M aintenance of Spatial Semijoin Querieson M oving Points

Glenn S. Iwerks %t

fComputer Science Department,
Center for Automation Research, and
Institute for Advanced Computer Studies
University of Maryland at College Park
{iwerks,hjs} @umiacs.umd.edu

Abstract

In this paper, we address the maintenance of spa-
tial semijoin queries over continuously moving
points, where points are modeled as linear func-
tions of time. This is analogous to the main-
tenance of a materialized view except, as time
advances, the query result may change indepen-
dently of updates. As in a materialized view, we
assume there is no prior knowledge of updates be-
fore they occur. We present a new approach, con-
tinuous fuzzy sets (CFS), to maintain continuous
spatial semijoins efficiently. CFS is compared ex-
perimentally to a simple scaling of previous work.
The result is significantly better performance of
CFS compared to previous work by up to an order
of magnitude in some cases.

1 Introduction

We consider the following queries. For each moving
firetruck, keep track of the nearest mobile police unit. For
each airplane, keep track of the nearest airport. For each
cell phone, keep track of the nearest airborne relay sta-
tion. For each tank, keep track of the nearest target. For
each robot explorer in a swarm of robots, keep track of the
nearest maintenance robot. For each unmanned air vehi-
cle, keep track of the nearest observation objective. For
each ship, keep track of the nearest sonar tracking station.

*Thiswork was supported in part by the National Science Foundation
under grants EIA-99-00268, 11S-00-86162, and EIA-00-91474.

This work was supported in part by the National Institute for Men-
tal Health and the National Science Foundation under NIH grant RO1-
MH64417-01.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VL DB Conference,
Toronto, Canada, 2004

828

Hanan Samet

Kenneth P. Smith !f

"The MITRE Corporation
7515 Colshire Dr.
McLean, Virginia 22102
{iwerks,kps}@mitre.org

These are all examples of spatial semijoin queries on mov-
ing objects. Many are examples where all the objects are
moving simultaneously and continuously. All must update
the query result as the objects move in real time. None
know how the object will move ahead of time.

In this paper, we address the maintenance of spatial
semijoin queries over continuously moving points. Given
two sets of moving points @ and D, we define semijoin
Q Xy D as all the pairs (¢,p), ¢ € Q Ap € D, that are
in Cartesian product Q x D, and p is one of the & nearest
neighbors of ¢. Set @ is the set of query points, and D is
the set of data points. This amounts to a massive scaling
of a continuous nearest neighbor query for all query points.
Traditionally, a semijoin returns tuples from only one join
relation. However, we relax this constraint to make the re-
sult meaningful in light of the examples above.

Data sets 2, and D are updated through insertions and
deletions to the sets. There is no prior knowledge of what
the updates will be in advance of each update occurrence.
This is analogous to the maintenance of a materialized
view [5], with the difference being that the query result may
change as a result of the motion of points represented in the
database as well as updates to the database.

Points are modeled as linear functions of time, as op-
posed to samples of an objects location that are updated
as an object moves. Therefore, as time advances, the
query result may change independently of updates. Access
methods and operators for this data type have been stud-
ied extensively including indexing methods [17, 21], ad-
hoc queries [17, 19], and continuous queries such as win-
dow [17, 19], and within [10, 20], and finding the % nearest
neighbors [2, 10, 15, 20] (k-nn) to an object.

To our knowledge there has been no previous work to
perform continuous spatial semijoin queries on moving ob-
jects so that any of the examples queries given in the first
paragraph above for data sets of significant size can be an-
swered. Some work on scaling k-nn queries on point data
represented as samples (e.g., [14]) has been done, but not
on the scale needed to perform semijoins.

In this paper, we present a new approach, termed con-

tinuous fuzzy sets (CFS), to perform spatial semijoins. This
approach is most similar to a continuous window k-nn al-
gorithm presented in [10]. However, CFS is not just a sim-
ple scaling of this previous work. As we will show, pre-
vious work (e.g., [10, 20]) does not scale well. CFS is
compared experimentally to a simple scaling of the time-
parameterized k-nn algorithm presented in [20]. The re-
sult is a significant better performance of CFS compared to
this previous work by up to an order of magnitude in some
cases.

The rest of this paper is organized as follows. Section 2
reviews previous work and the background necessary to un-
derstand this paper. Our CFS algorithm is presented in
Section 3. Section 4 discusses some performance issues.
Experimental results are described in Section 5. Section 6
contains some concluding remarks.

2 Background and Previous Work

Some of the most widely researched queries on static spa-
tial data include within, window, spatial join, k-nearest
neighbor (k-nn), and spatial semijoin. A within [18] query
returns all objects within a given distance d > 0 from
a query object. A window query can be thought of as a
special case of a within query where the query object is a
hyper-rectangle and the distance is zero. A spatial join [8]
returns all pairs of objects in the Cartesian product of two
relations that are within a given distance d > 0 of each
other. A k-nn query [16] returns the closest & > 0 spatial
objects to a given query object. A spatial semijoin [8] is
a subset of a spatial join A X B where a tuple in the re-
sult {a, *) appears only once for any given a € A, denoted
A x B. An additional constraint is imposed in the spatial
context of semijoins which stipulates for any tuple (a, b)
in the result that b € B is the closest neighbor to a out of
all objects in B. Another way to define this form of spa-
tial semijoin is for every object a € A, to find the nearest
neighbor b € B and report (a, b). Using this definition, we
can relax the 1-nn constraint and find the & nearest neigh-
bors for every object a € A, denoted A x ;. B.

The incremental distance query [9] returns all the ob-
jects within a given distance d of a query object ¢, one at a
time, in increasing order of distance from ¢. The incremen-
tal distance query algorithm can be used for both within
queries, and k-nn queries. Retrieving all the objects from
g within distance d < oo is a within query. Retrieving the
first k£ objects and then stopping, with d = oo, is a k-nn
query. The incremental distance query algorithm assumes
a spatial tree index where, as in the case of the R-tree [6]
spatial index, the internal nodes have bounding boxes (BB)
that spatially contain all objects in the subtree. It makes
use of a priority queue of objects sorted by distance from
g- The queue is initialized with the root BB of the index.
Objects are successively removed from the queue. Data ob-
jects are reported as they are dequeued. Internal nodes are
expanded when they are dequeued by inserting each ele-

829

ment in the node into the queue. This process continues
until a maximum number of elements are reported, a max-
imum distance is reached, or there are no more elements in
the queue.

Motion of a spatial object can be represented in several
ways. The most common is samples, or discretely mov-
ing points [12]. For example, the motion of an aircraft can
be represented by sampling its location using radar every 6
seconds. The problem with this representation is that the
costs of updating every aircraft’s location in a database ev-
ery 6 seconds, and maintaining queries between updates,
are prohibitive.

A kinematic® representation is an alternative to sam-
pling. Kinematics represents the extent and location of
an object as a function of time. In particular, a moving
point can be represented by the linear function p(¢t) =
T + (t — to) @, where T3 is the start location, ¢, is the
start time, and @’ its velocity vector. The coefficients of this
function are stored in the database for each point. When the
speed or direction of an object changes, the database is up-
dated. For example, if an aircraft moving east at 500 miles
per hour turns to head south, then the the function describ-
ing its motion is updated with a new velocity vector to re-
flect the new direction of travel. Errors that may arise due to
discrepancies between the kinematic model of the objects
motion, and the actual location of an object are beyond the
scope of this paper. Kinematic data types have been studied
in other domains such as simulation [13] (i.e, dead reck-
oning) to reduce network traffic in distributed simulations,
and computational geometry [1] (i.e., kinematics). Kine-
matic data types, along with an event-driven query process-
ing algorithm are discussed further in [10].

Spatial indexes are used to support spatial queries. They
help aggregate objects and prune the search space by or-
ganizing objects either in an object hierarchy, such as
the R-tree [6], or a spatial decomposition, such as the
quadtree [18]. More recently, the indexing of moving ob-
jects has also been addressed [17, 21].

The TPR-tree [17] indexes moving objects described as
a function of time. It is a disk-based object hierarchy R-
tree variant. In the R-tree, each node is stored in one disk
page. Each node has an associated minimum bounding
box (MBB). Leaf nodes contain the MBBs for the indexed
objects themselves. Each internal node has an MBB for
each subtree spatially bounding the objects in the subtree.
In the TPR-tree, a bounding box (BB) is a moving hyper-
rectangle specified by two moving points defining opposite
corners of the BB. The corner points are chosen so that the
BB will always spatially contain the moving objects within
it. The BBs in the TPR-tree rarely stay minimal, tending
to grow faster than what would be the minimum bound-
ing box at any given time. This is partly compensated for

IKinematics is the branch of mechanics that studies the motion of a
body or a system of bodies without giving any consideration to its mass
or the forces acting on it.

by the TPR-tree update algorithms. As an update occurs,
the BB is adjusted to be minimal at the update time. An-
other compensatory action is that the tpr-tree insertion al-
gorithm tries to insert objects moving in a similar manner
(e.g., speed, direction), or to a similar destination, into the
same leaf node.

Event-driven query processing is used to maintain
queries on kinematic data types. This is similar to event-
driven simulation [4], but instead of maintaining a simula-
tion state, events are used to maintain query results as time
advances. Events are processed in turn to keep query re-
sults consistent as objects move.

In [10], two basic types of events are defined. One
basic type, the within event (w-event) occurs when two
objects move to be at a given distance d to a query ob-
ject. For a linear point kinematic data type, the time of
a within event is based on solving the Euclidean distance
equation |p(time), g(time)| = d for time, where p and
g are two moving points. This results in a closed form
quadratic equation. See [15, 20] for more details on the
computation of events between pairs of moving spatial ob-
jects. The other basic type of event is the order change
event (oc-event). The oc-event occurs when two objects
change order with respect to their distance to a query ob-
ject. For query point ¢, and two other points p; and po,
the time of their oc-events is based on solving the equa-
tion |py (time), q(time)| = |p2(time), q(time)| for time
(see [15, 20] for details). A special case of an oc-event
is a nearest neighbor event (nn-event). Given a query ob-
ject and its current £*" neighbor, the nn-event is the soon-
est oc-event to occur in the future out of all possible future
oc-events among the objects in the data set. For example,
suppose that ¢ is a query point, py, is its current k** neigh-
bor, and S is a set of kinematic data points S = {s1...s,, }.
For each point s; € S, if s; is closer to ¢ than py, then the
next oc-event e; of point s; occurs the next time when s;
moves to become farther from ¢ than py. If s; is farther
from ¢ than py, then the next oc-event e; of point s; occurs
the next time when s; moves to become closer to ¢ than py.
The next nn-event for ¢, pi, and S is the soonest oc-event
e; of all future oc-events {e;...e,}. The time of the next
nn-event is the next time in the future the % neighbor of ¢
will change.

An incremental within event query is similar to an in-
cremental distance query, except that an event time metric
is used instead of a distance metric [20]. An incremental
within event query returns all the objects and the time at
which they will enter the region within a given distance d
around a query object ¢, one at a time, in increasing order of
event time. If the distance d = 0 then the event time will be
the time the objects will intersect, or cease to intersect one
another. The algorithm assumes an object hierarchy tree
index on the moving objects (e.g., the tpr tree) for which
internal nodes have bounding boxes (BB) that continually
contain all the moving objects in each subtree. The algo-

830

rithm is identical to the incremental distance query [9] (see
above), except that the priority queue is sorted by within
event time instead of by the distance from ¢. The within
event time for an internal node BB will always be less than
or equal to the within event times of the objects it contains.

A next nearest neighbor event query finds the next near-
est neighbor given a query object and its current nearest
neighbor. In [20], Tao and Papadias describe a method
for finding the next nn-event given a query object, the cur-
rent k*" neighbor, and a set of data points indexed in a tpr
tree. To find the next event, the bounding box (BB) of each
node is examined and the node is placed on a global prior-
ity queue sorted by the oc-event time of its BB. Processing
starts with the root node of the tpr tree. The first object
on the queue is dequeued and expanded, repeating the pro-
cess recursively. When the first leaf node is examined, the
object in the leaf with the soonest oc-event time is saved
along with its event as the candidate nn-event. If the next
BB on the queue has an oc-event sooner than the candidate
nn-event, then it is expanded. And objects in a subsequent
leaf node with an oc-event sooner than the candidate nn-
event replaces the candidate. When the oc-event time of
the next node on the queue is later than the candidate, then
the candidate oc-event is returned as the next nn-event and
processing stops.

The next nn-event query supports the time parameter-
ized k-NN algorithm (TP KNN) presented in [20]. This
computes a k-nn query on kinematic objects, and then finds
the next nn-event that will change the result. An even more
efficient continuous &-nn algorithm is presented in [20] for
finding many subsequent nn-events. Neither of these algo-
rithms support updates.

The continuous windowing (CW) k-nn algorithm pre-
sented in [10] uses the w-event and oc-event types,
the incremental within event query [20], along with an
event-driven query processing algorithm to maintain k-nn
queries. The idea is to filter the points from the data set
with a circular window query centered at a moving query
point, and then maintain the % nearest neighbors from the
filtered result. At least k& points must be selected in the fil-
tering step. The window query is maintained by processing
within events to keep a running set of points W that are
within a given distance d of the query point. The & neigh-
bors and next nn-event are computed from the points in .
The motivation for this approach is that within events are
much cheaper than nn-events to process. This is because,
an nn-event changes the k' neighbor rendering all pre-
vious oc-events involving the old &£*" neighbor obsolete.
Within events, on the other hand, are independent of the
query result.

3 Approach

The continuous fuzzy set (CFS) semijoin algorithm main-
tains a semijoin query result @ x; D on the sets of kine-
matic points @ and D as time advances and updates occur.

The main algorithm is a simple event-driven query process-
ing algorithm that supports updates similar to the one pre-
sented in [10]. Events are placed on a priority queue sorted
by time and dequeued one at a time for processing. There
is one and only one nn-event or underflow event (described
below) on the event queue for each query point in Q. Up-
dates (insertions and deletions) are also processed as they
occur. The assumption on updates is that there is no pri-
ori knowledge of updates, such as is the case in a real-time
system.

The fuzzy set of a query point ¢ € @ consists of all the
points S = {s1...s,}, where s; € D, that are now or will
be within some given distance of ¢ sometime in the near
future. This maintains a cloud of points around each query
point. The next nn-event for any given point ¢ € @ is
computed from ¢’s fuzzy set.

A fuzzy set is determined by a circle (or hypersphere for
higher dimensional data) centered at ¢ and with radius r
known as the query circle. Radius r is chosen so that there
are at least & points within distance r of ¢g. The points in the
circle, along with points that will enter the circle sometime
in the near future, make up the fuzzy set of ¢. Scalar value
r is generally a different value for each query point ¢ € Q.
This region around the query point is denoted circle(q, 7).

Time is divided up into uniform segments of time
called fuzzy-set-intervals. The fuzzy-set-interval deter-
mines which points entering circle(g, r) belong to the fuzzy
set. Only points that enter circle(q,) during the current
fuzzy-set-interval are in ¢’s fuzzy set. At the start of each
new fuzzy-set-interval, each query point’s fuzzy set is up-
dated (see Update_Fuzzy_Set() below).

Figure 1 illustrates an example fuzzy set for a single
query point ¢ in set @, and data points {a,b,c,d,ef,g,h,i}
€ D. Assume for this example, that the length of the ar-
rows in the figure indicate how far each point will travel in
one minute. In this example, the query point is not mov-
ing for simplicity. Also, assume for this example, that the
current fuzzy-set-interval will end in one minute. In this
example, all the points in circle(q,r), and all the points
that will enter circle(q, r) within the next minute (up to the
end of the current fuzzy-set-interval), are in the fuzzy set of
point g. The length of each fuzzy-set-interval is a system
parameter. Points {a,b,c,f,g,i} are in the fuzzy set of query
point g. Note that point d is closer to the circle than point c,
but it is moving slower and will not enter the circle during
the next minute.

An underflow event occurs when the k" neighbor of
some query point g leaves circle(g, 7). When this happens,
r has to be increased to encompass more data points in
circle(q,). Underflow events are denoted by uf(q, px,),
where ¢ € @ is the query point, p;, € D is the current
kth neighbor of ¢, and ¢ is the underflow event time. For
example, suppose that the query for Figure 1 is Q x3 D,
that is, for each point in @ find the 3 nearest neighbors
in D. Point g is currently the 37¢ nearest neighbor from

831

Figure 1: Example fuzzy set, where ® is the query
point g, e indicate points in g's fuzzy set, and o indi-
cate points not in the fuzzy set.

point g. Recall from Section 1, the subscript & for a semi-
join @ x; D denotes the number of nearest neighbors in
D to be found for every point in Q. Suppose that point
g will leave circle(q,r) at time tg, then the underflow
event is uf(q,g,tg). The component members of an un-
derflow event are denoted by query_pt(uf(g, px,t)) = g,
kth_pt(uf(q, pr,t)) = pk, and time(uf(q, px,t)) = t. For
the sake of consistency with nn-event notation (described
below) we define other_pt(uf(q, pr,t)) = pk.

An nn-event is denoted by nn(q, r, px, o, t), where q is
the query point, r is the radius of circle(q,r), px is the
kth neighbor of ¢, o is the other data point that will be-
come the new £ neighbor at event time ¢. For example,
suppose that the query for Figure 1 is Q x; D, that is, for
each point in @ find the nearest neighbor in D. Point a
is currently the nearest neighbor of point g. Let the time
for the next oc-event between points a, ¢, and g be time
ta,c. Also, suppose that this is the next oc-event out of
all the oc-events among the points in q’s fuzzy set. In
this case, the nn-event for point q is nn(q,r,a,c,tac).
To support fuzzy sets, the radius of the query circle is
stored with the nn-event. The radius is not part of the def-
inition of the nn-event itself, but it will be needed when
the nn-event is processed. The component members of an
nn-event are denoted by query_pt(nn(q,r,pk,0,t)) = gq,
radius(nn(q, r, pg, 0,t) = r, kth_pt(nn(gq, 7, px, 0,t)) = Dk,
other_pt(nn(q, r, pr,0,t)) = o, and time(nn(q, r, pg, 0, t))
=1.

3.1 DataStructures

The event queue E-queue is a priority queue of events
(underflow and nn-events) sorted by time. It is made up
of three data structures. The first is a B+-tree variant
called the nearest neighbor event B-tree (NN-B-tree). Ev-
ery point p is assumed to have an associated unique id
denoted id(p). The NN-B-tree B+-tree is sorted on the
key id(query_pt(e)) and yields the event values e (i.e.,
id(query_pt(e)) — ¢). In addition to implementing a
range tree on id(query_pt(e)), the B+-tree is augmented
to implement a heap in the event times. In particular, in
addition to the minimum and maximum keys, the mini-

mum event time for a subtree in the NN-B-tree is prop-
agated up to the root. Thus the result is a variant of
a priority search tree [11]. Figure 2 shows an example
NN-B-tree. The next event time is found by examining
the root node, and returning the minimum event time in
the root. To obtain the next event, the tree is traversed
from its root to the leaf by following the minimum event
time down the branches of the tree. The NN-B-tree al-
lows efficient updates based on the id of query points from
Q. However, in order to efficiently perform updates us-
ing a data point id as a key, additional data structures
are needed. The K-B-tree is a standard B+-tree sorted
by key id(kth_pt(e)) yielding the value id(query_pt(e))
(i.e., id(kth_pt(e)) — id(query_pt(e))). The O-B-tree
is a standard B+-tree sorted by key id(other_pt(e)) yield-
ing the value id(query_pt(e)) (i.e., id(other_pt(e)) —
id(query_pt(e)))-

|idl: min_time(€, ... ,63)|id4: min_time(€y, ... ,67)|id7|

leslepes| |[esles|es| €|

Figure 2: Example NN-B-tree with one root node, and
two leaf nodes, where id; = id(query_pt(e;)).

Together, these three data structures NN-B-tree, K-B-
tree, O-B-tree and their algorithms form the event queue
E-queue. The algorithm to insert an event ¢ is given in
Figure 3. The algorithm to delete an event, given a query
point ¢, is given in Figure 4. These are straight-forward
since there is one and only one event for each query point
in Q. The algorithm to delete all events involving a given
data point p is more complicated since there may be many
events involving p in the queue. The algorithm is given
in Figure 5. First, all query points ¢ for which p is the
kth neighbor are considered (line 1). The event for each ¢ is
found (line 2), then all the entries involving ¢ are removed
from the three B+-trees; O-B-tree, NN-B-tree, K-B-tree
(lines 3-5). Since id(q) is unique, there is only one entry
for a given ¢ in each B+-tree. Second, all query points g are
considered where p is the other point involved in ¢’s event
(line 7). Likewise, each entry for each of these query points
are deleted from the three B+-trees (lines 8-11).

procedure E-queue_Insert(e)

1. Insertid(query_pt(e)) — e into NN-B-tree.

2. Insertid(kth_pt(e)) — id(query_pt(e)) into K-B-tree.

3. Insertid(other_pt(e)) — id(query_pt(e)) into O-B-tree.
Figure 3: E-queue_Insert()

procedure E-queue_Delete_QueryPt(q)
Find entry id(g) — e in NN-B-tree.
Delete entry id(kth_pt(e)) — id(g) from K-B-tree.
Delete entry id(other_pt(e)) — id(q) from O-B-tree.
Delete entry id(q) — e from NN-B-tree.

Figure 4: E-queue_Delete_QueryPt()

eSS

To manage fuzzy sets, another set of data structures is

832

procedure E-queue_Delete All_DataPt(p)
1. foreach id(p) — id(q) in K-B-tree do
Find entry id(g) — e in NN-B-tree.
Delete id(other_pt(e)) — id(g) from O-B-tree.
Delete entry id(q) — e from NN-B-tree.
Delete entry id(p) — id(q) from K-B-tree.
end foreach
. foreach id(p) — id(q) in O-B-tree do
Find entry id(g) — e in NN-B-tree.
Delete entry id(kth_pt(e)) — id(g) from K-B-tree.
10. Delete entry id(g) — e from NN-B-tree.
11. Delete entry id(p) — id(g) from O-B-tree.
12. end foreach

Figure 5: E-queue_Delete_All_DataPt()

used. The fuzzy set index (FS-index) keeps track of points
in fuzzy sets, and the time the points will expire from each
fuzzy set. The FS-index utilizes two B+-trees. The first
B+-tree is the FS-B-tree. It is sorted by id(q) yielding
the value {q, p,t} (i.e., id(¢) — {q,p,t}), where ¢ € Q,
p € D, and t is the expiration time for p. The expiration
time is the time when p leaves circle(q, r) and is no longer
part of ¢’s fuzzy set.

The other B+-tree used by the FS-index is the ID-B-
tree. It is sorted by id(p) yielding id(q) (i.e., id(p) —
id(g)). It serves a similar purpose as the K-B-tree or O-
B-tree for the E-queue to support deletions of data points.
Together, the FS-B-tree and the ID-B-tree form the FS-
index. The algorithms to insert and delete objects in the
FS-index are similar to those for the E-queue, but sim-
pler since there are only two B+-trees involved.

Two tpr indexes [17] are used by the CFS algorithm.
One index is on the query circles circle(q,) rather than the
query points in set Q). A second tpr index used by CFS is
on the set of data points D.

CeNOGO~LN

3.2 CFSAlgorithms

The main loop of the event-driven algorithm processes
events and updates as they occur to maintain the query
result over the moving points. The main loop invokes
procedures Process_Event(), Update_Fuzzy Set(),
Insert_Data_Point(), Delete_Data_Point(), In-
sert_Query_Point(), and Delete_Query_Point() as
needed (see below). Updates are not known in advance of
their occurrence as we are assuming a real-time system.
Processing continues indefinitely.

When an event on the E-queue comes due, it is de-
queued and passed to Process_Event() (Figure 6). Every
query point has either an nn-event, or an underflow event
associated with it in the event queue, E-queue, even if
the event time is co. This is done so that every query
point and its k" neighbor can be found simply by exam-
ining the queue. For an nn-event (line 2), if other_pt(e)
was not previously part of the k-neighbor-set for ¢ (line
3), then it pushes the current k" neighbor out of the set
and other_pt(e) becomes the new k' neighbor. This ne-
cessitates an update to the query result. The query re-

procedure Process_Event(e)

1. Point ¢ < query_pt(e)

2. if eis an nn-event then

if kth_pt(e) is becoming & + 1 neighbor of ¢ then
update the query result

Get all entries for ¢ from FS-index, and remove

expired points to get fuzzy set S.

if count of expired points > expired_threshold then
remove all expired entries for ¢ from FS-index

. Enqueue_Event(S, g,radius(e),kth_pt(e))

. eseif e is an underflow event then

Handle_Underflow(q)

Figure 6: Process_Event()

akrw

sult is updated by reporting (kth_pt(e),q) deleted, and
(other_pt(e), g) inserted (line 4). For example, suppose
that the query for Figure 1 is Q x; D, that is, for each point
in @ find the nearest neighbor in D. Point a is currently
the nearest neighbor of point q. The event on the queue
for point g is nn(q, r, a, ¢, ta c), Where time ¢, . is the time
points aand point c will be equidistant from point g. When
this event comes due and is processed, point ¢ pushes point
aout of the k-neighbor-set (in this case the 1-neighbor-set)
of point g, and becomes the new nearest neighbor.

If, on the other hand, other_pt(e) was already part of the
k-neighbor-set, then it simply becomes the new k" neigh-
bor, and the current £*" neighbor becomes the k£ — 1 neigh-
bor. For example, suppose that the query for Figure 1 is
Q xo D, that is, for each point in @Q find the 2 nearest
neighbors in D. Point b is currently the 2% nearest neigh-
bor from point g. In this example, the nn-event for point g
isnn(q,r, b, a, tp a), because point a will be the first to be
equidistant with point b from point q before any other point
in point g’s fuzzy set. When nn(q, r, b, a, tp o) COMes due
at time ty, a, point a becomes the new k' neighbor (274
neighbor), but point b stays in the 2-neighbor-set of point
g, so the query result does not change. However, since the
274 neighbor changed, a new nn-event for point g must be
calculated and enqueued.

The new nn-event is calculated from ¢’s fuzzy set. The
fuzzy set S for ¢ is stored in the FS-index. All points in the
FS-index that have not expired are in ¢’s current fuzzy set
(line 5). A point expires from the fuzzy set when it leaves
the circle around ¢. If the number of expired points ex-
ceeds a certain threshold, then all expired points for g are
removed from the FS-index (line 6) This keeps down the
number of expired entries in the FS-index. The fuzzy set
S is used to compute the next event for ¢ (line 8) (see de-
scription of Enqueue_Event() below). An underflow event
occurs when circle(g, r) contains less than & points (line 9).
When underflow occurs, the fuzzy set must be expanded
(line 10) (see description of Handle_Underflow() below).

Enqueue_Event() (Figure 7), called from line 8 of Fig-
ure 6, computes the next event for a query point from its
fuzzy set. The current £t neighbor is removed from the
fuzzy set S (line 1). The remaining points in fuzzy set S are
each considered for the next nn-event by computing each of

833

procedure Enqueue_Event(S, g, r, pr)
S — (S — pk)
Find the next nn-event e from among the points in S.
if kth_pt(e) will expire before e occurs then
enqueue an underflow event for ¢ in E-queue.
else enqueue e in E-queue.

Figure 7: Enqueue_Event()

their next occurring order change events (oc-events) in turn
(line 2). Recall from Section 2 that an oc-event for a data
point p occurs when p moves to be at the same distance
to ¢ as its current £*® neighbor. The soonest oc-event be-
comes the next nn-event (line 5), unless circle(q,) under-
flows sooner. In that case, an underflow event is enqueued
instead (line 4).
procedure Handle_Underflow(q)
Remove all entries for ¢ from FS-index.
n « [kxcircle_factor]
Get new set S of n + 1 neighbors around gq.
7 (g snll + llg. sn111)/2, Where s, sn41 € S
Remove s,1 from S.
Add points to S that will enter circle(q, r) during the
current fuzzy-set-interval.
7. Insert points S, and their expiration times
into FS-index.
8. Enqueue_Event(S,q,r, sk),
where s;, € S is the k*" neighbor of ¢.
9. Remove old circle centered at ¢ from query point tpr
tree, and insert circle(q,).
Figure 8: Handle_Underflow()

Handle_Underflow() (Figure 8), called from line 10 of
Figure 6, resizes the fuzzy set for a query point. The old
fuzzy set needs to be removed from the FS-index, since
the radius defining the expiration times for the points in the
old fuzzy set will change (line 1). The circle around ¢ is
calculated to initially contain some multiple of & points.
The global constant circle_factor > 1 is used to determine
how many points to start with in a circle (line 2). An in-
cremental distance algorithm [9] (see Section 2) is used to
get the n + 1 neighbors of g using the tpr index on the data
points (line 3). The n + 1 neighbor, 5,11, is used to de-
termine the radius of the new circle. The new radius is the
average of the distances from ¢ to the n*" neighbor, s,,, and
q to sp+1 (line 4). Note that the Euclidean distance at the
current time between two kinematic points ¢ and p is de-
noted ||q, p||. This technique for finding the radius helps to
avoid the situation where points instantly leave the circle
after it is resized. Once the radius is computed, s,, 11 is dis-
carded from the set .S because it is outside the circle (line
5). The rest of the fuzzy set is found using an incremental
within event algorithm [20] (see Section 2) on the tpr index
on the data points (line 6). At this point S contains all the
points in ¢’s new fuzzy set. The points in fuzzy set S are in-
serted into the FS-index along with their expiration times
(line 7). The next nn-event is computed from the points in
S and enqueued (line 8). Finally, the tpr index on the query
circles is updated (line 9).

For example, suppose that the query for Figure 1 is

agrwdPE

ok wbdpE

Q@ x1 D, that is, for each point in @ find the nearest neigh-
bor in D. Point a is currently the nearest neighbor of point
g. Also suppose that the radius of the circle is not » as in
the figure, but is smaller, and suppose that an underflow
event has just occurred. In other words, the radius of the
circle is at the distance from point g that point a is at right
now, say r.4. Suppose also that circle_factor = 3. When
Handle_Underflow() is invoked, we getn = 1 %3 = 3
(line 2). We then find the n + 1, or 4 nearest neighbors to
point g (line 3). Set S now contains points {a, b, g, f}.
The new distance r (the large circle in Figure 1) is calcu-
lated to be halfway between point g and point f from point
q (line 4). Once r is computed, the 4** neighbor of ¢ is re-
moved from S leaving {a, b, g} (line 5). Suppose that the
end of the current fuzzy-set-interval is one minute in the
future. All the points that will enter circle(q, r) before the
end of the current fuzzy-set-interval (e.g., within the next
minute) are added to set S to give {a,b,c,f,g,i} (line 6). In
this case, point f ends up back in set S, but it would not if it
were moving away from the circle. The points {a,b,c/f,g,i},
along with their expiration times are inserted into the FS-
index (line 7). They are also used to find the next nn-event
(line 8). The old circle circle(q, 7o) is removed from the
circle tpr tree and the new circle circle(q, r) is inserted (line
9).
procedure Update_Fuzzy Set()
foreach circle(q, r) in the query circle tpr tree do

Add new points to ¢'s fuzzy set S that will enter

circle(q, r) during the current fuzzy-set-interval.

Find the next nn-event e from among the pointsin S.

if e occurs before the currently enqueued event for ¢

then replace currently enqueued event with e.
end foreach

N

o gkl w

Figure 9: Update_Fuzzy_Set()

Update_Fuzzy_Set() (Figure 9) is invoked at the start of
each new fuzzy-set-interval to update the fuzzy set for each
query point. This finds all the data points that will enter
query circles during the new fuzzy-set-interval segment of
time. The tpr index on the query circles is scanned to get
all the query circle circle(q,) (line 1). The fuzzy set S
for each ¢ is updated by finding all the new data points en-
tering circle(q, r) using an incremental within event algo-
rithm [20] (see Section 2) on the data point tpr index (line
2). The current k' neighbor s, € S is found, and then the
nn-event e from the rest of the points in S is computed (line
3). This is done by considering each point s; € S,i # k
for the next nn-event by computing each s;’s next oc-event
with respect to s, and ¢. The soonest oc-event out of all
is the next nn-event e. If e occurs before the event that is
currently in the event queue E-queue for ¢, then e replaces
the one on the queue for point ¢ (line 5).

Insert_Data_Point() (Figure 10) is invoked when a new
point p is added to the set of data points D in the semi-
join query Q x; D. The query circle tpr index is used to
find all circle(g, r)’s that currently contain, or will contain

834

procedure Insert_Data_Point(p)
1. foreach circle(g, r) with p in ¢'s fuzzy set do
2. if pisinthe k-neighbor-set of ¢ then
3. Update the query result.
4. Remove ¢’s event from the E-queue.
5 Get all entries for ¢ from FS-index, and remove
expired points to get fuzzy set S.
6. Enqueue_Event(S, g, 7, s),
where s, € S is the k*" neighbor of g.
7. €eseif pintroduces a sooner nn-event for ¢ then
8. Replace the nn-event for ¢ in E-queue.
9. endif-else-if
10. end foreach
11. Insert p into the data point tpr index.

Figure 10: Insert_Data_Point()

p between now and the end of the current fuzzy-set-interval
(line 1). In particular, this entails the performance of two
operations using the query circle tpr index. The first finds
all the circles that currently contain point p using a within
distance d = 0 query [9]. The second uses an incremental
within event algorithm [20] (see Section 2) to find all the
circles that will contain p before the end of the fuzzy-set-
interval. Each query circle circle(q, r) is processed in turn.
If p is closer to a given ¢ than the k" neighbor of ¢, then
it is in the k-neighbor-set of ¢ (line 2). Point ¢’s entry in
the event queue can be used to find the k£*® neighbor of ¢
since both nn-events and underflow events keep track of the
kth neighbor. When p is in the k-neighbor-set of g, then the
current k' neighbor becomes the & + 1 neighbor. The en-
try involving the old %" neighbor (k**, ¢) is removed from
the query result and the new entry (p, ¢) is added (line 3).
When the k" neighbor changes, the nn-event or underflow
event changes as well, so the old event needs to be removed
from E-queue (line 4). The new event is calculated from
the fuzzy set of ¢ (lines 5-6). If p is not in the k-neighbor-
set, then it may still affect the next nn-event. If p’s next
oc-event occurs before the current nn-event for ¢, then the
oc-event becomes the new nn-event, and replaces the old
nn-event on the queue (lines 7-8). After all circles have
been processed, the tpr index on the data points is updated
(line 11).

Delete_Data_Point() (Figure 11) is invoked when a data
point p is deleted from the set of data points D in the semi-
joinquery @ x . D. First, p is removed from the data point
tpr index (line 1), and FS-index (line 2). All the circles
that contain p, or would contain p during the current fuzzy-
set-interval are processed in turn (line 3). These circles
are found by applying an incremental distance [9], and in-
cremental event algorithm [20] (see Section 2) on the data
point tpr index. If p is the current £t neighbor, or closer to
a given ¢ than its £*" neighbor, then the events and query
result change (line 4). The current &k + 1 neighbor becomes
the &*® neighbor. After the old event for ¢ is removed from
the event queue (line 5), the fuzzy set S is found (line 6),
and checked for underflow (line 7). Underflow results in a
resizing of the fuzzy set, and a new nn-event is enqueued
(line 8). If the fuzzy set does not underflow, then a new

procedure Delete_Data_Point(p)
1. Remove p from the data point tpr index.
2. Remove all entries involving p from FS-index.
3. foreach circle(q, r) with p in ¢'s fuzzy set do
if p is in the k-neighbor-set of ¢ then
Remove ¢’s event from the E-queue.
Get all entries for ¢ from FS-index, and remove
expired points to get fuzzy set S.
if number of data points in circle(g,) < k then
Handle_Underflow(q)
ese
Enqueue_Event(S, q, 7, sk),
where s;, € S is the new &*" neighbor of g.
11. Update query result.
12. dseif pisinvolved in ¢'s enqueued event then

o0k

Cwo®N

1

13. Remove ¢’s event from the E-queue.

14. Get all entries for ¢ from FS-index, and remove
expired points to get fuzzy set S.

15. Enqueue_Event(S, g, 7, si),

where s;, € S is the new k*® neighbor of q.
16. endif-eseif
17. end foreach

Figure 11: Delete_Data_Point()

nn-event is enqueued given the new &' neighbor (line 10).
The result is updated by deleting the old &*" neighbor and
inserting the new one (line 11). When p is not in the k-
neighbor-set, but is involved in the nn-event for ¢ (line 12),
then the nn-event changes. In particular, the new nn-event
is found from the points in ¢’s fuzzy set S, replacing the
old nn-event in the queue (lines 13-15).

procedure Insert_Query_Point(q)

1. n « [kxcircle_factor]

2. Getnewset S of n + 1 neighbors around g.

3. (g, snll + g, sns11)/2, Where s, sn41 € S

4. Remove s,+1 from S.

5. Add points to S that will enter circle(q, r) during the
current fuzzy-set-interval.

6. Insert points S, and their expiration times

into FS-index.

7. Enqueue_Event(S,q,r,sk),
where s;, € S is the k*® neighbor of q.

8. Report (s;, q) inserted to result for the closest
points s; € S 1o gq.

9. Insertcircle(q, r) into query circle tpr index.

Figure 12: Insert_Query_Point()

Insert_Query_Point() (Figure 12) is invoked when a
query pointis inserted into @ in the semijoin query Q x ;. D.
This procedure is similar to Handle_Underflow() except
that there are no previous entries for ¢ in FS-index or the
query circle tpr index to remove. Lines 1-7 are identical to
lines 2-8 of Figure 8. Before finishing, the & neighbors of
¢ are added to the query result (line 8), and the query circle
is indexed (line 9).

procedure Delete_Query_Point(q)
1. Delete the current k neighbors to ¢ from query result.
2. Remove any entries for g from FS-index, E-queue,
and the query point tpr index.

Figure 13: Delete_Query_Point()

835

Delete_Query_Point() (Figure 13) is invoked when a
query point is deleted. It first updates the query result (line
1). This is done by applying an incremental distance algo-
rithm [9] (see Section 2) on the data point tpr tree with ¢
as the query point to determine what entries to delete. It
then removes any entires involving the query point ¢ from
all the data structures (line 2).

4 CFSvs. CW

The CFS algorithm somewhat resembles the CW k-nn al-
gorithm for one query point presented in [10]. However,
there are significant differences. The similarity is that both
approaches maintain a circular region around a query point
with the constraint that it contain at least & points at all
times. This filters the data points for candidates from which
to select the & nearest neighbors.

The differences are in the other ways in which the circles
are used. In the CW algorithm, the nn-event is computed
from only those points found inside the query circle. In the
CFS algorithm, points entering the circle in the near future
are also considered for the next nn-event. This reduces the
number of “false” nn-events that need to be changed before
they occur when new candidates enter the widow of the
CW algorithm. The CFS algorithm introduces the notion
of fuzzy-set-intervals to limit which points are considered
for the nn-event. Points entering the window in the distant
future are not likely to be involved in the next nn-event. In
the CW algorithm, within events are used to process points
entering the window of a single query point. The CFS algo-
rithm does not process within events as they occur. Instead,
it only processes nn-events and underflow events for each
query point. Within events are used in the CFS algorithm
to determine when fuzzy set elements will expire.

To scale the CW algorithm to handle many query points
at the same time, additional data structures would be
needed to keep track of nn-events, the contents of each
query circle, the size of each query circle, and underflow.
This, in addition to the sheer number of within events that
would need to be queued and processed makes scaling the
CW algorithm an inferior solution to the CFS algorithm.

5 Experiments

For the purpose of evaluating our algorithm, we scale up an
existing k-nn algorithm to perform semijoin queries. We
then compare the simple scaling of the previous work to
the CFS algorithm.

In [10], the TP k-nn algorithm [20] was extended to
support updates (presented as the ETP algorithm in [10]).
Here, we scale up the ETP algorithm to do semijoins in
addition to updates. We call the extension to perform
semijoins the TP-semijoin (TPS) algorithm. To scale the
ETP algorithm to perform semijoins, an event queue con-
taining an nn-event for each query point is added. If for
some query point ¢, no such event exists, then a pseudo

event nn(q, px, pk, 00) is added to keep track of the current
kth neighbor p;.. When an update occurs, the event queue
is scanned to determine what part of the query result, and
which events need to be modified. If the set of k& neighbors
changes due to an update, then new neighbors and events
are found using a tpr index on the data points similar to
what was done in the ETP algorithm in [10]. No tpr index
for the query points is needed since all the query points are
in the event queue.

As discussed above (Section 4), the CW algorithm also
presented in [10] would not scale well because there would
be too many within events to process. Note that a straight-
forward scaling of the CW algorithm given in [10] can be
achieved by adding an nn-event queue in addition to the
within event queue. In preliminary results, scaling of the
CW algorithm was found to be significantly less efficient
than the TPS algorithm.

5.1 DataSets

We used both real aircraft flight data and synthetic
uniformly-distributed data in our experiments. Data sets
consist of an initial set of moving points described as a lin-
ear function of time (p(t) = Z§+ (t—to) '), and updates to
the function coefficients (zg, to, ©’) over time. A data set
is characterized by the mean and standard deviation in the
number of moving points (cardinality) at any given time,
the period of time covered by the data set, and the average
update interval. The average update interval (Ul) is the av-
erage length of time between updates for any given point.

All synthetic uniformly-distributed data sets are gen-
erated using a data generation tool developed by Salte-
nis et. al. [17]. The synthetic moving points are uni-
formly distributed over a 1000x1000 coordinate space. The
speed of each point is uniformly distributed between 0 and
3/60 = 0.05 coordinate distance units per time unit. All
synthetic moving points are inserted at the start time of the
dataset. Updates change the speed, but not the current lo-
cation of each point. No new points are introduced after
the start time, nor are any removed. The average update
interval (UI) for our synthetic data is 600 time units. Each
synthetic data set covers 3600 time units. The Ul and speed
relative to the size of the coordinate space of the synthetic
data were chosen to be similar to the aircraft flight data for
comparability.

Real commercial aircraft flight data was acquired as lo-
cation data sampled at one minute intervals. Figure 14
shows an example snapshot in time to see how the data
is clustered. The latitude-longitude of sampled locations
were converted to linear functions describing aircraft mo-
tion by first applying the Douglas-Peucker line simplifica-
tion algorithm [3] to the 2D latitude-longitude points form-
ing a polyline from earliest to latest sampled location in
time.2 In our application of the Douglas-Peucker algo-
rithm, we used a maximum error bound of 0.06 degrees.

2 Although experiments were conducted on 2-dimensional data, the al-

836

Distortions introduced by the latitude-longitude projection
onto the Earth’s surface was ignored. The resulting vertices
serve as the start locations for each update. Each vertex has
an associated time stamp. The line segment to the next
vertex divided by the time difference between their time
stamps gives the velocity vector for each update. The re-
sult was an average update interval of 700-735 seconds.
The aircraft data sets cover a window [20°, 60°] latitude by
[—135°, —60°] longitude. Since only about 5000 aircraft
are in the air at any one time, larger data sets are generated
by combining flights on different days during the same time
period. Each aircraft data set covers a time period of two
hours.

Figure 14: Snapshot of aircraft flight data.

One significant difference between the real and syn-
thetic data is in the size of the data set at any given time.
The number of points for the synthetic data stays constant,
but the real flight data changes in the number of aircraft as
flights land and take off. Figure 15 shows the mean and
standard deviation in the size of the data sets used over the
entire 2 hour time interval covered by each data set. The
figure also shows the average update interval (Ul) for each
aircraft data set.

o ||4453 {9021 | 12690 (17106
o [|330.8680.8{962.4 [1293
Ul|[700.7|712.8(725.1 | 734.6

Figure 15: Each column corresponds to a different air-
craft data set. Each row is a statistic on the data sets.
Row 1 is the mean number of flights at any given time
(1)- Row 2 is the standard deviation in the number of
flights (¢). Row 3 is the average update interval (Ul)
in seconds.

To make full use of the real data sets available, each data
set was divided into 12 subsets starting at evenly spaced
start times over the duration of the data set. For example,
for a data set covering a time period of 900 units, the sub-
set start times are 0, 75, 150, etc. If the duration of the
experiment is longer than the time between subsets, then

gorithms presented in this paper are applicable to higher dimensions.

the subsets overlaped. If needed, the spacing between start
times was adjusted so the experiments didn’t run past the
time covered by the subset. For our 900 time unit example
above, if the experiment duration is 100 time units, then the
time between start times might be only 72 time units. The
time domains of each subset were then transformed to start
at time 0.

Each query was performed on combinations of these
subsets, not including self semijoins. Pairs of subsets were
chosen at random without replacement from all possible
combinations for a total of 100 joins per query. Only sub-
sets taken from the same original data set are used in a
query, so the semijoin sets are approximately the same size
for each query. In other words, the number of query points
is about the same as the number of data points in each semi-
join query. This technique was used on both the synthetic
and real data sets for comparability.

5.2 Reaults

Experiments were conducted in a simulation of a real-time
system in which semijoin queries are maintained over time
as updates occur. The experiments measured the total num-
ber of disk accesses over the duration of a query. Since we
are concerned primarily with the maintenance portion of
the query, the number of disk accesses used to compute the
initial join result are not included. The number of disk ac-
cesses over 100 trials was averaged to yield the experiment
results for a given query.

The implementation of the event queue used the gener-
alized search tree (GiST) [7] version 0.9betal code. The
code was compiled using gcc 2.96. The experiments were
run on several VLSI 80686 CPU based machines running
Linux.

The primary independent variables for comparison are
the mean data set size (1), and number of neighbors (k) to
find for each query point. For experiments where these do
not vary, the defaults are . = 9021 for real aircraft data,
= 10000 for synthetic uniform data, and & = 1. Other
general parameters, unless otherwise specified, are query
duration of 130 seconds, disk page size of 4096 bytes, and
disk cache size of 8 pages for each disk-based data struc-
ture.

Every cache page uses a least recently used (LRU) re-
placement policy except for the event queues. The event
queues use a Greatest Next Event (GNE) replacement pol-
icy. GNE removes the page whose minimum next event
time is the furthest in the future out of all pages in the
cache. GNE worked better than LRU for small pages (e.g.,
1024 bytes) and large caches (e.g., 32 pages). However,
when the cache size was reduced, and the page size in-
creased, we found nearly no difference between the LRU
and GNE policies. Therefore, LRU can be used with nearly
the same results as GNE.

Parameters specific to the CFS algorithm, unless other-
wise specified, are circle_factor = 2, expired_threshold

837

= 25 events, and fuzzy-set-interval duration of 128
time units to ensure that at least one call is made to
Update_Fuzzy Set() per each 130 second query. We found
these particular settings for the CFS algorithm to be nearly
optimal in our experiments.

The purpose of the first experiment is to determine
which algorithm, TPS or CFS, performs better in terms of
disk accesses for different data sets sizes. Figure 16 shows
the results for (a) real aircraft flight data, and (b) uniform
synthetic data. Parameter & is 1. The x-axis is the average
data set size (see row 1 in Figure 15), and the y-axis is the
number of disk accesses in millions (M). The points indi-
cated by A symbols are the number of disk accesses for
the CFS algorithm, while the <& symbol indicates the num-
ber of disk accesses for the TPS algorithm. For the aircraft
data, the CFS algorithm has 5 times fewer disk accesses
than the TPS algorithm for the largest data sets tested. For
the uniform synthetic data, the CFS algorithm has 10 times
fewer disk accesses than the TPS algorithm for the largest
data sets tested.

BM = 10M =i
MEEE T) VEE
§3M: éem
QZM: BaMt
il 2M

TI0K 14K 18K
average data set size
(b) uniform data

6K 10K 14K 18K 6K
average data set size

(a) aircraft data
Figure 16: Disk accesses with respect to data set size.

The purpose of the second experiment is to determine
the relative performance of the CFS algorithm to the TPS
algorithm when & is varied. Figure 17 shows the results for
(@) real aircraft flight data (data set size = 9021), and
(b) uniform synthetic data (data set size . = 10000). The
x-axis is k, and the y-axis is the number of disk accesses
in millions (M). The points indicated by /A symbols are the
number of disk accesses for the CFS algorithm, while the &
symbol indicates the number of disk accesses for the TPS
algorithm. The CFS algorithm has fewer accesses than the
TPS algorithm, but the number of disk accesses for the CFS
algorithm increases faster as the value of & is increased.

The purpose of the third experiment is to study the ef-
fect of circle_factor on the performance of the CFS algo-
rithm. Figure 18a shows the results for real aircraft flight
data (data set size u = 4453), and k& = 1. The z-axis is the
circle_factor, and the y-axis is the number of disk accesses
in thousands (K). The points indicated by A symbols are
the number of disk accesses for the CFS algorithm. Al-
though the TPS algorithm is not affected by circle_factor,
for comparison purposes, we show the number of disk ac-
cesses (< symbol) for this data. From Figure 18a it can be
seen that a circle_factor value of 2 yields the best perfor-

25Mg A 25M e —A
TPS

12345678
k neighors

(b) uniform data

12345678
k neighors
(a) aircraft data
Figure 17: Disk accesses with respect to k with cir-

cle_factor = 2.

mance for the CFS algorithm with £ = 1. A circle_factor
< 2 for k = 1 is not meaningful since there needs to be at
least & + 1 points inside a query circle when it is resized.
As we see, larger circle_factor values do lead to more disk
accesses for the CFS algorithm but this is still much lower
than the number of disk accesses for the TPS algorithm.

450K [ora =R LM pr T
400K [TPS —— 1 uniform —+—
350K 1I15M 1
% 300K [1 0
250K |] 1M
3 200K ¢ S % 1.08M
150K : =
100K ¢ 1 1.00M f
50K 1
2 3 4 5 6 7 8 0.95M 6100 200 300 400
circle_factor fuzzy-set-interval
(€) (b)

Figure 18: CW algorithm parameters. (a) Disk ac-
cesses vs. circle_factor. (b) Disk accesses vs. fuzzy-
set-interval.

Figure 18b shows disk accesses (y-axis) versus different
values for the CFS fuzzy-set-interval parameter (x-axis)
for aircraft data (u = 9021), and £ = 1. The x symbols
indicate disk accesses for aircraft data, and the + sym-
bol indicates disk accesses for uniform data. Each point
is an average over 50 trials. Small values (< 128) show
increased disk activity due to more frequent calls to Up-
date_Fuzzy_Set(). Larger values (> 192) show increased
disk activity due to larger fuzzy sets for each point for the
uniform data set. The reason why aircraft data does not ex-
hibit the same performance characteristics as for uniform
data for larger values of fuzzy-set-interval is unclear, and
should be a topic for future research.

Data structure size: The implementation resulted in the
following entry sizes. The tpr index entries were 32 bytes
for internal node and leaf node entries. The NN-B-tree leaf
node entries were 115 bytes, and internal node entries were
9 bytes. The FS-B-tree leaf node entries were 73 bytes,
and internal node entries were 4 bytes. The K-B-tree, O-
B-tree, and ID-B-tree leaf node entries were 8 bytes, and
internal node entries were 4 bytes.

Given these numbers, we can estimate the size of the
data structures under certain assumptions. Assume for
query of £ = 1 on data sets of size 20k, and page size of

838

4096 bytes, that 70% space utilization is achived. For each
of the 20k query points, there is one event in the E-queue
data structure. This gives [20000/((4096 % 0.7)/115)] =
803 pages of leaf nodes in the NN-B-tree of the E-queue.
and [803/((4096 = 0.7)/9)] = 3 pages of internal nodes.
This gives a total size of (803 + 3) * 4069 = 3301376
bytes on disk total for the NN-B-tree. For the K-B-tree
and the O-B-tree we get [20000/((4096 % 0.7)/8)] = 56
leaf node pages and 1 internal node page for a total of
(56 + 1) % 4096 = 233472 bytes on disk for each. The
total space taken by the NN-B-tree for this example is
3301376 + 262144 + 262144 = 3768320 bytes.

To examine the FS-index, lets assume an average of 3
elements in each fuzzy set. This give (20000 « 3) = 60000
entries in the FS-index. For the FS-B-tree, this results in
[60000/((4096 * 0.7)/73)] = 1528 pages of leaf nodes,
and [1528/((4096 = 0.7)/4)| = 3 pages of internal nodes.
This gives a total of (1528 + 3) x 4096 = 6270976 bytes
on disk. For the ID-B-tree, we get [60000/((4096 =
0.7)/8)] = 168 leaf node pages and 1 internal node
page for a total of (168 + 1) = 4096 = 692224 bytes on
disk. The total space take by FS-index for this example is
6270976 + 692224 = 6963200 bytes.

Finally, for the tpr indexes, we get [20000/((4096
0.7/32)] = 224 pages of leaf nodes, and [224/((4096 x*
0.7)/32)] = 3 pages of internal nodes. This gives a total
(224 + 3) * 4096 = 929792 bytes on disk per tpr index.

The total disk space used for the E-queue, FS-index,
and two tpr tree indices is 3768320 + 6963200 + (2 x
929792) = 12591104 bytes in this example.

6 Concluding Remarks

Even with the improved performance over previous work,
the number of disk accesses is still too high for the rela-
tively small data sets to be practical. As can be seen in the
example at the end of the last section, the size of the data
structures is relatively small, yet the disk accesses are in
the millions for small data sets over a short time interval.
The main cost arises from updates to the data structures. In
order to scale these algorithms up to large data sets (i.e.,
in the order of millions of objects) future work must focus
on update efficient disk based data structures for indexing
moving objects, event queues, and range trees.

In spite of these shortcomings, our experiments in Fig-
ure 16 show that the CFS algorithm clearly outperforms
the TPS algorithm. In some cases, the difference can be as
much as an order of magnitude (Figure 16b). The CFS al-
gorithm is the first algorithm of its kind to maintain spatial
semijoin results on kinematic data types, over an indefinite
period of time, and with no prior knowledge of the updates
that will be made.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. In 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 747-756, New
Orleans, LA, January 1997.

R. Benetis, C. Jensen, G. Karciauskas, and S. Salte-
nis. Nearest neighbor and reverse nearest neighbor
queries for moving objects. In International Database
Engineering and Applications Symposium (IDEAS),
pages 44-53, Edmonton, Canada, July 2002.

D. Douglas and T. Peucker. Algorithms for the reduc-
tion of the number of points required to represent a
digitized line or its caricature. The Canadian Cartog-
rapher, 10(2):112-122, 1973.

R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30-53, October
1990.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings
of the ACM SIGMOD Conference, pages 157-166,
Washington, D.C., May 1993.

A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proceedings of the ACM SIG-
MOD Conference, pages 47-57, Boston, MA, June
1984.

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized search trees for database systems. In
U. Dayal, P. M. D. Gray, and S. Nishio, editors, Pro-
ceedings of the 21st International Conference on Very
Large Data Bases, pages 562-573, Zurich, Switzer-
land, September 1995.

G. R. Hjaltason and H. Samet. Incremental distance
join algorithms for spatial databases. In Proceedings
of the ACM SIGMOD Conference, pages 237-248,
Seattle, WA, June 1998.

G. R. Hjaltason and H. Samet. Distance browsing
in spatial databases. ACM Transactions on Database
Systems, 24(2):265-318, June 1999. (Also University
of Maryland Computer Science TR-3919).

G. S. lwerks, H. Samet, and K. Smith. Continuous
k-nearest neighbor queries for continuously moving
points with updates. In Proceedings of the 29th Inter-
national Conference on Very Large Data Bases, pages
512-523, Berlin, Germany, September 2003.

E. M. McCreight. Priority search trees. SIAM Journal
on Computing, 14(2):257-276, May 1985.

M. A. Nascimento, R. Silva, and Y. Theodoridis.
Evaluation of access structures for discretely moving
points. In Proceedings of the International Workshop

839

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

on Spatio-Temporal Database Management, pages
171-188, Edinburgh, UK, September 1999.

Standards Committee on Interactive Simula-
tion (SCIS). IEEE Std 1278.1-1995. IEEE Computer
Society, USA, March 1996.

S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref,
and S. E. Hambrusch. Query indexing and velocity
constrained indexing: Scalable techniques for contin-
uous queries on moving objects. IEEE Transactions
on Computers, 51(10):1124-1140, October 2002.

K. Raptopoulou, A. N. Papadopoulos, and
Y. Manolopoulos. Fast nearest-neighbor query
processing in moving-object databases. Geolnfor-
matica, 7(2):113-137, 2003.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proceedings of the ACM SIG-
MOD Conference, pages 71-79, San Jose, CA, May
1995.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously mov-
ing objects. In Proceedings of the ACM SIGMOD
Conference, pages 331-342, Dallas, TX, May 2000.

H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In Proceed-
ings of the 13th IEEE Conference on Data Engi-
neering (ICDE), pages 422—-432, Birmingham, U.K.,
April 1997,

Y. Tao and D. Papadias. Spatial queries in dynamic
environments. ACM Transactions on Databases Sys-
tems (TODS), 28(2):101-139, June 2003.

J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-
based dynamic attribute indexing method. The Com-
puter Journal, 41(3):185-200, 1998.

