8, 19, 21, 22]. A generalization of thisaighin, [WHERE d >= <dnmin> AND d <= <dnmax>]

where the objects are required to lie within some distance of each GROUP BY RI1.s1

other [24, 29]. Other spatial predicates have been considered as ORDER BY d

well, and general methods to compute a spatial join proposed [4, 14].
Some of these methods involve spegiih indexes[14, 24].

In this paper, we define a “distance join” operation, which com-
putes a subset of the Cartesian product of dedsd B, and speci-

*This work was supported in part by the National Science Foun-
dation under Grant IRI-9712715 and the Department of Energy un-
der Contract DEFG0295ER25237.

[STOP AFTER <n>]

(b)

Figure 1: Definition of (a) distance join and (b) distance semi-
join using SQL.

The distance join and distance semi-join have numerous useful
applications in spatial databases. For example, given a spatial data-
base of rivers and cities, we can use partial computation of them to
“find the city nearestto any river”, “find the city nearestto any river,
suchthat the city has a population of more tharnilion”, and “find
cities within 5 miles of any river”. The distance semi-join is useful
as a clustering operation. For example, suppose we are given two
relations consisting of the locations of stores and of warehouses, re-
spectively, and for each store we wish to determine the closestware-
house. Thisis achieved by taking the distance semi-join of the stores
relation with the warehouse relation. The distance semi-join works

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237-248 2

by reporting the (store,warehouse) pairs in order of distance. Note the basic incremental algorithm for the distance join, followed by

that once we have determined the closest warehouse to a particulaan outline of a number of miebds for extending its functioifiy

store, that store does not participate in other tuples with the remain-as well as improving its performance. Section 2.3 presents modi-

ing warehouses. fications to the basic algorithm to enable it to compute the distance
Computing the complete distance semi-join yields a clustering semi-join operation.

of the stores. In fact, for point data, the result partitions the space in

a manner analogous to a discrete Voronoi diagram, i.e., each point2 1 R-trees

in the stores relation is associated with the closest pointin the ware-"—"

house relation (thus, in the terminology of Voronoi diagrams, the lo- The R-tree [15] (see Figure 2) is one of many proposed spatial data

cations of the warehouses are the sites). The attractiveness of thistructures. It is an object hierarchy in the form of a balanced struc-

analogy lies in providing users a mechanism to perform a geomet- ture inspired by the B-tree [12]. Each R-tree node contains an ar-

ric operation such as the Voronoi diagram using a data base prim-ray of (key, pointer) entries wheréey is a hyper-rectangle that min-

itive without having to invoke a special purpose algorithm from a imally bounds the data objects in the subtree pointed gbbyter.

geometric library to perform the operation. Note that this operation In an R-tree leaf node, thminter is an object identifier (e.g., atuple

is not symmetric. In particular, the result of computing the distance ID in a relational system), while in a non-leaf node it is a pointer to

semi-join of the warehouse relation and the stores relation is that for a child node on the next lower level. The maximum number of en-

each warehouse, we get the closest store.
Theclusteringjoin [32] is similar to the distance semi-join with

rithm for computing the clustering join is also given in [32]. How-

tries in each node is termed itede capacity or fan-out and may be
different for leaf and non-leaf nodes. The node capacity is usually
the difference being that the clustering join is symmetric. An algo- chosen so that a node fills up one (or a small number of) disk pages.
R-trees can be used to index a space of arbitrary dimension and ar-

ever, that algorithm is not well suited for spatial data that resides bitrary spatial objects rather than just points.
in d-dimensional Euclidean space. The reason is that [32] deals As described above, R-tree leaf nodes contain a minimal bound-
with more general objects—such as patterns, strings, trees, graphsing rectangle and an object identifier for each objectin the node, i.e.,
etc.—whose internal structure is unknown as far as the algorithm the geometric description of the objects is stored external to the R-
is concerned. The only knowledge about the objects comes from tree itself. Another possibility is to store the actual object, or only its
a distance measure that returns the distance between two objectsggeometric description, in the leaf instead of the bounding rectangle.
Furthermore, the distance measures are assumed to be expensive fhis is usually only useful if the object representation is relatively
compute, so that the overall goal is to compute as few distances assmall (e.g., similar in size to a bounding rectangle) and is fixed in
possible. In contrast, spatial data allows the use of spatial indexeslength. If the entire objectdata (i.e., all relevantattributes) are stored
which in effect summarize the data and enable avoiding many dis- in the leaf nodes, then the object identifiers need not be stored. The
tance calculations (which, however, are not necessarily the most ex-disadvantage of this approach s that objects will not have a fixed ad-
pensive component of query algorithms involving distances). dress, as some objects must be moved upon each R-tree ribde sp
In this paper we present incremental algorithms for computing
the distance join and distance semi-join in the sense that the pairs re-
sulting from the corrggonding operation are reported one-by-one.
This enablesa query engine to use the algorithms in a pipelined fash-
ion. Furthermore, the algorithms aim to deliver results as soon as
possible. Such “fast first” pipelined join methods have recently be-
come a focus of attention [3, 33]. They have become importantin ||,
enabling the development of more user friendly and interactive in-
terfaces to database systems [16]. Recent proposals for extending
SQL [10] also benefit greatly from the presence of such algorithms. (@) (b)
A variation of our incremental distance join algorithm can be
usedto compute intersecting pairs [30], closest pair [6], and all near- Figure 2: An R-treefor a set of 9 line segments. (a) Spatial ren-
est neighbors [2, 11, 31] in a set of objects. While our incremental dering of the line ssgmentsand bounding rectangles, and (b) a
distance join algorithm may not always be competitive with some treeaccessstructurefor (a). Boundingrectanglesfor individual
of the above algorithms in terms of computational complexity, it line segmentsare omitted from (a) in theinterest of clarity.
may nevertheless be a reasonable alternative giventhat a spatial data
structure has already been built. In addition, unlike most of these ~ We make use of an R-tree variant called tHetRe [5]. It dif-
methods, it is not limited to point or rectangle objects. fers from the conventional R-tree in employing a more sophisticated
The rest of this paper is organized as follows. Section 2 de- insertion and node-$ifting algorithms that attempt to minimize a
scribes the incremental algorithms for computing the distance join combination of overlap and area increase between minimum bound-
and distance semi-join. Section 3 describes the environment ining rectangles.
which we perform our experiments, and Section 4 presents the re-
sults. Section 5 concludes with a number of future tasks.

\ Fo:
a

o 3 RL: [RERA] re: [FERY]
d // \\ // \\

s %

R3:[a]b] R4:[d]g]h] Re:[c]i] Re:[e]f]

R

2.2 Computing Distance Join

2 Incremental Distance Join Algorithms Our incremental distance join algorithm may be viewed as simul-
taneously applying an incremental nearest neighbor algorithm [18]

In this section we describe our incremental distance join algorithm. (S€€ [17] for the application of a similar approach to the LSD tree)
Although our algorithm is general in the sense that it can be used© the two spatial data structures corresponding to the spatial at-
with most spatial data structures, for concreteness we present it intfioutes of the joined relations. The algorithm works for any spa-
the context of the R-tree. Also, performance tests were conductedtia! da_lta_ structure based on a hlerarchlcal decomposition. In our
with R-trees (see Section 4). The rest of this Section is organized description, we assume a spatial data structure that forms a tree

as follows. Section 2.1 reviews the R-tree. Section 2.2 describesStructure, where each tree node represents some region of space and
where objects (or pointers to them in external storage) are stored in

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237—-248 3

the leaf nodes whose region intersects the objects. Further, we asobr) are stored in leaves, then these will become the third type of
sume that each object is stored in only one leaf. We handle both pair items, resulting in nine possible kinds of pairs, of which we use
the case that the objects are stored directly in the leaf as well asfive: node/node, node/obr, obr/node, obr/obr, and object/dbject
the case that the leaf nodes contain the minimum bounding rect- The key used to order the queue elements is the distance between
angles of objects along with a pointer to the actual object repre- each pair. We later discuss howto handleties, i.e., howto order pairs
sentation. This set of assumptions was chosen as it holds for thewith equal distance.

R-tree. However, the algorithm can be easily adapted to handle At each step in the algorithm, the element at the head of the pri-
most spatial data structures that do not satisfy these assumptionsority queue is retrieved, i.e., the element with the smallest distance
such as the hB-tree [23] (which forms a directed acyclic graph), and key. If the element stores a pair of data objects, then the pair is re-
quadtrees [26, 27] (where non-point objects may be stored in more ported as the next closest pair. No pair that is subsequently reported
than one leaf node). In the remainder of this section, we do not makewill have a smaller distance due to this pair having the smallest key
a distinction between a node and the region that it represents; thein the queue. Furthermore, the consistency constraints on the dis-

meaning should be clear from the context. tance functions guarantee that no pair on the queue will resultin gen-
The input to the incremental distance join algorithm is two spa- erating a pair of data objects with a smaller disté&ndieone of the
tial indexes,R: andR». The algorithm maintains a set of paifs items in the dequeued elementis a node, then the algorithm pairs up

with one item from each ok, andR-, eachitem being eitheranode the entries of the node (objects for leaf nodes, child nodes for non-

or an object. Initially,P contains just one pair corresponding to the leaf nodes) with the other item.

root nodes ofR; and R,. We obtain the set of all pairs, i.e., the The basic algorithm is presented in Figure 3 for the case that the

Cartesian product of the sets of objectsRn and R, as follows. leaf nodes of the spatial indexes contain object bounding rectangles.

As long asP contains a paip with at least one item being a node, Inthe figure, item 1 in a queue element is frdtn, while item 2 is

replacep in P by all the pairs resulting from replacing thede by from R,. The INcDISTJOIN procedure contains the high level con-

its entries (child nodes for non-leaf nodes, objects for leaf nodes). It trol structure for the algorithm, while proceduresdCESSNODEL

should be intitively obvious that this process will result A con- and FRROCESSNODE2 enqueue new pairs for each entry in a node

taining the set of all pairs. The algorithm essentially compiites from R; and R», respectively. In lines 6 and 11 ofi€DI1STJOIN,

in this way, but processes the pairsfimin order of their distance, the next closest pair of objects is reported. The entire state of the

thereby attempting to report object pairs as soon as possible. algorithm is represented by the priority queue. Thus, at this point,
The algorithm works for data objects of arbitrary type and di- control can be passed to the process that invoked the incremental

mension (although our experiments use two-dimensional points), distance join algorithm, which may or may not decide to retrieve

provided that consistent distance functions are used. Four dis-more pairs. If one of the items in the dequeued element is a node,

tance functions are needed: one between objects of each collectionthen one of the procedure®RBceEsSNoODEL and FROCESSNODE2

two between objects of one collection and nodes of the spatial in- is called. This version of the algorithm arbitrarily chooses to call

dex of the other collection, and one between nodes of each spa-PROCESSNODEL if both items are nodes.

tial index. More accurately, the functions we needdrgo1, 02), In line 4 of PROCESSNODEL, [O] denotes the bounding rectan-
don(01,12), dno(n1,02), aNddy,y (n1, n2), whereo; andr; arean gle of O (note that in practice the object reference must be enqueued
object and a node fromR;, respectively, and, andn. are an ob- along with the bounding rectangle). If the object geometry is repre-
ject and a node fronk., respectively. If the leaf nodes store min- sented directly in the leaf nodes, then the actual objects would be
imum bounding rectangle for objects, then the functidns and used here instead of the bounding rectangles. Also, in this case, the
dno are not required. Instead, we need the functidngb:, n2), if statementin line 7 ofNcDIsTJoIN would not be needed.
dns(n1,62), in addition todss (b1, b2), whereb, andb, denote a The connection of the incremental distance join to our incremen-
minimum bounding rectangle for objects & and R., respec- tal nearest neighbor algorithm [18] is easy to see from Figure 3, as
tively. If node regions are rectangles, thép, can serve the pur- PROCESSNODE1 and FRROCESSNODE? are essentially the same as
pose of all three functions. the basic loop of the nearest neighbor algorithm. In particular, in

Usually, the distance functions are all based on a distance met-PROCESSNODEL, item 2 serves the role of the query object.
ric for points,d(p:1, p2), such as the Chessboard, Manhattan or Eu-
clidean metrics. However, this need not be the case. As long as thep 2 2 Priority Queue Ordering and Tree Traversal
distance functions are “consistent”, the algorithm will function cor-
rectly. Informally, by consistent, we mean that no pair can have a The key for ordering the priority queue of pairs is the distance be-
smaller distance than a pair that gives rise to it during the process-tweenthe items. Animportant question is how to break ties for pairs

ing of the algorithm. For example, if; ando, are objects ink, with the same distance. Different choices will lead to vastly differ-
andR;, respectively, and; is a leaf node that containg, then we ent traversal patterns. Since our goal is to produce result pairs as

must havel,.(01, 02) > dno(n1, 02). If the distance functionsare ~ soonas possible, it is obvious that we want to order pairs containing
all based on the same metric, this condition will hold due to the tri- objects or object bounding rectangles ahead of (i.e., with greater pri-
angle inequality property. In what follows, we usually refer to the ority than) pairs of nodes. Furthermore, given two pairs with nodes,
distance functions collectively with the symhblas the particular the pair containing nodes at a deeper level is given a higher priority.
distance function to be used can be inferred from the context. This leads to a depth-first-like traversal pattern of the tree hierarchy
of the spatial indexes for pairs having the same distance (a version

2.2.1 Basic Algorithm ! Note that objects only appearin one of the combinations that we

We first describe the basic version of the algorithm, and then intro- allowin order to reduce the number of accessesto the object storage.
duce extensions to it as well as ways to improve its performance. With our scheme, each object mustbe accessedat mostonce for each
The heart of the algorithm is a priority queue, where each element Object/object pair.

contains a pair of items, one from each of the input spatial indexes ~ >A pair (i1, 1>) is said to be generated from a péif, i3) if the

Ry andR,. Anitem can be either a data objector anode, so there are pair (i1, i2) results from a sequence of algorithm operations starting
four kinds of possible pairs, node/node, node/object, object/node,with (i1,i3). As an example, all object/object pairs are ultimately
and object/object. If object bounding rectangles (abbreviated by generated from the initial pair of roabdes.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237—-248 4

INCDISTJOIN(R1, R2)

1 @ — NEWPRIORITY QUEUE()

2 ENQUEUE(Q, 0, (R;.ROOTNODE, R,.ROOTNODE))

3 whilenot ISEMPTY(Q) do

Elem — DEQUEUE(R)

if both items inElem are data objecthen
ReportElem

elseif both items are object bounding rectanglean
letO; and O, be the corresponding object references
D — DlST(O1, 02)

10 if ISEMPTY(Q)or D < FRONT(Q).DIST then

11 Report{O1, O2)

©©oo~NO U~

12 ese
13 ENQUEUE(@, D, (O1, 02))
14 endif

15 elseif item 1 inElemis a nodethen
16 PrROCESSNODEL(@®, Elem)

17 else

18 PrROCESSNODE2((, Elem)

19 endif

20 enddo

ProcessNODE1(Q, Elem)

1 Node — item 1 ofElem

2 ltems «— item 2 ofElem

3 if Node is a leaf nodehen

4 for each entryQ] in Node do

5 ENQUEUE(Q, DIST([O], ltems), {[Q], Item2))

outlined is not always the best one, our experiments have shown it
to perform well overall.

An alternative to processing only one of the nodes for node/node
pairs is to process both simultaneously (termed “Simultaneous” in
Section 4.1.1). Thisis more in line with traditional spatial join algo-
rithms [8, 21]. In fact, if this is done, then many of the optimization
techniques developed for spatial join can be applied [8], such as the
usage of plane sweep and the restriction of the search space. The
idea is that when processing péir;, n2), we first mark the entries
in n; that are within the specified distance range (see Section 2.2.3)
from the space spanned by, and similarly for the entries in, we
mark the ones that are within the specified distance range from the
space spanned by,. This serves to eliminate entries that cannot
possibly become members of any of the new pairs. Next, a plane
sweep along one of the axis is used to pair up the entries in the two
nodes (which have previously been sorted along that axis). Figure 4
illustrates the plane-sweep process, whelr@ndr 2 are entries in
n1, andsl, s2, s3 ands4 are entries im». Without plane sweep,

r 1 would have to be checked for intersection with all the entries in
n2, but with plane sweep we only have to check intersectionlof
with s1 ands2. The plane-sweep algorithm given in [8] has to be
modified to work for a non-zero maximum distance (recall that [8]
focuses on spatial join with the intersection predicate). For exam-
ple, if the rectangle currently being used has the coordinate range
(z1, z2) along the sweep axis, then the algorithm must sweep along
the entries in the other node up to the coordinate value D, ax,
whereD.x is the maximum distance. As an example, in Figure 4,
we would have to check whetheB is within the proper distance of

r 1, in additiontos1 ands2.

6 enddo

7 else D e
8 for eachChild node ofNode do A I P T2
9 ENQUEUE(Q, DIsT(Child, Item:), (Child, Items)) A S SR
10 enddo > Sweep .
11 endif direction : ‘g3
PROCESSNODE2((7, Elem) re g
1 Same as RocessNoODE1, with items 1 and 2 exchanged , — S2:
. Seeropecccecerpeecd
. . B >
Figure 3: Basic version of incremental distance join algorithm Diax X

whereleaf nodescontain bounding rectangles.

Figure4: Planesweep along z-axisover theentriesin twonodes.

using this approach is termed “DepthFirst” in Section 4.1.1). Alter- Processing both nodes simultaneously for node/node pairs is not
natively, if nodes at a higher level are given priority, a breadth-first- always better than processing only one node as in our original for-
like traversal would result (termed “BreadthFirst” in Section 4.1.1). mulation. Intuitively, it seems likely that the optimizations that it
This could be of advantage if we wanted to compute a large por- affords will only yield significant benefits if the distance range is
tion of the distance join operation (i.e., generate a very large num- rather narrow. As an extreme case, if the minimum is 0 and the max-
ber of pairs), as it would in certain cases enable the algorithm to bet-imum is unbounded, then all possible pairs of entries from the two
ter schedule node and object accesses[21]. However, given our Usnodes will have to be generated, a totalef] - |22 | (|n| denotes the
age assumptions, much of the work may be wasted, as a breadth-firshumber of entries in node). In contrast, if only one of the nodes
traversal would require processing all pairs at one level before any s processed, say:, then only|n:| pairs will result. All of these
pairs with the same distance at the next level are considered. pairs may have a greater distance than the next closest pair. Thus,
In the version of theNcDisTJOIN procedure that we presented in best case, onlyn:| pairs are generated frofm:, n2) with our
in Figure 3, when the dequeued pair contains two nofdasmn2), original formulation of the incremental distance join algorithm be-
noden; is arbitrarily chosen to be processed (i.€., its entries exam- fore the next object pair is reported. The downside, of course, is
ined) rather tham. This is not a good strategy, as it will cauBe that processing only one node at a time may lead to each node being
to be traversed down to the leaf level before the roakefs pro- accessed more times from disk when the algorithm has to produce
cessed. A better strategy would attempt to traverse the two indexesmany result pairs.
more evenly so that the level of the nodes in node/node pairs does |f both nodes in node/node pairs are processed simultaneously,
not differ by much. This is done by choosing to process the node then the incremental distance join algorithm resembles somewhat
that is at a shallower depth. If both nodes are at the same level inthe spatial join algorithm introduced in [21]. The difference is
their respective trees, then the algorithm chooses to process the nodghat [21] is breadth-first and is limited to finding intersecting object
whose region has a larger area. Although the strategy that we havepairs, although it would be straightforward to generalize it to com-

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237—-248 5

pute a spatial join with a within predicate (however, unlike with our that has been termed MINMAXDIST [25]. The object bound-
algorithm, if the pairs are desired in order of distance, then the en- ing rectangles are required to minimally bound the objects. The
tire result would have to be computed and sorted before the first pairkey idea behind the MINMAXDIST metric is that & is the d-
can be reported). dimensional minimum bounding rectangle of objecthen each
Some widely used spatial data structures form unbalanced treeof thed — 1 dimensional face'sof b must touchy at some point.
hierarchies (e.g., quadtrees [27] and the buddy-tree [28]). BoundingThus, given a poinp, we haved(p,o0) < maxp, ey d(p,ps),
rectangles are not always present in the leaf nodes of these strucfor eachf < F(b), where F(b) denotes the set of faces of
tures, even when objects are not represented directly in the leaves,. The facef causing the right hand side of the inequality to
(i.e., the leaves only contain pointers to the objects). If this is the reach its minimum is the best approximation dffp, o) given
case, then it is better to defer processing leaf nodes until both itemsthe bounding rectanglé, so the function computing the MIN-
in node/node pairs are leaf nodes, at which time both leaf nodesMAXDIST for a point and a bounding rectangle ds,m(p, b) =
are processed simultaneously. This strategy will tend to reduce themin ;¢ 5y (max,, e d(p, py))- A practical way of computing the

number of times each object needs to be accessed from disk. value ofdum(p, b) is to first compute the maximum distance from
p to a vertex ofb, sayvmax, and then to determine the vertex ad-
2.2.3 Distance Range jacent tovm.x (i.e., along an edge) that is closesyt25]. Now,

. we can defin@max(n1, b2) = maxpen, dmm(p, b2), and similarly
A shortcoming of the algorithm as stated in Section 2.2.1 is that & ¢o; opr/node pairs. The MINMAXDIST defition of deaax for two
very Iar%e number of pairs wu(!jl be mseﬁed |r;tott)he priority fqueu?' object bounding rectangles is more complicatég..(b1,b2) =
even when computing a modest number of object pairs for rela- | . max d _ The price of
tively small object relations. Most of the pairs inserted in the pri- basi]cﬁgefi%l;iefﬂ(r?é%igns fglrep];iyr?s? with gllt’a?spone bouﬁding rect-
ority queue will have a large distance, and will mostlikely neverbe nq1e on the MINMAXDIST metric is that they are more expensive
retrieved from the queue unless a very large number of object pairsy, compute than the simpléf.. function for node/node pairs.
is requested. However, for object relations of non-trivial size, the Figure 5 presents a version 0RBCESSNODEL that restricts
number of pairs in the Cartesian product of the two relations (recall gistancesto a range of values. We must also modifjftsatement
that a full distance join operation computes the Cartesian product) isjn jine 7 of the NcDISTJOIN procedure in Figure 3 to check that
immense. For example, for two relations with 50,000 objects each, he gistanceD falls in the desired range. The argumehtis and
the Cartesian product contains 2iflién pairs. Typical queries will Max in Figure 5 specify the minimum and maximum desired dis-
only require computing a very smal fraction of this high number. 1ance MNDIsT denotes the regular distance functions (i.e.sD
Thus, itis unlikely that pairs with a large distance are ever retrieved i, Figure 3) while MaxDisT denotes th@...x functions. Again
from the queue. The large number of pairs put on the queue andihjs version of RocEssNODEL assumes that the leaf nodes of the
never requested occupies a great deal of memory space and slowgpatia| indexes store bounding rectangles. If the object geometry is
down queue operatiofisThus, we need a way of limiting the num- represented directly in the leaf nodes, then the actual objects would
ber of pairs inserted into the queue. One way 0fdoing S0is 0 IMPoSe g sed in line 4 of Figure 5. Also, in that case, if item 2 is an object,
a maximum distance on object pairs. Any pair that has a distance ihen Max DisT is equivalent to MNDISTn line 5.
larger than the maximum can be rejected, as no object pair with less
distance canbe deri_/ed from it (this is guaranteed by the consistency
of the distance functlons)._ _ PROCESSNODEL(Q, Elem, Min, Max)

Above, we have established the need to be able toimposeamax- 1 Node — item 1 of Elem

imum on the distance of object pairs. In addition, it may be use- 2 Items, — item 2 of Elem
ful for some queries to impose a minimum on the distance of object 3 it Nodeis a leaf nodéhen
pairs. The incremental distance join algorithm is easily modified so

S h . 4 for each D] in Nodedo
that it limits the distance of the pairs that are retumed to arange of g ¢ MAXDIST([0], Items) > Min and
values. In order to effectively prune pairs based on a minimum dis- MINDIST([O] ’ItemQ) < Max then
tance, we need functions that compute an upper bound on the dis- ¢ ENQUEUE(Q MlNDlST(_[O] Itemy), {[O], Ttems))
tance of any object pair that can be generated from a(pait.) 7 endif ’ ’ ' ’
(such a function is clearly not needed for object/object pairs). In 8 enddo
other words, for any object pa{p1, 02) generated from(is, i2), 9 dse
we haVai(Oh 02) S dmax(i1, i2), Wheredmax is the upper bound 10 for eachChild node ofNode do
function appropriate fofi1, ¢2}. This means that iflmax(21,12) IS 11 if MAXDIST(Child, Item,) > Min and
smaller than the minimum distance bound, then we can discard the MINDIST(Child ’ItemQ) < Max then
pair (i1, 12), as no object pair with a distance larger than the mini- 15 ENQUEUE(Q MII\;DIST(Ch_z'ld Items), (Child, Ttem,))
mum will be generated fror¥s, 12). 13 endif ' ’ ' '
Now, the question is how to computg..x for the various types 14 enddo
of pairs. For pairs of nodegp1, n2), we havedmax(ni, n2) = 15 endif
maXp, eny,ppens 4(p1,p2). FOr a node/object paifni, o2), we
havedmax(n1,02) = maxy, en, d(p1,02), and similar for ob-

ject/node pairs. The functions for node/obr, obr/node, and obr/obr Figure 5: Portion of incremental distance join algorithm with
pairs can be defined in a similar manner as for node/node pairs.distancerangerestriction.

However, a closer approximation to the upper bound is possi-
ble for these types of pairs through the use of a distance metric

3 - - . . *In two dimensions, the faces are line segments.
But see Section 3.2 for a description of a priority queue imple-

mentation that puts part of the queue on disk if its size is too large
to fitin memory.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237—-248 6

2.24 Estimating Maximum Distance specified above) is inserted into the priority queue, it is also inserted
into M. If this causes the sum of the number of object/object pairs
(actually, the lower bound of object/object pairs as described above)
that can be generated for the pairsiihto be larger thark’, then
we remove pairs frond/ until this is not the case, settinGmax to
the dmax Value of the pair removed last. The pair to remove next
is chosen based on the largést.x value. When a pair is retrieved
from the priority queue, we must also remove the pair frahif it
is present. However, when reporting the next object/object pair, we
can reduce the value &f by one.

The question is how to organize the 4ét The operations that
are performed oM/, in addition to insertion, are to remove the pair
Sith largestdmax as well as to remove a pair given the particular

As we pointed out in Section 2.2.3, a reasonably narrow distance
range (i.e., small interval between minimum and maximum dis-
tance) is crucial for the incremental distance algorithm to perform
well. However, it is often not practical to require the user to set a
maximum distance. Furthermore, the maximum distance s likely to
be greatly overestimated. It is therefore important to have another
way of estimating the maximum distance, given some other infor-
mation. One way of doing so is to set an upper bound on the number
of pairs that the algorithm must compute. In many applications, es-
pecially involving interactive queries, a fairly low number of pairs
are known to be needed. Thisis aided by query language extension
that enable limiting the number of tuples in the result of queries (€.9., jiemg in the pair. There is no single data structure that supports effi-
the "STOP AFTER” clause proposed for the “SELECT" statement cient execution of both of these operations. In our implementation,
of SQL [10]). . . . we chose to use a priority quedg,, organized on thé..x val-
Given that the algorithm must compute a maximunkopairs, — \aq4g support finding the largest value, and a hash table to support
the algorithm can estimate the maximum distance based on the pair§, cating a particular pair. The hash table entries contain a pointer
that have been seen so far. _Obwously;lbbje_ct/object pairs haye to the corresponding priority queue entry, thereby enabling deleting
been seen, then the pair with the largest distance among 10Se o antry from ,; for a pair that must be removed. It is important
pairs will provide a lower bound on the maximum distance neces- not to confuseQ,s with the main priority queue of the algorithm

sary to compute thé(closest pairs. However, we can do better in Ei il ; further in th)
than this by also making use of other types of pairs (e.g., node/nodegigi’ngelrnof tlg:fsr?):pze?M will not be discussed further in the re

pairs). In general, more than one object/object pair may be gen-
erated from a paifi1,42). This means that much fewer thdn .
pairs are sufficient for estimating the maximum distancé odb- 225 Other Extensions

ject/object pairs. o A number of other extensions of the incremental distance join are
__Inthefollowing, Duin andD:ax denote the minimumandmax- possible. The first is to add some spatial criterion to one or both of
imum distance imposed on the pairs to be computed by the algo-ihe rejations involved in the join. As an example, the objects may
rithm, d denotes a regular distance function (i.e., computing min- e yequired to fall inside a given rectangle, or they may be required
imum distance between two items) afigh.x denotes the functions 14 haye some minimum area. Such an extension can actually be ap-
computing the upper bound on the distance of any object pairs gen-pjied equally to other spatial join algorithms, and does not necessar-
erated from a pair. If the query specifies no maximum on the dis- jy jnyolve modifying the algorithm. Instead, the distance functions
tance, thetD . is initially cc. Ourgoalis to reduc®rm.x as much (which may be parametrized) can check the additional spatial cri-
as possible, giver, the maximum number of pairs requested. terja, and return some special value if the pair should be discarded.
Whenevera paifi1, i) is inserted into the priority queue, we Show ot course, if the spatial criterion has a high selectivity (i.e., suchthat
below how to use the pair for the purpose of estimating a lower value fe\y gbjects in each relation participating in the join satisfy the cri-
for Duax. Doing this adds overhead to the algorithm, butunl€ss tarion); then it may be better to first restrict the number of objects
is very Iarge,_ it reduces conS|derany the number of pairs mse_rted by using the spatial criterion before computing the join. However,
into the priority queue, and thereby improves the overall running (he cost of that alternative will include building a spatial index on
time of the algorithm. o _ the resulting restricted relations, or it will require using some algo-
(A pair (11,12) is eligible to be used for estimating. if rithm other than the incremental distance join. In either case, it may
d(1,72) > Drnin @nddmax(11,12) < Dmax. This guaranteesthat take longer to produce the first few pairs with the alternative than
all object/object pairs generated frofn, i) will have a distance \yith the incremental distance join, since it it highly geared towards
in the rar)ge{Dm_in, Dimax]. Since we cannot know in advance how producing pairs early.
many object pairs are generated from a pair:.), we mustinstead The second extension is to impose a secondary ordering on pairs
determine a lower bound on this number. This can be derived from ,r5quced by the algorithm, besides the distance between the objects.
the minimum number of objects in the subtreg,adindi>, assuming T js probably most useful if the resulting pairs are required to in-
they are nodes (if they are objects or object rectangles, this numbetgrsact, j.e., the maximum distance is 0. For example, we may wish
is one). The minimum number of objects in the subtree of a node {4 fing the intersections of roads and rivers in order of distance from
can, inturn, be (_:ierlved from the minimum fan-out and the he_lght of a given house. In the general case, this extension requires modify-
the corresponding tree. For the R-tree, for example, the minimum jnq the algorithm. However, for the special case of finding inter-
fan-out of nodes is typically 40% of the maximum fan-out (except gactions, the distance functions could retesrfor nonintersecting
forthe root node). A more aggressive strategy would resultfrom us- hairs byt for intersecting pairs, the functions would return some or-
ing the expected number of pairs generated f(om:2) based on dering value (such as the distance from the house in our example).
the average node occupancy. However, if the number of pairs gen- - apother possible extension is to find the pairs in reverse order
erated from(u1, i) is over-estimated, then this may lead to avalue f gistance, i.e., the farthest pair first, etc. This is relatively simple
of Duax that is too small (i.e., smaller than thi” object/object o achieve. Instead of ordering the elements on the priority queue
pair), thereby causing us to find less thirpairs which will force in ascending order of distance, we would order them in descending
us to restart the query. The reason we need to restart is that the priorder of distance (for example, this can be done by simply using the
ority queue does not provide us any useful information as we will negative of the distance as a key). In addition, instead of using the
have pruned too many entries by our maximum distance heuristic. regular distance functions as a key to order the pairs on the priority
The process for estimating maintains a set of pai® , each of queue, thel.,.» functions must be used for all types of pairs except
which has beeninserted in the priority queue but not retrieved from opject/object pairs (recall that tidg,., functions compute an upper
it. When an eligible pair (i.e., with the distance function values as pound on the distance of object/object pairs generated from pairs).

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237-248 7

As before, the algorithm will perform better if the distance range is As in the case of computing the distance join incrementally, we
rather narrow. However, in this case, we can estimate the minimum can estimate the maximum distance needed to produce a maximum
distance in the presence of an upper bo#ihdn the number of ob- of K pairs for the distance semi-join. This is done in much the same
ject pairs that will be requested. This is instead of estimating the way as described in Section 2.2.4. The difference, here, is that in

maximum distance as was described in Section 2.2.4. the setM of the pairs being used in the estimation process, the first
item in each pair is unique. In other words(if, :>) is a pair in
2.3 Computing Distance Semi-Join M, then no other pair i/ hasi; as the firstitem. Also, the num-

ber of pairs generated from a pédir , :>) is bounded by the num-
Recall that distance semi-join is a subset of a distance join, where ber of objects in the subtree &f, assuming; is a node. When an
an object paifo1, 02) appearsin the result only if none of the prior item (i1, 7> is about to be inserted intd/, we must first check if
pairs contaim; as the firstitem. Thus, we mustkeep track of the set anotheritem(s;, ¢5) exists inM. If so, then we replac@;, i) by
S, of objectso; whose pairges, 02) have beenreported. The easi- (i1, 4,) ifthe latter has a smalléh,.» value and ignoréis , i»), oth-
estway to extend the incremental distance join algorithm to compute erwise. There are two additional subtle differences. Wagno»)
a distance semi-join is to use the algorithm unchanged and checkis reported, any paife1, i>) in 4/ must be removed. Also, a pair
outside of the algorithm if objeat; in output pairs{os, 02) has (n1,12) may only be inserted intd/ if n,; has neverbeen processed
been seen before (i.e., if it is present in the $et However, that for any pair(n1,15). Otherwise, some of the objects in the subtree
approach (termed “Outside” in Section 4.2.1) does not take advan-of »n; would be counted more than once (since processirig the
tage of the special structure of the distance semi-join to reduce thepair (n1, i5) may lead to some paifg, i5) to be inserted intd/
amount of work expended by the algorithm. In this section we iden- wheree; is an entry inn;). This may lead to an estimate H,,.x
tify several possible ways to modify the incremental distance join al- that is too low thereby causing us to find less thgrpairs which
gorithm such that it computes the distance semi-join operation moreforces us to restart the query. The reason we need to restart is that
efficiently. Also, we discuss how the extensions and optimizations the priority queue does not provide us any useful information as we
described in section 2.2 for the incremental distance join algorithm will have pruned too many entries by our maximum distance heuris-
apply for computing the distance semi-join operation. tic.

First, we must bring into the algorithm the knowledge of the The extensions discussed in Section 2.2.5 also apply for the dis-
setS,, the set of objects from the first collection that has already tance semi-join version of the our incremental algorithm. However,
been seen. This is straightforward to do, and requires minor mod- modifying the algorithm to find pairs in reverse order of distance
ifications to the kcDisTJOIN procedure of Figure 3 (termed “In- leads to what may seem an unintuitive, and perhaps not very useful,

sidel” in Section 4.2.1) as well as to procedurOBESSNODEL result. There are two possible ways of defining a reverse distance
(termed “Inside2” in Section 4.2.1). Specifically, in line 4 of-I semi-join operation on relationd and B. The first is to report in
cDistJorn, if in the dequeued elemefi, i2), 71 is an objector reverse order of distance the objecirclosest to each object iA.

an object bounding rectangle, then we check ifs present inS.. The second is to report in reverse order of distance the objggt in

If so, then we discard the pair. InRBCESSNODEL, if the node is farthest from each object imd. The straightforward way of apply-
a leaf node, then in line 5 we must ignore entries that correspond toing the incremental distance join to the reverse distance semi-join

objects that are presentify. will be in accordance to the second défon since it correponds

Bringing the knowledge of the s8t into the algorithm is a defi- to reporting for each objeet; the first pair{o1, 02) that occurs in a
nite improvement, butwe can do better still. The nextimprovement reverse distance join. The first definition would mean reporting for
is based on the fact that for each pir, o2) inthe outputofthe dis- each object; the last paifo1, 02) that occurs in a reverse distance
tance semi-join off andB, o- is the objectinB nearestt@,. This join, which would be extremely inefficient.

can be exploited locally in theR®CESSNODE2 procedure (termed
“Local” in Section 4.2.1). To see how, note that for a air, n2),

the object in the subtree af closesttm; is mostlikely in some of
the entries of.; whose region is near . Specifically, we compute
dmax(01, e2) for each entrye; in n2, and determine the minimum 31 System and Data

vaIue,Dn?m. Any entry ian thatis farther away fror_nl thanD_mm . All of our experiments were run on a Sun Ultra 1 Model 170E ma-
can be discarded as it is guaranteed not to contain the objectin thechine, rated at 6.17 SPECINt95 and 11.80 SPECTp95, with 64MB
subtree ofi> nearest tw,. This principle can be applied in/®- in main memory and a 2.1GB internal disk drive. The spatial data
CEsSNODE?Z even for pairgz;, n2) wheres, is an objectbounding gy cture that we used is arf &ree [5]. The size of the nodes was
rectangle oranode, sindg.ax (11, 72) is an upperbound onthe dis- 1 for a maximum fan-out of 50, with 256K of memory used for
tance of any object pair derived frof, n2). Observe thatthisap- yffers. The spatial objects were represented directly in the leaves
proachis analogousto the downward pruning strategy of the nearesgyt 1he R-trees. We chose that approach in order to simplify the
neighbor algorithm of [25]. _ _ analysis of the execution time results. Also, the organization of the
A more aggressive strategy can be obtained by using the sameyyernal object storage has a large effect on the performance, and
insight in a global fashion. In other words, for each objectand node s introduces an additional variable. The software was compiled
in R, (the spatial data structure representing the objecty,imain- with a GNU C++ compiler set for maximum optimization (~O3).
tain the sm_alleszﬂlm_ax distance that_has been seen so far (tt_armed The distance functions were based on the Euclidean metric.
GlobalAll" in Section 4.2.1). Any time we consider enqueuing a As in other evaluations of spatial algorithms (e.g., [8, 21]), we
pair (i1, 12), we would first make sure that the distance of the pairis gerjyed our test data from the TIGER/Line File [9]. We used two
smaller than the smalledt..x distance foi,. Employing this strat- ge5 of points from the coverage of the Washington, DC ahéger
egy requires a considerable amount of memory spaedontains qntains the centroids of water features (37,495 points)Raads

many objects. Nevertheless, it is useful as a comparison with the ¢ nains the centroids of road features (200,482 points). It should be
other strategies. Moreover, we can compromise by only maintain-

ing the globally smallest,.x distance for the nodes di;, which °As far asM is concerned, an object bounding rectangle is
requires an order of magnitude less space than doing so also for thereated in the same way as the corresponding object; both are rep-
objects inR; (termed “GlobalNode” in Section 4.2.1). resented by the object identifier.

3 Experimental Environment

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237—-248 8

clear that dealing with line data is much more complex than points. 4 Perfor mance Results

Making experiments with line data and more complex spatial fea-

tures is a subject for future study. In this section, we evaluate the effectiveness of the strategies pre-

sented for enhancing the efficiency of the incremental distance join

; ; algorithm, as well as compare its performance to competing ap-

32 | mplementatlon Details proaches for computing the distance join and distance semi-join. In

An important issue is the implementation of the priority queue. It the experiments, we joined Water with Roads, except where hoted

should be clear that the number of object pairs in the result of a

full dist_ance join operation is extremely large, or the same as inthe 41 Distance Join

Cartesian product of the relations (in the absence of distance range Lo .

restrictions). Even when computing the entire distance join (this is 4.1.1 Priority Queue Ordering and Tree Traversal

not likely to be very useful in practice, however), the size of the pri-

ority queuein the incremental distance join algorithm remains much

smaller than the size of the result. Nevertheless, a small fraction of

a very large number is still a large number. Thus, the size of the pri-

ority queue may be too large to fit in memory. However, an exclu-

sively disk-based scheme for representing the priority queue is not

desirable, due to poor performance.

In our experiments, we use a simple hybrid memory/disk
scheme that stores parts of the priority queue in a memory-base
heap structure (we chose the pairing heap structure [13]), while the
rest is offloaded to disk. If a relatively small number of object pairs
is requested, then the vast majority of pairs put on the priority queu
will never be needed. Thus, our goal in developing the scheme was
that the contents of the priority queue that were put on disk would
only be needed when a large number of object pairs were requeste
Another reason for limiting the contents of the memory-based heap
to pairs that are likely to be needed is that the algorithmic com- : .))
ple?dty of heap operat)ilons is directly related to the sgiaze of the heap. the be_15|c algorithm °f.F'9“re 3, V\‘/‘ht_ere we always Process Ehe first
We chose to use a three-tiered scheme for representing the prioritynOdhe |n(;10de]{nocée }Jalrds, and (3) Slmultanecéus_/DelpthFlrst lwhere
queue, based on the distance of the pairs. Pairs with a distance les8°th n0des of node/node pairs are p_rocgs_sle smu:}aneou;‘, Y-
thanDL are stored in the memory-based heap, pairs with a distance, _ Overall the shape of the graphs is similar. For the velrsulons Lr'ls'
less tharD2 are stored in an unorganized listin memory, while pairs Ing tt‘e,,p“o'.“‘}’ que‘l‘Je_order Ieadln”g to dept_h-flrst traversa (Depth-
with a distance ob2 or greater are stored on disk. If the heap be- 'St “Basic” and“Simultaneous"), obtaining the first pair is rela-
comes empty, then the contents of the unorganized list is put into tvely |nexpens_|ve,whlle the costdoes notrise much for between_lO
the heap, the value @1 is changed td2, a new value is chosen and 10,000 pairs. However, for computing a larger number of pairs,

for D2, and pairs on disk with distance between the new values of the cost rises dramaticaly.

D1 andD2 are put into the unorganized list (actually, we avoid ac- _The dlffere_nce in execution times for the four VErsions 1S due
to differences in the values of all performance measures in Table 1.

cessing the pairs on disk unless they need to be inserted into the p”'However, the dominant factor, although not shown here, is the num-

ority queue). In our implementation, a fixed distance increnignt b - . : L .
: : S : er of distance calculations and the size of the priority queue, which
is used to updatBl andD2, with their initial values being)7 and are much larger for “Basic” and “Simultaneous”. Since a maximum

iznl?iﬁl’(;%sﬁ);gt;el); Lgewet?]riﬁ;thgi?suiiu: asctk? Lescti r?gvcijrlekc!I?sct);%iglsZ?nd distance is not specified for these experiments, the “Simultaneous”
pag P 9 version is not able to benefit from its filtering and plane-sweep tech-

the rangdk D, (k +1)D71). ; p et b
; L ; : niques. The reason for “DepthFirst” being somewhat faster than
The drawback of our priority queue scheme is that it depends “BreadthFirst” for retrieving one pair is that there is one object pair

on a fixed constanbr rather than responding dynamically to the . : ; L =
distribution of the queue contents. In the experiments, we chose a)f‘"th a dlfstapce O.f 0 This pair |s”rgaported as soon as it Is fc_)und by
DepthFirst”, butin “BreadthFirst”it is only reported after all inter-

\;e\lllvl;e fgfrg]g ct)ziantg\gorlggg evéec:g?[: eﬂ;ﬁ IEtp ?;I;%L?r?gn; f:?llcei\i/rf long?]?e secting nodes have been processed. After the first pair, the differ-
y r P ! g ence between these methods is negligible.

other dynamic method of deciding what part of the priority queue is An interesting question is what the reason is for the sharply

stored on disk, are subjects for further investigation. higher cost for computing 100,000 pairs compared to computing

In Section 2.3, a sef, is maintained of objects fromt for . . . X
: ' ; ; 10,000 pairs. Table 1 reveals that there is a relatively larger in-
whom a pair has been reported by the incremental algorithm for the crease in node I/O between computing 10,000 and 100,000 pairs

distance semi-join. In our experiments, we use a bit string repre-
sentation forS,. The reason s that a bit string representation is ex- ¢Since the distance join is symmetric, the result of joining Roads
tremely efficient, both for membership tests and insertions. There is yith \Water is the same. However, the incremental distance join al-
certainly a space/time tradeoffvolved, since a bit string represen- — gorithm is not necessarily symmetric in its execution pattern, so that
tation of a set occupiesafixed amountofspa_ce, regardless of the siz€nq execution time may be different based on the order of the joined
of the set. For sets of only a few elements, it would be much more (g|ations. The distance semi-join operation is not symmetric, so that

space efficient to use some other approach. Nevertheless, given thea gt of a distance semi-join of Roads with Water is different from
memory capacity of modern computers, the size of the bit strings is g gistance semi-join of Water with Roads.

mc_Jdest even for large dat_a sets. For example, a bit string represen- "Recall that by traversingvenly we mean that if the nodes in a
tation of a subset of 1 million elements would occuggK. node/node pair are at a different level in their respective trees, then
we choose to process the node at a shallower level.

Section 2.2.2 discussed the effect of choosing a different priority
queue ordering (i.e., how ties are resolved for pairs with the same
distance) as well as how to process pairs of two nodes. Table 1
lists the values of some performance measures (the number of ob-
jectdistance calculations, the maximum queue size, and the number
of node I/O operations) for producing up to 100,000 result pairs of
the distance join. The algorithm version used in these experiments
Jvas such that pairs with the same distance are ordered so thatthe al-
gorithm performs a depth-first traversal (i.e., nodes at a deeper level
are given priority); only one node is processed at a time in node/node
e pairs; and the two spatial indexes are traversed eVettyall ex-
periments below, except where otherwise noted, this type of queue
order and traversal is used. In Figure 6, we plot the execution times
dof this version (labeled “Even/DepthFirst”) against three other ver-
Sions: (1) “Even/BreadthFirst” orders pairs with the same distance
suchthat it leads to breadth-first traversal; (2) “Basic/DepthFirst” is

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237—-248 9

1000 and 10,000 pairs (tiag the maximum td.00,000 was slower

. Time | Dist. Qu_eue Node thanthe “Regular” version). The purpose of showing the “MaxDist”

Pairs | (sec)| Calc. Size o plots is to demonstrate the effect of setting the maximum distance,
1 6.9 | 3079941 1002536 3019 and it also provides a useful benchmark of the effectiveness of the

10 9.0 | 393758 1333856/ 4087 maximum distance estimation of “MaxPair”. Of course, in practice

100 9.4 | 395780| 1356985 4652 we will not know in advance the distance of pair number 1000, etc.
1,000 9.8 | 403281 1434160 6487 Figure 7 confirms the benefit of setting the maximum distance.
10,0001 12.6 | 422392| 1632895 11502 The performance was very similar for the three values for the max-
100,000] 23.8 | 479262| 2229874| 28356 imum distance. Setting the maximum number of pairs is seen to be

only beneficial for a relatively small number of pairs. For a maxi-
mum of 1000 pairs, we get a similar performance as fttirggthe
maximum distance. When the maximumi is setto 10,000 pairs, there
is less benefit, as the maximum distance estimate is not as tight and
the overhead of the estimation process is greater.

In Section 4.1.1 we confirmed that processing both nodes simul-
taneously for node/node pairs is worse than processing only one at

(node I/0 counts the number of times a requested node _is notin they time if no maximum distance is specified. We performed the same
node buffer). The number of node accesses (hot shown in the table)experiments as shown in Figure 7 using the “Simultaneous” ver-

increases by about 43%, and almost all of theitiaital accesses i of the incremental distance join algorithm. Although we do not
are for nodes that are not present in the node buffer. A larger nodegypjicitly present these results here, as expected, the performance
buffer, or a better buffer strategy, will most likely improve the per- ot «gimitaneous” was better than that of “DepthFirst’ when a rel-
formance for computing 100,000 pairs. Another factor in the higher atively small maximum distance was specified, or up to 20% for
cost of computing 100,000 pairs is that for that many pairs, parts of «\1axDist 1000”. However, the improvement was most pronounced
the priority queue contents that were written to disk must be read for retrieving only a few pairs, and was much smaller for retrieving
back into memory. . 10 or more pairs, or usually about 3-5%. Specifying a maximum on

_ The values of the performance measures when joining Roadsihe nymper of pairs was also a little faster using the “Simultaneous”
with Water, instead of Water with Roads, is virtually the same for version for a very small number of pairs. For 10 pairs or more, how-
these versions of the algorithm, except for “Basic”. Since Roads gy, it proved better to process only one node at atime in node/node

is larger, many more pairs are generated (in this case, Roads is tray5irs. althouah the improvement was not great (typicalR:4%
versed first). In fact, for producing result 100,000 pairs, too many pars, g P great (typicaif4%).

pairs were generated for the priority queue to fit on disk. Thus, the 16

Table 1: Values of performance measuresfor incremental dis-
tancejoin algorithm using depth-fir st traver sal, processing one
nodeat atime, and using even traversal.

. i i L i T i L
treatment of node/node pairs in “Basic” is clearly too simplistic. 14 Regular — |
g MaxDist 1000 -+--
50 ———r——T————7 S 12 MaxDist 10,000 -&-- i
; ; MaxDist 100,000 -
45 | Basic,DepthFirst <— b]

% Simultaneous, DepthFirst —+- © 10 MaxPair 1000 - 7

240 Even,BreadthFirst -8-- /"] v e

335+ Even,DepthFirst -x-— /.~ E 8 e i

(] .

230 . & 6 .

N 5

E25 H 2 4 .

E Zog e A 7 L|>j 2 L]

515 P

3 oL o o RS- | | 0 P N I R

R Tl Tt e S 1 10 100 1000 10000 100000

5F — Number of result pairs (log scale)
0 L PR - PR - PN PR - P
1 10 100 1000 10000 100000

Figure 7: Execution time for different maximum distance and

Number of result pairs (log scale) maximum pairsfor distancejoin.

Figure 6: Execution time for different queue order and node
processing. 4.1.3 Priority Queue Implementation

In Section 3.2 we discussed a hybrid implementation of the prior-
ity queue that offloads parts of the queue to disk. Figure 8 gives
the execution time for a purely memory-based queue implementa-
In Section 2.2.3 we discussed the importance of imposing a maxi- tion as well as the hybrid one, where two different valueBefare
mum distance, and in Section 2.2.4 we described how the maximumused for the hybrid approath The memory-based queue is only
distance can be estimated based on an upper bound on the numbex little slower for up to 10,000 pairs. However, fb®0,000 pairs,

of object pairs that will be requested. Figure 7 compares the execu-it is almost an order of magnitude slower, due to excessive virtual
tion time of the regular algorithm (i.e., “DepthFirst” from the pre- memory thrashing, taking over 180 seconds to compute. The hy-
ceding section) to two versions of the algorithm applied to distance brid approach performed almost equally well for the different val-
join: (1) “MaxDist” is the regular algorithm with maximumdistance ues of D¢, except when retrieving 100,000 pairs. In that case, the
set to the distance of pair number 1000, 10,000, and 100,000 (for
“MaxDist 1000”, we only compute up to 1000 pairs, etc.); (2) “Max-
Pair” uses the maximum distance estimation for an upper bound of

4.1.2 Maximum Distance and Maximum Pairs

#The values ofDr, chosen somewhat arbitrarily, correspond to
the distances of pairs number 7,663 and 34,906. The latter value was
used for all the other experiments.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237-248 10

higher Dr value (i.e., “Hybrid2”) was better, most likely because 4.2.1 Pair Filtering and Smallest d.,,,x Distance
it required fewer reads from the disk portion of the priority queue. . . .
For fewer than 100,000 pairs, the lowes value (i.e., “Hybrid1”) In Sectlon 2'3. we enum_erated Se"efa' ways Of. filtering out pairs
gave slightly better performance, as a higher numberofunnecess¢51r)§.“’h’2> vx:hergzl t:s an object gr a& object boundlngdrectangk? lr?m(_:i
priority queue elements were kept out of the memory based part of 1 as already been reported. Also, we presented ways of limit-

the queue. The best value fbr depends both on the nature of the "9 the number of pairs generated based ondihe: distance of
data sets and the amount of available memory. pairs. Figure 9 gives the execution time for these various filtering

methods: (1) “Outside” executes the regular incremental distance
join algorithm and filters out resulting pairs that contain objects that

30— - . -
 Memory o ' have already been reported; (2) “Inside1” filters only in theDi s-
o5 L Hybridi, - T TJOIN procedure of Figure 3; and (3) “Inside2” filters also in the
Hybrid2 -8-- / ProcessNoODE1 procedure. There are three schemes that exploit

the dmax distance, all of which use the filtering of “Inside2”: (1)
“Local” only works locally in the ROCESSNODE1 procedure; (2)
“GlobalNodes” uses the local strategy, as well as globally maintain-
ing the smallest,.x distance of nodes; and (3) “GlobalAll" glob-
ally maintains the smallest. . distance of both nodes and objects.

Filtering pairs outside theNicDI1STJOIN procedure appears to
be slightly better for up to 1000 pairs. However, the priority queue
becametoo large to find the neighbors of all points in Water and thus
[P S EE is not shown beyond 10,000 pairsilt€ring inside NCDISTJOIN

N
o

=
o

3
£
=
\

I

Execution time (seconds)
[
(6]

0 1 10 100 1000 10000 100000 and/or RROCESSNODE1 saves some distance calculations and node
Number of result pairs (log scale) accesses for retrieving 1000 or more pairs, but this was outweighed
by more member checks against thieset, at least for up to 1000
Figure8: Execution timefor storingthepriority queueentirely pairs. For more pairs the benefit of more filtering becomes greater,
in memory vs. offloading partson disk. and for finding the neighbors of all pointsin Water “Inside1” is about

47% slower than “Inside2” (530 vs. 362 seconds; this is not shown
in Figure 9 in order not to obscure the time difference for smaller
. . numbers of pairs).
4.1.4 Alternative Implementations The three schemes for exploitinfg..» distances also are very
The distance join operation can be computed in other ways than with similar for up to 10,000 pairs. However, for much larger number
the incremental distance join algorithm. If a maximum distance is Of pairs, the benefit of maintaining tide,.x distance of all objects
imposed, then a spatial join with a within predicate can be executed,and nodes (“GlobalAll") becomes more pronounced. Doing it only
with the output being sorted once it is done. If no maximum distance for nodes (“GlobalNode”) did not seem to result in appreciable im-
is imposed, then some distance must be guessed at if an algorithnProvement compared to “Local”.
for the spatial join with within predicate is to be used. If the distance

is too small and not enough pairs result, then the spatial join must be OVr———T T T X
executed again with a larger distance. Due to this problem, we do _ 35 L Outside —-— o
not use a spatial join algorithm for comparison. Q) :”S!ge% - (]
Another way of computing a distance join is to use a nested loop § 30 nilogal . Pl
approach and compute the distance between all possible pairs of Qo5 L GlobalNode -4 - P %
objects. However, this will not compare favorably with using the o GlobalAll - - L
incremental distance join algorithm unless a very large number of £20 7
pairs is needed, which is unlikely to arise in practice (for example, 5 15 |
the full join for our data sets contains about 7illidn pairs). Nev- k=
ertheless, we did an experiment with this approach using the Water g 10 7
and Roads data sets. For simplicity sake, we only computed the dis- i 5 |
tance values but didn't store them nor did we sort at the end, which
would be necessary for a real implementation. The data set of the Ot —d el
1 10 100 1000 10000 100000

inner loop was read completely into memory in order to avoid re-
reading it. The time to execute the experimentwas over 3 1/2 hours.
In that amount of time, the incremental distance join is able to com- _. . C . o . .
pute at least 100 million pairs. Unfortunately, for that many pairs, Figure : Executlor_l time for storing priority queue entirely in
the priority queue becomes so large that the incremental distanceMeMory vs. offloading partson disk.
join is not practical unless a very large disk space is available. How-
ever, a large disk space would also be required to generate and sort

Number of result pairs (log scale)

100 million pairs using the nested loop approach. 4.2.2 Maximum Distance and Maximum Pairs
. . . As in Section 4.1.2, we now report on experiments testing the ef-
4.2 Distance Semi-Join fect of setting a maximum distance or apper bound on the num-

bers of pairs for computing the distance semi-join operation with the
incremental distance join algorithm. Figure 10 shows the result of
doing this using the “Local” version of Section 4.2.1. In the figure,
“MaxDist All” is the result of setting the maximum distance to be the
largest possible distance between two objects in the result of the dis-

In this section we discuss some results of our experiments for com-
puting the distance semi-join with variants of the incremental dis-
tance join algorithm. Since we are joining Water with Roads, this
results in finding the nearest neighbors of points in Water.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237-248 11

tance semi-join and for “MaxPair All", the upper bound onthe num- of the joined tuples, and a number of different incremental strate-
ber of pairs is set to the number of points in Water. The figure con- gies for computing them have been examined. The rationale behind
firms the benefit of restricting the maximum distance. Notice that our solutions is that frequently only a small part of the join result
setting the maximum number of pairs10600 does indeed improve will actually be needed. Our experiments revealed that for distance
the execution time, making it virtually identical to setting the maxi- join, the variant of the incremental distance join algorithms that per-
mum distance to the distance of th@0™ pair. However, choosing formed best overall was the one that processed only one node in
10,000 or more as the maximum number of pairs makes the algo-node/node pairs at a time, attempted to traverse the two trees evenly
rithm slower, as such a large limit does not give a tight estimate for (i.e., so as not to descend much farther into one than the other), and
the maximum distance, and the overhead costincurred in estimatingordered pairs with the same distance to result in a depth-first traver-
the maximum distance exceeds its benefit. The cost of computingsal. Setting a limit on the distance of pairs was shown to improve
the neighbor of all points in River (not shown in the figure) is about performance considerably, even if the maximum distance limit is
35 seconds for “MaxDist All” and 44 seconds for “MaxPair All”. relatively large. However, imposing an upper bound on the number
These numbers are about 14% lower and 13% higher, respectivelyof pairs is only worthwhile if the upper bound is not very large (e.g.,
than when maximum distance is not set. Thus, we can see that im-in our experiments, an upperbound of 100,000 pairs did notimprove
posing a maximum distance or settinggaperbound onthe number performance). Nevertheless, in many of the applications that we en-
of pairs to be generated only yields significant savings in execution vision for our algorithm—most notably for interactive query inter-
time when the maximumis low (up to 50% savings or more), while faces, which quickly present the user with the most relevant part of
high values on the maximum yields little if any savings. the query result—a small upper bound can be established.

For the distance semi-join, the strategies for improving the per-

18 e formance of the incremental distance join were shown to yield sig-
16 Regular —o— | nificantimprovements, especially for computing a large part of the
o) MaxDist 1000 -+~ result. The strateg different for eliminating f
8., MaxDist 10,000 -5-- | esult. rategies use different means for eliminating from con-
S MaxDist All -x- sideration pairs that are sure not to be needed to compute the out-
§ 12 - MaxPair 1000 -4~] put of the algorithm. The best overall strategy used every possi-
< 10 L MaxPair 10,000 -x-- ble opportunity for eliminating pairs containing objegtif a pair
Q MaxPair All -o-- &~ ;
£ RPN {01, 02) has been reported earlier, and uses global knowledge of
c 8 B Skt e distance bounds to further eliminate pairs when processing nodes
% 6 P e (“GlobalAll" in Figure 9). This version was found to be betterthan a
S ab_.- T | non-incremental approach that computes the distance semi-join us-
5 7 ing a nearest neighbor algorithm. However, maintaining the global
2r T knowledge of distance bounds requires a somewhat large amount of
0 Ll storage. A reasonable compromise is to exploit the distance bounds

1 10 100 = 1000 10000 only locally within a node as it is being processed (“Local”). The
Number of result pairs (log scale) effect of restricting the maximum distance or the maximum number
. o) i) of pairs was found to yield similar benefits as when computing the
Figure 10: E)gecutlon_tlmefor dlf_ft_er(_ent maximum distance and distance join.
maximum pairs for distance semi-join. Our algorithm finds use for processing queries such as “find the
city nearestto any river, such that the city has a population of more
than 5 million”. There are at least two options for a query engine to

4.2.3 Alternative Implementations use the incremental distance join algorithm to answer this query:
The distance semi-join can also be implemented using a nearest 1. Execute the algorithm on the city and river relations and filter
neighbor algorithm. For each object in relatidn we perform a out the result pairs where the city has too small a population,
nearest neighbor computation in relatién and sort the resulting and

array of distances once all neighbors have been computed. For the
data sets in question, the execution time for doing this is about 27
seconds. The incremental distance join methods reported in Fig-

ure 9 compare favorably with this method for computing the entire £y the second option, a spatial index must be built on the result of
distance semi-join, especially “GlobalAll” (which took around 25 finging cities with apopulation of more than 5 iffion for the al-
seconds_). Aneven better result is obtained |f_ we switch the order of gorithm to be applicable. Hence, this option is most appropriate if
the relations (i.e., compute the distance semi-join of Roads and Wa-h ¢ population criteria has a high selectivity. However, if the pop-
ter), in which case “GlobalAll” takes about 102 seconds while the yjation criteria has a low selectivity, then the first option would be
nearest neighbor implementation takes 141 seconds. superior. More query plans may even exist, employing some other
Observe that the “GlobalAll” strategy must keep track of the 5 gorithm. To enable a query optimizer to choose between these op-
dmax distance for all objects and nodes in the R-tree for relation tions requires a cost model for the relevant algorithms (e.g., as de-
which can occupy considerable storage. However, an implementa-ye|oped in [20] for the traditional R-tree spatial join). Developing
tion that uses a nearest neighbor algorithm must also store distancey,cn cost models for the incremental distance join algorithms pre-

2. First find the cities with @opulation greater than 5iltion
and use that in the incremental distance join algorithm.

values for all objects. sented in this paper is a subject for further study.
Other issues for further investigation include developing tech-
5 ConcludingRemarksand Directionsfor Fu- niques to dynamically pétion the priority queue between a
ture Research memory-based structure and a disk-based one. Our experiments

were limited to using two-dimensional points. Further work is
Two new spatial join operations have been defined where the join "€€ded to determine how appropriate our approachis for more com-

output s ordered by the distance between the spatial attribute valued!€X Spatial objects (i.e., with extent, such as lines and polygons), as
well as for higher dimensions.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Seattle, WA, Jun&998, pp. 237-248

6 Acknowledgements

We wish to thank Bjtn b. dhsson and Dr. Robert E. Webber for
their critical comments.

References

[1] W. G. Aref and H. Samet. The spatial filter revisiteBroc.
of 6th International Symposiumon Spatial Data Handling, pp.
190-208, Edinburgh, Scotland, September 1994.

[2] F. Bartling and K. Hinrichs. Probabilistic analysis of an al-

gorithm for solving thek-dimensional all-nearest-neighbors

problem by projectionBIT, 31(4):558-565, 1991.

[3] R. J.Bayardo and D. P. Miranker. Processing queries for first
few answers. IfProc. of 5th CIKM, pp. 45-52, Rockille, MD,

November 1996.

L. Becker, K. Hinrichs, and U. Finke. A new algorithm for
computing joins with grid filesProc. of 9th IEEE Int. Conf. on
Data Engineering, pp. 190-197, Vienna, Austria, April 1993.

N. Beckmann, H. P. Kriegel, R. Schneider,and B. Seeger. The
R*-tree: an efficient and robust access method for points and
rectangles. Proc. of ACM SIGMOD, pp. 322—-331, Atlantic
City, NJ, June 1990.

[6] S. N. Bespamyatnikh. An optimal algorithm for closest pair
maintenanceProc. of 11th Symp. on Computational Geome-

try, pp. 152—-161, Vancouver, lish Columbia, Jun&995.

[7] T.Brinkhoff, H. P. Kriegel, R. Schneider, and B. Seegerltiiu
step processing of spatial join®roc. of ACM SSGMOD, pp.
197-208, Minneapolis, MN, June 1994.

[8] T. Brinkhoff, H. P. Kriegel, and B. Seeger. Efficient process-
ing of spatial joins using R-treeBroc. of ACM SSGMOD, pp.
237-246, Washington, DC, May 1993.

[9] Bureau of the Censusiger/Line precensusfiles. Washington,

DC, 1989.

[10] M. J. Carey and D. Kossmann. On saying “enough already!”

in SQL. Proc. of ACM SSGMOD, pp. 219-230, Tucson, AZ,

May 1997.

[11] K. L. Clarkson. Fast algorithm for the all nearest neighbors
problem. Proc. of 24th IEEE Symp. on the Foundations of

Computer cience, pp. 226—-232, Tucson, November 1983.

[12] D. Comer. The ubiquitous B-treeACM Computing Surveys,
11(2):121-137, June 1979.

[13] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan.
The pairing heap: A new form of self-adjusting heajdgo-
rithmica, 1(1):111-129, 1986.

[14] O. @iinther. Efficient computation of spatial join&roc. of
9th IEEE Int. Conf. on Data Engineering, pp. 50-59, Vienna,
Austria, April 1993.

[15] A. Guttman. R-trees: a dynamic index structure for spatial
searching.Proc. of ACM SSGMOD, pp. 47-57, Boston, MA,
June 1984.

[16] J. M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation.
Proc.of ACM SGMOD, pp. 171-182, Tucson, AZ, May 1997.

12

[17] A.Henrich. A distance-scanalgorithm for spatial access struc-
tures. Proc. of 2nd ACM Workshop on GIS, pp. 136-143,
Gaithersburg, MD, December 1994.

[18] G. R. Hjaltason and H. Samet. Ranking in spatial databases.
Advancesin Spatial Databases—4th Int. Symp., SSD’95, pp.
83-95, Portland, ME, August 1995. (Also Springer-Verlag

Lecture Notes in Computer Science 951).

[19] E. Hoel and H. Samet. Data-parallel spatial join algorithms.
Proc. of 23rd Int. Conf. on Parallel Processing, pp. 227-234,

St. Charles, IL, August 1994.

[20] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A cost model
for estimating the performance of spatial joins using r-trees.
Proc. of 9th Int. Conf. on Scientific and Statistical Database

Management, pp. 30—38, Olympia, WA, August 1997.

[21] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins
using r-trees: breadth-first traversal with global optimizations.
Proc. of 23rd VLDB Conf., pp. 396—405, Athens, Greece, Au-

gust 1997.

M. Kitsuregawa, L. Harada, and M. Takagi. Join strategies
onk-d-tree indexed relation®roc. of 5th IEEE Int. Conf. on
Data Engineering, pp. 85-93, Los Angeles, February 1989.

[23] D. Lomet and B. Salzberg. A robust ftitattribute search
structure.Proc. of the 5th IEEE Int. Conf. on Data Engineer-

ing, pp. 296—304, Los Angeles, February 1989.

[24] D. Rotem. Spatial join indice®roc. of 7th Int. Conf. on Data
Engineering, pp. 500-509, Kobe, Japan, April 1991.

[25] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. Proc. of ACM SSGMOD, pp. 71-79, San Jose, CA,
May 1995.

[26] H. Samet.Applications of spatial data structures: Computer
graphics, image processing, and GIS. Addison-Wesley, Read-
ing, MA, 1990.

[27] H. Samet.The design and analysis of spatial data structures.
Addison-Wesley, Reading, MA, 1990.

[28] B. Seeger and H. P. Kriegel. The buddy-tree: an efficient and
robust access method for spatial data base systém. of
16th VLDB Conf., pp. 590-601, Brisbane, Australia, August
1990.

J. C. Shafer and R. Agrawal. Parallel algorithms for high-
dimensional proximity joins.Proc. of 23rd VLDB Conf., pp.
176-185, Athens, Greece, August 1997.

[29]

[30] H. W. Six and D. Wood. Counting and reporting intersections
of d-ranges. IEEE Transactions on Computers, 31(3):181—

187, March 1982.

[31] P. M. Vaidya. AnO(=nlog r) algorithm for the all-nearest-
neighbor problem. Discrete & Computational Geometry,

4(2):101-115, 1989.

T.L.Wang and D. Shasha. Query processing for distance met-
rics. Proc. of 16th VLDB Conf., pp. 602—-613, Brisbane, Aus-
tralia, August 1990.

[32]

[33] A.N. Wilschutand P. M. G. Apers. Dataflow query execution
in a parallel main-memory environmeRt.oc. of 1st Int. Conf.
on Parallel and Distributed Information Systems, pp. 68—77,

Miami, FL, December 1991.

