In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.

Huang and X. Chen, eds., Seattle, WA, November 2015.

DICLERGE: Divide-Cluster-Merge Framework for
Clustering Aircraft Trajectories

Samet Ayhan
Department of Computer Science
University of Maryland
College Park, MD 20742

sayhan@cs.umd.edu

ABSTRACT

Whether descriptive, predictive or prescriptive, most analyt-
ics applications pertaining to aircraft trajectory data require
clustering to group similar trajectories and discovering a rep-
resentative trajectory for all as a single entity. During the
process, considering a trajectory as a whole may mislead,
resulting in overfitting and a failure to discover a represen-
tative trajectory.

In this paper, we describe a novel clustering framework;
divide-cluster-merge, DICLERGE, for the aircraft trajectory
data, that divides trajectories into three major flight phases:
climb, enroute, and descent. It clusters each phase in iso-
lation, then merges them together. Our unique approach
also discovers a representative trajectory, the model for the
entire trajectory set. Our experiments use a real trajectory
dataset with pertinent weather observations to demonstrate
the effectiveness and efficiency of the DICLERGE algorithm
to the aircraft trajectory clustering problem.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data Mining]

General Terms
Algorithms

Keywords
Aircraft trajectory clustering, divide-cluster-merge frame-
work

1. INTRODUCTION

Air Traffic and Capacity Management constantly monitors
aircraft operating within the National Airspace System (NAS)
and aims to safely and efficiently manage its flow. Maintain-
ing safe separation and sequencing of aircraft is a challenging
task due to fact that the current approach of procedural con-
trol assumes that aircraft will fly along routes designated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

IWCTS’15, November 03-06, 2015, Bellevue, WA, USA

Copyright 2015 ACM 978-1-4503-3979-7/15/11 ...$15.00.
http://dx.doi.org/10.1145/2834882.2834887.

Hanan Samet
Department of Computer Science
University of Maryland
College Park, MD 20742

hjs@cs.umd.edu

by waypoints or fizes. This approach is easy for air traf-
fic controllers to understand; however, it can be inefficient
for aircraft. To more effectively and efficiently address the
pertinent challenges in the airspace with increasing volume,
Trajectory Based Operations (TBO) is investigated in the
context of NextGen in the U.S. [6] and SESAR in Europe
[8]. The TBO concept uses four-dimensional aircraft tra-
jectories as the base information for managing safety and
capacity. In the heart of TBO resides the trajectory pre-
diction process that relies on accurate clustering of aircraft
trajectories, when a stochastic approach is used. Hence,
clustering of aircraft trajectories is a key building block in
probabilistic trajectory prediction process.

Although there is plenty of work in the area of data mining
with regards to trajectory clustering in general [9, 13, 18, 20,
30, 31, 34], the vast majority address the issues pertaining to
clustering of road networks [15, 16, 23, 32, 33]. Among the
rest, only a handful of them deal with clustering of aircraft
trajectories [10, 14, 19]. In fact, of those, to the best of our
knowledge, there is no previous work addressing the cluster-
ing of aircraft trajectories taking three or more dimensions
into account. Note that we do not deal with the issues of
how the trajectories are generated (e.g., [29]), queries on
the individual objects or waypoints (e.g., [22, 25, 27, 28]),
and matching (e.g., [17, 21, 26]).

In this paper, we propose a novel framework for cluster-
ing aircraft trajectories that is based on divide, cluster, and
merge tasks. The framework consumes a set of multidi-
mensional trajectory points pertaining to a particular flight,
divides them based on flight phases, clusters them in isola-
tion, and merges them. By performing lateral and vertical
smoothing, the framework generates a representative trajec-
tory, the model, capturing the behavior of aircraft.

In summary, the contributions of this paper are as follows:

- Our unique approach enables accurately clustering of
three or more dimensional aircraft trajectories by em-
ploying a divide-cluster-merge framework. Whereas
the very limited amount of previous research address
clustering of aircraft trajectories with two dimensions,
only.

- We present a formal aircraft trajectory clustering al-
gorithm based on well-known aviation domain facts.
We also present a representative trajectory algorithm

In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.

Huang and X. Chen, eds., Seattle, WA, November 2015.

that reveals the trajectory model based on lateral and
vertical smoothing.

- We demonstrate by using a real aircraft trajectory
dataset that our framework effectively performs clus-
tering and discovers the representative trajectory.

The rest of this paper is organized as follows. Section 2 de-
scribes our novel algorithm for the aircraft trajectory clus-
tering problem. Section 3 presents the results of experimen-
tal evaluation. Section 4 discusses related work. Conclusions
directions for future work are outlined in Section 5.

2. AIRCRAFT TRAJECTORY CLUSTERING

In this section, we present an overview of our design. Sec-
tion 2.1 formally describes the problem statement. Sec-
tion 2.2 provides a skeleton of our trajectory clustering frame-
work, DICLERGE. Section 2.3 elaborates on the Aircraft-
TrajectoryClustering algorithm, which is a subtask of DI-
CLERGE. Section 2.4 discusses the RepresentativeTrajec-
tory algorithm, which is another subtask of DICLERGE,
generating a representative trajectory.

2.1 Problem Statement

We implement an algorithm, DICLERGE that is based on
the idea of divide, cluster, and merge. Given a set of multidi-
mensional trajectory points pertaining to a particular flight,
our framework executes a number of efficient and effective
algorithms to generate a set of clusters as well as a represen-
tative trajectory. Aircraft trajectory, phases of flight, cluster
and representative trajectory are defined as follows:

Definition 1. (Aircraft trajectory) An aircraft trajectory is
a set of multidimensional points, where each point is de-
fined by its 4-dimensions, latitude, longitude, altitude, and
time. Additional dimensions such as airspeed and weather
conditions may also be used.

Definition 2. (Phases of flight) Although there are at least
five phases of flight which are taxi, climb, enroute, descent,
and landing from the aviation standpoint, we will consider
only three here as we are interested in wheels-up phases,
only. These phases are climb, enroute, and descent. Climb
phase refers to an aircraft’s climbing to a certain altitude
(typically 30,000 ft). Enroute is the level portion of aircraft
between climb and descent phases. A descent during flight
is the phase where an aircraft decreases altitude to approach
landing.

Definition 3. (Cluster) A cluster is a set of multidimensional
points pertaining to aircraft trajectories with commonality
that are grouped together.

Definition 4. (Representative trajectory) A representative
trajectory is a set of cluster centroids, filtered and connected
together to best represent the underlying trajectories. It is
an imaginary trajectory for representation purposes only.

Figure 1 shows the overall procedure of aircraft trajectory
clustering in the divide-cluster-merge framework. To bet-
ter illustrate the flight phases, a vertical profile of a flight
is used. First, a set of aircraft trajectories are divided into

climb, enroute, and descent phases. Then, points per phase
are clustered in isolation. Finally, the clusters and repre-
sentative centroids are accumulated together, forming the
entire set for the original trajectories.

2.2 DICLERGE Algorithm

Algorithm 1 illustrates the skeleton of our trajectory clus-
tering framework, DICLERGE. It goes through three phases
by executing a number of algorithms to perform divide, clus-
ter, and merge subtasks. In addition, Representative Trajec-
tory is generated by applying lateral and vertical smoothing
processes. These algorithms are elaborated in the following
sections.

Algorithm 1 DICLERGE (DIvideCLustermERGE)

Input: A set of multidimensional trajectory points, D

Number of clusters per flight phase, kClimb, kEnroute,

kDescent
Max delta bearing, mazDBearing
Output: A set of clusters, O
A set of centroids, CP
A representative trajectory, RTR

/* Algorithm AijrcraftTrajectoryClustering */
/* DIVIDE */
for each (P in D) do

Divide the dataset D into a set of trajectories

Divide each trajectory TR into three phases

Accumulate each phase
end for
Get three sets of points
/* CLUSTER */
6: Perform k-means clustering on each set

Get sets of clusters per point set

Get a centroid per cluster

/* MERGE */
7: Accumulate sets of clusters, centroids
Get clusters, O
Get centroids, CP
/* Algorithm RepresentativeTrajectory */
Apply lateral smoothing
9: Apply vertical smoothing

Get a representative trajectory, RTR

®

2.3 Clustering Algorithm for Air Traffic Data

We now present our clustering algorithm for air traffic data.
Given a set D of multidimensional trajectory points, our
algorithm generates a set of clusters, defined by their cen-
troids. The input parameters for the algorithm are multidi-
mensional observation set and a number of clusters per flight
phase. Our algorithm is based on k-means clustering. How-
ever, instead of feeding in the entire dataset, the algorithm
divides the input data into three chunks, each representing
one of three flight phases and performs clustering on each
chunk in isolation. The output clusters and representative
centroids per chunk are then merged together.

2.4 Representative Trajectory

Our algorithm shares partitioning characteristic with the
Mini Batch k-means algorithm [4]. However, unlike Mini
Batch k-means, which randomly splits the dataset into smaller

In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.

Huang and X. Chen, eds., Seattle, WA, November 2015.

1) A set of trajectories TGt 3) Cluster
ol
2 \ e
e B oo Enroute P850
Climb &/ a\g;e Descent Climb 0,+ 990 o0 00 9. 0 000 990 000 9o o900 | s Descent
JF Tisjectoryi S s PR S OIS S S A O 1 T T I W
5o % Trajectory 2 e o | e
f L. o e e o
7 —— Trajectory 3 ‘-A.k . o4
o RN T
4) Merge Enroute
is 086 60 006 6 6 408 g6 800 6pis 640 04 &
. il WO L SR AR AT i
Enroute H {"'\ o 6 -8
i e\ge Descent climb o :‘.H Descent
i N .
i .3:" ° +; ..:‘-’. °
.k’i{(. Ol "h‘.'+o
3 0
| & %

Figure 1: The overall procedure of aircraft trajectory clustering using DICLERGE framework

Algorithm 2 AircraftTrajectoryClustering

Input: A set of multidimensional trajectory points, D

Number of clusters per flight phase, kClimb, kEnroute,

kDescent
Output: A set of clusters, O

A set of centroids, CP
/* STEP 1 */
/* Determine departure and arrival points and
all in between per flight.*/
1: flight := [], flightClimb := [], flightEnroute := [], flight-
Descent := [[;
2: previousDate := 01011001,
3: for each (P in D) do
4: if (P.date > previousDate) then
5 previousDate = P.date
6 if (flight is not empty) then
/* Set the enroute altitude */
7 enrouteAltitude = P(length(flight)/2).altitude
/* STEP 2 */
/* Divide the flight into phases */

8: enrouteStart = BinSearchLeftmost(flight,
enrouteAltitude)

9: enrouteEnd = BinSearchRightmost(flight,
enrouteAltitude)

10: flightClimb.add(flight.slice(0, enrouteStart-1))

11: flightEnroute.add (flight.slice(enrouteStart,
enrouteEnd))

12: flightDescent.add(flight.slice(enrouteEnd,
length(flight)-1)

13: flight = ||

14: flight.add(P)

15: else

16: previousDate = P.date

17: flight.add(P)

18: end if

19: end if

20: end for

/* STEP 3 */
/* Compute cluster membership and centroids
per phase */
21: centroidsClimb = kmeans(flightClimb, kClimb)
22: centroidsEnroute = kmeans(flightEnroute, kEnroute)
23: centroidsDescent = kmeans(flight Descent, kDescent)
24: centroids = centroidsClimb + centroidsEnroute + cen-
troidsDescent

subsets, we divide the dataset with a well-known domain
fact in mind; flight consists of three phases: climb, enroute
and descent. Due to fact that aircraft’s altitude increases at
each observation during the climb, remains fixed during the
enroute, and decreases during the descent phase, and that
points per phase are spatially correlated, feeding the entire
dataset at once to k-means results in overfitting, generating
erroneous centroids.

Algorithm 2 shows AircraftTrajectoryClustering. Initially,
all the points are assumed to be unclustered. As the al-
gorithm progresses, clusters are formed and a centroid per
cluster is computed. The algorithm consists of 3 steps: In
the first step (lines 1~7), the algorithm determines the first
and last data recording for each trajectory by comparing
its timestamp, as the timestamp of the first data point of
the first trajectory will always be less than the timestamp
of the first data point of the following trajectory (of the
same flight which is usually scheduled for the next day). By
splitting each sorted trajectory data in half, enroute altitude
is determined, which is basically the median altitude of all
trajectory points’. In the second step (lines 8~20), the al-
gorithm identifies the start and end indices of the enroute
phase. This goal is attained by performing binary search
on the sorted (by timestamp) list of data points. The left-
most occurrence of enroute altitude is the start, and the
rightmost occurrence of enroute altitude is the end of the
enroute phase of the flight. This enables the algorithm to
compute the climb and descent phases of the flight, as index
0 to start of the enroute phase identifies the climb and the
end of the enroute phase to the end of the flight identifies
the descent phase. The algorithm retains a global array per
phase, by adding the relevant data points per flight. This
way, all data points for each phase are accumulated and
stored in a relevant array. In the final step (lines 21~24),
the algorithm uses the array of data points along with a
number of clusters per phase as input to the k-means clus-
tering. The process fits the model using Euclidean distance
and determines to which cluster each data point belongs.
Upon convergence, the final set of centroids per flight phase
are computed, which are merged to form the final list.

The representative trajectory of a cluster captures the over-
all movement of the aircraft based on trajectory data records.
Once centroids are generated upon clustering, consecutive

In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.

Huang and X. Chen, eds., Seattle, WA, November 2015.

a) Before lateral smoothing b) After lateral smoothing

Figure 2: Lateral smoothing

centroids are connected to model the behavior of the air-
craft. This requires omitting the abnormal centroids while
connecting the valid ones to most accurately represent the
overall movement of the aircraft with a single trajectory.

Algorithm 3 generates the representative trajectory in two
steps. During the first step, (lines 1~18), the algorithm per-
forms the lateral smoothing. This goal is attained by keeping
a domain fact in mind that aircraft usually fly straight and
keep the delta bearing at minimal when they make turns.
In the second step, (lines 19~23), the vertical smoothing
is done. This step takes advantage of the aircraft trajec-
tory property: aircraft usually maintain the cruise level at
or above 30,000 feet between the top of climb and the top
of descent.

The input to the algorithm is a set of centroids sorted in
the direction of departure to arrival airports. The default
maximum delta bearing the aircraft is allowed to turn is a
constant, mazDBearing, which is an input to the algorithm.
The algorithm basically computes the bearing between two
centroids at a time, as it traverses them. If the absolute
value of the difference between the current and previous
bearing is less than or equal to the maximum delta bearing,
which is the lateral smoothing factor, the current centroid
is appended to the representative trajectory. Otherwise, the
current centroid is skipped and the next centroid is con-
sidered. The bearing is computed using the the Hawversine
equation [3] equation and the initial bearing is calculated
using the latitude, longitude pairs of the departure and ar-
rival airports.

The simplistic process is illustrated in Figure 2. The bear-
ing between the departure (Cd) and arrival airports (Ca) is
154 degrees. The bearing between departure airport and the
next centroid (C1) is 143 degrees. Given the delta bearing
is 11 degrees, which is less than maxDBearing, 30 degrees,
C1 is appended to the Representative Trajectory. The next
centroid to be considered is C2. Hence, the algorithm com-
putes the bearing between C1 and C2. Since the bearing
between the two centroids is 65 degrees, the delta bearing
is 143-65=78 degrees, which is greater than the maximum
delta bearing. Therefore, the algorithm skips C2 and com-
putes the bearing between C1 and C3. Due to fact that the
bearing is 157 degrees, which means that the delta bearing

is 157-143=14 degrees, the third centroid is appended to the
Representative Trajectory. The process stops when the ar-
rival airport is reached. The resulting set of centroids forms
the lateral profile of the Representative Trajectory.

Algorithm 3 RepresentativeTrajectory

Input: A set of centroids, each representing a cluster, CP

Max delta bearing, mazDBearing
Output: A representative trajectory, RTR

/* STEP 1 */
/* Apply smoothing in lateral plane */
1: initial := True, repTrajectory := [], maxDeltaLateral =
30.0, enrouteAltitude := 30000, prevPos = 0.0, 0.0, 0.0;
2: prevBearing := haversine(deptAirportLon, deptAirport-
Lat, arrAirportLon, arrAirportLat)
for each (CT in CP) do
if (initial) then
prevPos = CT.latitude, CT.longitude, CT.altitude
repTrajectory.append(prevPos)
initial = False
continue
end if
bearing = haversine(prevPos.lon, prevPos.lat,
CT.longitude, CT .latitude)
11: if (|(bearing-prevBearing) <= maxDBearing|) then

—_

12: prevBearing = bearing
13: prevPos = CT.latitude, CT.longitude, CT.altitude
14: if (prevPos not in repTrajectory) then
15: repTrajectory.append (prevPos)
16: end if
17: end if
18: end for
/* STEP 2 */

/* Apply smoothing in vertical plane */

19: enrouteStart = BinSearchLeftmostGT (repTrajectory,
enrouteAltitude)

20: enrouteEnd = BinSearchRightmostGT(repTrajectory,
enrouteAltitude)

21: avgEnrouteAltitude = avg(repTrajectory.slice(enrouteStart,

enrouteEnd).altitude)

22: setAlt(repTrajectory.slice(enrouteStart, enrouteEnd))
= averageEnrouteAltitude

23: repTrajectory = repTrajectory.slice(0, enrouteStart-1)
+ repTrajectory.slice(enrouteStart, enrouteEnd) + rep-
Trajectory.slice(enrouteEnd, length(flight)-1)

Vertical smoothing is done in the next step. The sorted cen-
troids with regards to their lateral profile in the direction of
departure to arrival airport are fed into a binary search func-
tion, where the function searches for the leftmost occurrence
of altitude that is greater than or equal to 30,000 feet. The
index of the leftmost occurrence is stored. The rightmost in-
dex is also searched and stored the same way. All centroids
in between these two indices are sliced, forming the enroute
phase of the Representative Trajectory. The mean value for
their altitudes is computed. The mean altitudes for each
of the enroute centroids are replaced with the original al-
titudes. This process completes the vertical smoothing and
yields the final Representative Trajectory. Figure 3 captures
the before and after view of vertical smoothing process in a
simplistic way. The left figure shows ever changing cruise

In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.

Huang and X. Chen, eds., Seattle, WA, November 2015.

w
2 e
= T p L 2 c3 C4 C5C6 C7 C8 co
2 30.000 ft. 30.000 ft.
c1 c10 c1 c10
c11 e

cd Ca cd Ca
a) Before vertical smoothing b) After vertical smoothing

Figure 3: Vertical smoothing
altitude in the form of a rugged line in the vertical profile. Sregular | Sclimb | Senroute | Sdescent
In the right figure, the cruise altitude is fixed, presenting a 0.678 0.557 | 0.702 0.565

realistic vertical profile.

3. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to validate the ef-
fectiveness of our aircraft trajectory clustering algorithm,
DICLERGE. We describe the experimental dataset prepara-
tion and environment in Section 3.1. We discuss the results
for the clustering process as well as the effects of parameter
values in Section 3.2.

3.1 Dataset Preparation

We used a real aircraft trajectory dataset: The Delta Air-
lines’ flight DAL1865, departing from Hartsfield-Jackson At-
lanta International Airport (KATL) and arriving at Miami
International Airport (KMIA) for the duration of January
through June 2015. The dataset has a total of 168 trajecto-
ries and 25036 points. ATL to MIA is one of the major routes
in the NAS due to fact that the departure airport is the bus-
iest airport in the United States and the flights are prone
to frequent convective weather in the airspace controlled by
Miami Air Route Traffic Control Center (ARTCC).

The source of the surveillance data is Aircraft Situation Dis-
play to Industry (ASDI) [1] provided in near real-time by
the FAA. The surveillance part of the data was generated
by merging a subset of various ASDI message types includ-
ing: departure information, track information, and flight
management information. In order to fuse weather param-
eters with surveillance data during the scheduled hours, we
also obtained weather data. The source of the weather
data was National Oceanic and Atmospheric Administra-
tion (NOAA) National Centers for Environmental Predic-
tion (NCEP) Rapid Refresh product [5], an hourly-updated
modeling system operational at NCEP. This way, each tra-
jectory point for flight DAL1865 was associated with weather
parameters yielding the following attributes per trajectory
point: source center, source date, source time, aircraft id,
aircraft speed, latitude, longitude, altitude, temperature,
wind speed, and wind direction.

Our experiments were conducted on a Oracle VM Virtu-
alBox v4.3.20 virtual machine running on Linux Ubuntu
14.04.2 64-bit LTS Operating System hosted by a computer
with Intel Core i7-3840QM CPU @ 2.80GHz and 16GB mem-
ory, running on Microsoft Windows 7 Operating System. All
the algorithms in our system were implemented in Python
v2.7.

Table 1: Silhouette Coefficients

3.2 Results for the Aircraft Trajectory Data
Our assessment included running k-means clustering with
and without the DICLERGE framework on the DAL1865
trajectory data. For the clustering process, we used k=20 for
both executions. Our attempt was to measure the clustering
results quantitatively and qualitatively for each execution.

Unfortunately, there is no well-defined measure for quanti-
tative evaluation due to fact that the ground truth labels
are not known. Hence, we performed the evaluation using
the model, itself. The Silhouette Coefficient is a way of such
an evaluation, where a higher coefficient score relates to a
model with better defined clusters [7].

We computed the coefficient for regular k-means clustering
(Sreguiar). We also computed the coefficients for the DI-
CLERGE framework on climb (Sciims), enroute (Senroute),
and descent (Sgescent) phases. Table 1 indicated that the
clustering quality of regular k-means was higher than the
DICLERGE framework’s climb and descent phases. How-
ever, it was lower than the DICLERGFE framework’s enroute
phase.

For the qualitative measure, we used visual inspection and
domain knowledge. The outcome of the execution without
the DICLERGE framework is captured on Figure 4a. This
execution treated the entire trajectory as a whole, gener-
ating centroids concentrated in the center. Whereas DI-
CLERGE framework divided the trajectories into 3 phases
first, clustered each set in isolation and merged them to-
gether at the end. For the k=20, we used kClimb=4, kEn-
route=10, and kDescent=6 as the optimal parameters. The
outcome of this execution is illustrated on Figure 4b.

It is obvious that the Figure 4 on the right presents a better
clustering as the centroids follow a more linear pattern from
departure to arrival airport, lining up toward the bottom of
the trajectory set where the trajectory points are denser.

To generate representative trajectory, we ran our algorithm
and obtained the result illustrated in Figure 5. The repre-
sentative trajectory shown with red on Google Earth [2] is
overlaid on top of the trajectory set, providing a model for
the movement of the flight over the period of 6 months.

In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.

Huang and X. Chen, eds., Seattle, WA, November 2015.

79
o
—80 SR, —
= .
. ",
- P e
—81 . " x LY
) o
% ').(” ™
A VY
= pstetted CJ
82 e . -
“M' “‘
SW %
:”M e gl ”»
—83 s ":.
P *
Ko, %
eaaenntt T, gt Ty
_g84 - ""W' .
M' E
e taer
Mﬁ
o=y e
e
-85 .,] ; ! ;) I
24 % 28 30 7] 4 35

—79. 4

=BT

-84 -

-85 5 i ! "] | r
24 26 28 30 32 34 36

a) k-means clustering of aircraft trajectories, k=20

b) k-means clustering of aircraft trajectories using DICLERGE
framework, k=20

Figure 4: Clustering of aircraft trajectories with and without DICLERGE framework

The heuristic in selecting the number of clusters per flight
phase depends on the number of trajectory points per phase.
We maintain the ratio of the number of trajectory points
in each phase to the total trajectory points and map that
to the pertinent parameters, kClimb, kEnroute, and kDes-
cent. Our heuristic for selecting the lateral smoothing pa-
rameter is based on the level of smoothing we would like to
perform. Due to fact that our trajectory is prone to convec-
tive weather, which means that aircraft may perform drastic
turns to avoid the convection, we set our lateral smoothing
to a relatively larger value which was 30 degrees.

4. RELATED WORK

Although there is a vast amount of literature in the data
mining area, with regards to clustering trajectories, there is
only a limited number of research on clustering aircraft tra-
jectories.Of this research, there is no work addressing the
clustering of aircraft trajectories taking three or more di-
mensions into account, to the best of our knowledge.

Clustering algorithms can be considered in four major cat-
egories: partitioning based methods (e.g., k-means [20]),
density-based methods (e.g., DBSCAN [13]), hierarchical
methods (e.g., BIRCH ([34]), and grid-based methods (e.g.,
STING [31]). Once the aircraft trajectories are divided into
flight phases, our DICLERGE framework uses k-means to
perform clustering and merges them together.

One of the previous research, TRACLUS [18] proposes
Partition-and-Group framework that is similar to ours in a
sense that it partitions the trajectories into subtrajectories.
However, in their approach, subtrajectories are represented
by line segments and grouped together using a distance func-
tion. Besides, unlike ours, their clustering algorithm is den-
sity based.

In their research, Gariel et al. [14] proposed a way point
based trajectory clustering to monitor the airspace and its

Figure 5: Representative trajectory

conformance. Although their approach was an efficient way
to determine the compliance of flown trajectories with pub-
lished trajectories, they focused on the 2-D coordinates of
the way points in the (x,y) plane, disregarding the 3rd and
higher dimensions of the trajectory points.

Eckstein [11] presented an automated flight taxonomy. With
their approach, they first resampled the trajectories and
then clustered using k-means on a reduced order model, at-
tained by Principal Component Analysis (PCA). Eckstein
used only first two PCs, omitting the others.

Leiden et al. [19] presented two trajectory clustering al-

In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.

Huang and X. Chen, eds., Seattle, WA, November 2015.

gorithms for metroplex applications. The first algorithm
they developed used a well-known image processing tech-
nique, ridge detection. One of the major shortcomings of
their first algorithm was that it was unable to identify a
backbone route where no ridge existed. Given the short-
comings of their first algorithm, they implemented a second
algorithm that was based on k-means clustering. However,
they only evaluated their results qualitatively. They never
performed a quantitative evaluation using the model itself.

In their effort, Brinton et al. [10] investigated the auto-
mated partitioning of airspace into sectors so that sufficient
resources could be allocated to meet the demand. They used
Dynamic Density metrics and utilized a weighted euclidean
distance function to address the constrained clustering prob-
lem. However, they never compared their results with a true
optimal solution. So, the outcome appeared to be inconclu-
sive.

5. CONCLUSION AND FUTURE WORK
This paper presented the DICLERGE framework for clus-
tering multidimensional aircraft trajectory data and discov-
ering the representative trajectory upon lateral and verti-
cal smoothing. Our experiments with the real trajectory
dataset showed the effectiveness and efficiency of DICLERGE
framework and its advantages over the regular k-means clus-
tering for the aircraft trajectory data.

Note that this study is just a milestone for trajectory pre-
diction and we plan to utilize our work toward predictive
and prescriptive analytics of multi-dimensional aircraft tra-
jectory data. Other future work involves the introduction of
a browsing of trajectories capability using techniques such as
those used in the SAND Browser for spatial data (e.g., [12,
24]).

6. REFERENCES

[1] Aircraft situation display to industry.
http://www.fly.faa.gov/ASDI/asdi.html. [Online;
accessed 10-October-2015].

[2] Google earth. https://www.google.com/earth//.
[Online; accessed 10-October-2015].

[3] Haversine formula.
http://rosettacode.org/wiki/Haversine_formula.
[Online; accessed 10-October-2015].

[4] Mini batch k-means.
http://scikit-learn.org/stable/modules/
generated/sklearn.cluster.MiniBatchKMeans.html.
[Online; accessed 10-October-2015].

[5] Ncep wmo grib2 documentation. http://www.nco.
ncep.noaa.gov/pmb/docs/grib2/grib2_doc.shtml.
[Online; accessed 10-October-2015].

[6] Next generation air transportation system, nextgen.
https://www.faa.gov/nextgen/. [Online; accessed
10-October-2015].

[7] Silhouette coefficient.
http://scikit-learn.org/stable/modules/
clustering.html#silhouette-coefficient. [Online;
accessed 10-October-2015].

[8] Single european sky aair traffic management research,
sesar. http://www.sesarju.eu/. [Online; accessed
10-October-2015].

(9]

(17]

(18]

(19]

(20]

(21]

ANKERST, M., BREUNIG, M. M., KRIEGEL, H.-P.,
AND SANDER, J. Optics: Ordering points to identify
the clustering structure. In Proceedings of the 1999
ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 1999),
SIGMOD 99, ACM, pp. 49-60.

BrINTON, C., AND PLEDGIE, S. Airspace partitioning
using flight clustering and computational geometry. In
Digital Avionics Systems Conference, 2008. DASC
2008. IEEE/ATIAA 27th (Oct 2008),

pp- 3.B.3-1-3.B.3-10.

EcCKSTEIN, A. Automated flight track taxonomy for
measuring benefits from performance based
navigation. In Integrated Communications, Navigation
and Surveillance Conference, 2009. ICNS ’09. (May
2009), pp. 1-12.

EsPERANCGA, C., AND SAMET, H. Experience with
SAND/Tcl: a scripting tool for spatial databases.
Journal of Visual Languages and Computing 13, 2
(2002), 229-255.

EsTER, M., PETER KRIEGEL, H., S, J., AND XU, X.
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
2nd International Conference on Knowledge Discovery
and Data Mining (KDD-96) (1996).

GARIEL, M., SRIVASTAVA, A., AND FERON, E.
Trajectory clustering and an application to airspace
monitoring. Intelligent Transportation Systems, IEEE
Transactions on 12, 4 (Dec 2011), 1511-1524.

HaN, B., Liu, L., AND OMIECINSKI, E. Neat: Road
network aware trajectory clustering. In Distributed
Computing Systems (ICDCS), 2012 IEEE 32nd
International Conference on (June 2012), pp. 142-151.
Hwang, J.-R., Kang, H.-Y., anD L1, K.-J.
Spatio-temporal similarity analysis between
trajectories on road networks. In Perspectives in
Conceptual Modeling, J. Akoka, S. Liddle, I.-Y. Song,
M. Bertolotto, I. Comyn-Wattiau, W.-J. van den
Heuvel, M. Kolp, J. Trujillo, C. Kop, and H. Mayr,
Eds., vol. 3770 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2005, pp. 280-289.
Jacox, E., AND SAMET, H. Metric space similarity
joins. ACM Transactions on Database Systems 33, 2
(2008), 7.

LEE, J.-G., HAN, J., AND WHANG, K.-Y. Trajectory
clustering: A partition-and-group framework. In
Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 2007), SIGMOD ’07, ACM, pp. 593-604.
LEIDEN, K., AND ATKINS, S. Trajectory clustering for
metroplex operations. In 11th AIAA Aviation
Technology, Integration, and Operations (ATIO)
Conference (2011).

LLoYD, S. Least squares quantization in pcm. IEFEE
Trans. Inf. Theor. 28, 2 (Sept. 2006), 129-137.
NUTANONG, S., Jacox, E. H.;, AND SAMET, H. An
incremental Hausdorff distance calculation algorithm.
PVLDB 4, 8 (2011), 506-517.

NUTANONG, S., AND SAMET, H. Memory-efficient
algorithms for spatial network queries. In Proceedings
of the 29th IEEE International Conference on Data
Engineering (Brisbane, Australia, 2013), pp. 649-660.

In Proceedings of the Fighth ACM SIGSPATIAL International Workshop on Computational Transportation Science, Y.
Huang and X. Chen, eds., Seattle, WA, November 2015.

[23] RoH, G.-P., AND HWANG, S.-w. Nncluster: An
efficient clustering algorithm for road network
trajectories. In Database Systems for Advanced
Applications, H. Kitagawa, Y. Ishikawa, Q. Li, and
C. Watanabe, Eds., vol. 5982 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010,
pp. 47-61.

[24] SAMET, H., ALBORzI, H., BRABEC, F., ESPERANCA,
C., Hiarrason, G. R., MORGAN, F., AND TANIN, E.
Use of the SAND spatial browser for digital
government applications. Communications of the
ACM 46, 1 (2003), 63-66.

[25] SANKARANARAYANAN, J., ALBORZI, H., AND SAMET,
H. Efficient query processing on spatial networks. In
Proceedings of the 13th ACM International
Symposium on Advances in Geographic Information
Systems (Bremen, Germany, 2005), pp. 200-209.

[26] SANKARANARAYANAN, J., ALBORZI, H., AND SAMET,
H. Distance join queries on spatial networks. In
Proceedings of the 14th ACM International
Symposium on Advances in Geographic Information
Systems (Arlington, VA, 2006), pp. 211-218.

[27] SANKARANARAYANAN, J., AND SAMET, H. Distance
oracles for spatial networks. In Proceedings of the 25th
IEEFE International Conference on Data Engineering
(Shanghai, China, 2009), pp. 652-663.

[28] SANKARANARAYANAN, J., AND SAMET, H. Query
processing using distance oracles for spatial networks.
IEEE Transactions on Knowledge and Data
Engineering 22, 8 (2010), 1158-1175.

[29] SANKARANARAYANAN, J., SAMET, H., AND ALBORZI,
H. Path oracles for spatial networks. PVLDB 2, 1
(2009), 1210-1221.

[30] Sung, C., FELDMAN, D., AND Rus, D. Trajectory
clustering for motion prediction. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International
Conference on (Oct 2012), pp. 1547-1552.

[31] WaNG, W., YANG, J., AND MuNTZ, R. R. Sting: A
statistical information grid approach to spatial data
mining. In Proceedings of the 23rd International
Conference on Very Large Data Bases (San Francisco,
CA, USA, 1997), VLDB ’97, Morgan Kaufmann
Publishers Inc., pp. 186-195.

[32] WANG, Y., HAN, Q., AND PaN, H. A clustering
scheme for trajectories in road networks. In Advanced
Technology in Teaching - Proceedings of the 2009 3rd
International Conference on Teaching and
Computational Science (WTCS 2009), Y. Wu, Ed.,
vol. 117 of Advances in Intelligent and Soft
Computing. Springer Berlin Heidelberg, 2012,
pp. 11-18.

[33] Won, J.-I., Kim, S.-W., BAEK, J.-H., AND LEE, J.
Trajectory clustering in road network environment. In
Computational Intelligence and Data Mining, 2009.
CIDM ’09. IEEE Symposium on (March 2009),
pp- 299-305.

[34] ZHANG, T., RAMAKRISHNAN, R., AND L1vNY, M.
Birch: An efficient data clustering method for very
large databases. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of
Data (New York, NY, USA, 1996), SIGMOD ’96,
ACM, pp. 103-114.

