
The Internet Spatial Spreadsheet: Enabling Remote
Visualization of Dynamic Spatial Data and Ongoing Query

Results over a Network

Glenn S. Iwerks
Computer Science Department, Center for

Automation Research, and Institute for
Advanced Computer Studies, University of

Maryland at College Park

iwerks@umiacs.umd.edu

Hanan Samet
∗

Computer Science Department, Center for
Automation Research, and Institute for

Advanced Computer Studies, University of
Maryland at College Park

hjs@umiacs.umd.edu

ABSTRACT
Moving object databases store and process data for objects
that change location frequently. Materialized views main-
tained over time must be updated to reflect changes due
to the motion of objects in their environment. To visual-
ize view query results, displays must be updated to reflect
the change. In this paper we present the Internet Spatial
Spreadsheet (ISS) as a means to organize, query, and visu-
alize changing spatial data in a network environment such as
the Internet. The goal of the ISS is to keep client visualiza-
tions of query results up to date with the server state. This
is accomplished by pushing the minimal set of spatial data
needed for rendering query results on the client. Incremental
changes to query results are subsequently transmitted to the
client as the database is updated to keep the visualization
current. Additional constraints in the network environment
such as firewall limitations are also considered.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.8
[Database Management]: Database Applications—spa-
tial databases and GIS

General Terms
ALGORITHMS,DESIGN

Keywords
spatial databases, GIS, client server, visualization

∗This work was supported in part by the National Science
Foundation under grants EIA-99-00268, IIS-00-86162, and
EIA-00-91474.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS’03, November 7–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-730-3/03/0011 ...$5.00.

1. INTRODUCTION
Internet geo-spatial applications have become prevalent

and practical through increased bandwidth and spatial data-
base research. The Internet facilitates data sharing through
standards, and distributed public geo-spatial data sources.
Now a newer type of spatial data is becoming more preva-
lent. As mobile networks, sensor networks, and improved
remote sensing techniques evolve, there is an increasing need
to process and visualize moving object data that is fre-
quently updated. This combined with network environ-
ments, such as the Internet, leads to new challenges in how
to manage many updates to query results on a server and si-
multaneously visualizing the changes on a remote client. To
address this problem we present the Internet Spatial Spread-
sheet (ISS). The ISS is a means to organize, query, and vi-
sualize dynamic spatial data. It is a client-server system
design to operate in a network environment while support-
ing frequent updates to the spatial data and simultaneous
visualizations for the user.
The rest of this paper is organized as follows. Section 2

reviews some related work. An overview of the ISS archi-
tecture is given in Section 3. Section 4 presents a simple
example to illustrate the operation of the ISS. Server side
query processing is described in Section 5. Network commu-
nication is discussed in Section 6. Section 7 describes how
data is presented to the user. Section 8 contains concluding
remarks.

2. RELATED WORK

2.1 Spreadsheet for Images
Spreadsheets for Images [8] applies the spreadsheet con-

cept to the image processing domain. In this case, the
spreadsheet is a means of data visualization. Each cell in
the spreadsheet contains graphical objects such as images
and movies. Formulas for processing data can be assigned
to cells. These formulas can use the contents of other cells
as inputs. This ties the processing of data in the cells to-
gether. When a cell is modified, other cells that use it as
input are updated. A similar capability is provided by the
CANTATA programming language used with the KHOROS
system [9].

154

2.2 SAND Browser
The SAND Browser is a front end graphical user interface

for the SAND [2] spatial-relational database. The query
results are displayed graphically. This gives the user an
intuitive interface to the database to help the visualization
of the data and the derivation of additional information from
it. However, such a system does have limitations. In the
SAND Browser, one primitive operation is processed at a
time. A primitive operation is a query invoking one simple
unary or binary query operation such as select, project, join,
etc. When the user wants to make a new query, the results
of the previous operation are lost unless saved explicitly in
a new relation. As a result, there is no simple and implicit
way to compose complex queries from primitives. In [6]
we presented alternatives to the SAND Browser designed to
overcome some of these limitations while maintaining ease
of use and an intuitive interface.

2.3 Original Spatial Spreadsheet

Figure 1: The original Spatial Spreadsheet: Cells
display spatial data contained in base relations and
query results associated with each cell.

The power of a spreadsheet resides in its ability to orga-
nize data, formulate operations on that data quickly through
the use of row and column operations, and to propagate
changes in the data throughout the system. The original
Spatial Spreadsheet described in [6] attempts to combine a
spreadsheet paradigm with a spatial database management
system, creating a new way to conceptually organize spatial
data, pose queries on that spatial data, and view the results
(see Figure 1). In particular, the Spatial Spreadsheet pro-
vides a way to organize base relations and query results in
a manner that is intuitively meaningful to the user.

The original Spatial Spreadsheet operates as a front end
to a spatial database system called SAND [2] running as a
single process on one machine. Although the original Spatial
Spreadsheet is useful as a means to organize, visualize, and
query spatial data, it was not designed to handle dynamic
spatial data, or operate as a remote client.

3. INTERNET SPATIAL SPREADSHEET
The Internet Spatial Spreadsheet (ISS) extends the con-

cept of the original Spatial Spreadsheet [6] to support dy-
namic spatial data, and operate over a network.

3.1 ISS Server
Conceptually, the ISS server manages a set of spread-

sheets each consisting of a set of cells organized in rows
and columns. Each cell manages the processing of a single
relation. A cell’s relation may be a base relation found in
the database schema, or a materialized view. In the ISS,
materialized view cells are also called query cells.
Incremental view maintenance techniques [4, 5, 10] have

been extensively studied to efficiently maintain materialized
views when changes occur. These techniques rely on the
assumption that a relatively small number of tuples in an
input relation are affected by any given transaction. This
assumption is also known as the heuristic of inertia [5].
The data for each relation or materialized view is con-

tained in three tables or relations. The first table is the
main table containing the state of the entire base relation or
query result. The other two tables contain pending updates
to the main table. These are called the insert differential
table, and the delete differential table. The main table is
stored on disk. The differential tables are assumed to be
small, so they are stored in main memory.
Consider a relation r. Let relation ir be the set of tuples

inserted into r during transaction Φ. The insertion update
to r is expressed as r′ = r � ir where r′ is the state of r
after transaction Φ. Let relation dr be the set of all tuples
deleted from relation r during Φ. The deletion update to
r is expressed as r′ = r − dr. By combining these two
expressions we get r′ = (r � ir)− dr. The parentheses show
the appropriate precedence needed in case a tuple is inserted
and deleted during the same transaction. Symbols ir, and
dr denote the insert differential table, and delete differential
table of relation r, respectively.
Incremental view maintenance algorithms are written by

substituting (r � ir)− dr for r′ in the query expression. For
example, the update for the selection query σr′ becomes
σ((r� ir)− dr) = (σr�σir)−σdr. In this way the selection
need only be applied to ir (dr), and the result inserted to
(deleted from) the current query result σr. This results in
an incremental update to the view rather than recomputing
the view from scratch (see [5, 7] for more details).
Each cell of the ISS manages a main relation table, and

two differential tables to support incremental view mainte-
nance (see Figure 2). When a base relation is open in a
cell, the cell handles the processing of updates to that base
relation. An update is a combination of one or more inser-
tions or deletions to a base relation that take place during a
single database transaction. These updates then propagate
to query cells managing the materialized views. The up-
date propagation algorithm described in Section 5 is differ-

155

In
iti

al
iz

e

Query Cell

r i d

Incremental
Query

Processor

Processor
Transaction

In
iti

al
iz

e
Base Cell

r i d

Processor
Transaction

In
iti

al
iz

e

Base Cell

r i d

Figure 2: ISS data flow: r indicates a base rela-
tion, or materialized view. Tables i and d are in-
sert and delete differential tables respectively. The
query cell’s view (a binary operation in this case) is
initially computed using the base relations of each
input cell. It is then incrementally updated when
input cells are updated. Changes in the query cell’s
view are stored in its own differential tables. This
allows query cells to be composed with other query
cells. After the updates propagate through the sys-
tem, the differential tables are applied to the cell’s
relation r and the differential tables are cleared for
the next transaction.

ent from that of the original Spatial Spreadsheet presented
in [6]. The original Spatial Spreadsheet did not update ma-
terialized views incrementally, but instead recomputed the
query results from scratch.

3.2 ISS Client
The ISS client runs remotely on a separate machine. The

conceptual architecture of the client mirrors the server in
that it also has a set of cells arranged in rows and columns.
There is a one-to-one correspondence between the cells of a
given client and the cells on the server. Cells in the client
handle user interactions with the data. This includes query
formulation, and spatial data visualization.
Instead of rendering an image on the server and trans-

mitting it to the client, the server transmits the geometry
information for the spatial data to the client, then the client
renders the image on the client. Multiple perspectives, or
different points of view, may be rendered simultaneously
without increasing the load on the server. Each cell can
have a different perspective through zooming and panning
of individual cell displays. Additionally, when the perspec-
tive changes, the information needed to render the image is
already on the client. If rendering were done on the server
machine, a new image would need to be transmitted to the
client each time the perspective changed. This would not

only increase network traffic, but also increase the load on
the server with work not directly related to query process-
ing.
Although broadband Internet access is becoming more

prevalent, improvements in processor speeds, main mem-
ory capacity, and graphics hardware are progressing even
faster. This leads us to believe that network bandwidth
rather than client machine processing and graphics capabil-
ity is a greater constraint.
In our approach we allow for clients running behind fire-

walls. We assume only the ability to operate a client web
browser that accesses external web sites from the client ma-
chine using the HTTP[3] protocol. We do not assume that
any other means of communication through a firewall may
be available. The HTTP client pull model presents some
interesting challenges when there is a need to push data to
the client from the server. This happens when base relations
are updated thereby requiring data to be sent to the client
to update the visualization displays.

4. EXAMPLE
We will use the following query to illustrate the concepts

presented in the following sections. Consider two relations
r(R) and s(S) where schema R = {id, loc, type}, loc is a 2D
point, id is a unique object identifier, and type is a num-
ber. The schema of relation s is the same, R = S. As an
example, consider the materialized view defined below. In
our notation we denote a tuple in relation s as τs. For tuple
τs ∈ s we denote the value of attribute α0 in τs as τs[α0].
The join of two tuples τr and τs is their concatenation is
written τrτs.

Q = {τrτs : τr ∈ r ∧ τs ∈ s
∧ Distance(τr[loc], τs[loc]) ≤ 2 ∧ τs[type] = 1}.

This query returns all pairs of objects in r and s that lie
within 2 distance units of each other, where all the objects
from s are of type 1. Suppose that the initial states of r
and s at time t0 are as shown in Figures 3 and 4, respec-
tively. Now, suppose that object y is moving at a constant
velocity, while object a moves and then stops as shown in
Figure 5. Intermittent updates to the database change the
current known locations of y and a.

id loc type

a (2, 2) 1
b (3.5, 5) 1
c (6, 2) 2

Figure 3: Base relation r

at time t0.

id loc type

x (3, 1) 2
y (5, 3) 1
z (6, 1) 1

Figure 4: Base relation s
at time t0.

Now consider the example query Q. The result for time
t0 is shown in the first row of Figure 6. The locations of the
objects participating in the join are indicated by the ovals
in Figure 5a. Note that although object a is within distance
2 of object x, the pair is not included in the query result
because the type of x is not 1.
Now suppose that at time t0 + 1 minutes, the s relation

is updated by deleting tuple {y, (5, 3), 1} and inserting tuple
{y, (4, 3), 1}, and the r relation is updated by deleting tuple

156

(c) t 40 +
1 2 3 4 5 6

1

 2

 3

 4

 5

(a) 0t
1 2 3 4 5 6

1

 2

 3

 4

 5

(b) t 10 +

1

 2

 3

 4

 5

1 2 3 4 5 6

y

z

c

b

x
a

z

y

a

c

b

x

b

y

a x z

c

Figure 5: Graphical representation of the state of relations r (locations denoted by the � symbol) and s
(locations denoted by the • symbol) at times (a) t0, (b) t0 + 1, and (c) t0 + 4. The ovals show pairs of objects
included in the query result shown in Figure 6. Arrows show the direction of motion of moving objects.

{a, (2, 2), 1} and inserting tuple {a, (1, 1), 1}. The resulting
change in the query result is shown in the second row of
Figure 6, and graphically by the oval in Figure 5b. Now
suppose that after 3 more minutes, at time t0+4, an update
changes object y’s location from (4, 3) to location (1, 3). The
join result after the update is shown in the third row of
Figure 6, and corresponding ovals in Figure 5c.

at time: r.id r.loc s.id s.loc
t0 c (6, 2) y (5, 3)

c (6, 2) z (6, 1)

t0 + 1 c (6, 2) z (6, 1)

t0 + 4 a (1, 1) y (1, 3)
c (6, 2) z (6, 1)

Figure 6: Result of example query Q. The first row

shows the initial result at time t0. The second row shows

the result at time t0 + 1 after the deletion of tuple {y,

(5, 3), 1}, and insertion of tuple {y, (4, 3), 1} in relation s,

and the deletion of tuple {a, (2, 2), 1} and insertion of tu-

ple {a, (1, 1), 1} in relation r. The result at time t0 + 4 is

shown in the last row after tuple {y, (4, 3), 1} is replaced

with tuple {y, (1, 3), 1} in s. Tuple {x, (3, 1), 2} from rela-

tion s does not appear in the join result because its type

attribute is not equal to 1.

5. CELL UPDATE PROPAGATION
If any base relations used in the definition of the view are

updated, then the view needs to be updated to reflect the
change to keep query results current. To update material-
ized views after a transaction, it is often more efficient to
reevaluate the query in terms of changes to the base rela-
tions instead of reevaluating the query from scratch.
When a transaction updates a base relation, the tuples to

be inserted are entered into the insert differential table of the
base relation before the transaction commits. Similarly, tu-
ples to be deleted are entered into the base relation’s delete
differential table. When some view v is defined in terms of
some view or base relation r, we say that v is a child of r,
and r is a parent of v. When the transaction commits, the

contents of the differential tables for a given view, or base
relation, are fed to its children. Updates for each subsequent
child materialized view are computed and fed to its own chil-
dren, and so forth. The graph of parent-child relationships
must be acyclic. When the propagation is complete, the dif-
ferential tables are applied to their associated main tables
and the differential tables are cleared.

Cell Marking: To ensure correct order of execution, a sim-
ple cell marking algorithm is employed. Before a transaction
takes place, all cells are marked clean. When a base relation
is updated it is marked dirty. After all the base relations
affected by the transaction are processed, and before the up-
dates are propagated to their children, each child of a dirty
base relation is marked dirty as well. Next, all of their chil-
dren’s children are marked dirty, and so on. This process
continues recursively until no more views can be marked.
To illustrate, consider the example query Q given in Sec-

tion 4. To pose this query in the ISS, the user first opens
the base relations in their own cells. Figure 7 shows relation
s open in cell (0,0), and relation r open in cell (1,0). Now
suppose that the user wants to know where all the objects of
type 1 are located before the join is performed. To do this
the user can create a view using the query σs = {τs : τs ∈
s ∧ τs[type] = 1}. In Figure 7, σs is in cell (0,1). Finally,
to see which objects are within distance 2 of each other, the
user creates a view in cell (1,1) using the query r ✶ σs =
{τrτσs : τr ∈ r ∧ τσs ∈ σs ∧ Distance(τr[loc], τσs[loc]) ≤ 2}.
At this point the view r ✶ σs, shown in cell (1,1) of Figure 7,
is equivalent to the example query Q given in Section 4.
Now suppose, once the spreadsheet is set up, a transaction

arrives at time t0+1 minutes updating both relations r and
s. When this occurs, the marking algorithm marks cell (0,0)
and cell (1,0) as dirty. Once all base relations are marked,
it then marks their children dirty, cells (0,1) and (1,1).
In the next step of update propagation, all cells managing

base relations are marked clean. Then all query cells are
placed on a queue and examined one at a time. When a cell
is popped off the queue, if all its parents are clean, then it is
marked clean and the incremental view maintenance for that
cell is performed. If all its parents are not yet clean, then
it is placed back on the end of the queue. No updates for a
given materialized view are computed until all its parents are
marked clean. If instead of using this cell marking algorithm

157

σsr

s

Cell (0,0)

σs

Cell (1,1)

Cell (1,0)

r

Cell (0,1)

Figure 7: Update propagation example: The exam-
ple query Q from Section 4 is broken up into two
views. Supposing the user wants to see where all the
objects of type 1 are located before the join is per-
formed, a view is created as a selection on relation s
using the query σs = {τs : τs ∈ s ∧ τs[type] = 1}, in cell
(0,1). To see which objects are within distance 2 of
each other, the user then creates the view r ✶ σs =
{τrτσs : τr ∈ r ∧ τσs ∈ σs ∧ Distance(τr[loc], τσs[loc]) ≤ 2}
in cell (1,1). Arrows indicate data update flow from
parent to child.

we simply iterate through the cells and update a view after
any parent is updated, then incorrect results may occur. For
instance, without cell marking in our example, cell (1,1) can
be updated as a result of the update to cell (1,0), but before
cell (0,1) is updated. Since cell (0,1) is also a parent of cell
(1,1) this could lead to incorrect results.

6. PUSHING DATA FROM SERVER TO
CLIENT USING HTTP

After update propagation, and before applying the dif-
ferential tables to the main tables, the spatial data of the
non-empty differential tables are transmitted to the client
for incremental update of the data visualization.
Pushing data from a server to a client in an Internet envi-

ronment can present additional challenges when the client is
behind a firewall. Many users may want to run their clients
from behind a firewall for security reasons. Firewalls help
prevent attack from outside by closing off communication
ports through the firewall. A firewall configuration may al-
low clients to initiate connections through particular ports
to servers on the outside. For example, port 80 is some-
times open for web browsers to access web servers outside
the firewall. Opening ports so that connections may be initi-
ated from outside the firewall is not desirable because it can
make the system more vulnerable to attacks from outside.
Although access from clients inside a firewall to the out-

side may vary from firewall to firewall, many firewall ad-
ministrators at least allow web browsing from inside the fire

wall. This is done via the HTTP protocol through a specific
port either directly or via a proxy. The Hypertext Transfer
Protocol (HTTP) [3] is designed to pass Hypertext Markup
Language (HTML) [1] documents between web servers and
clients. HTTP tunneling is a technique used to pass arbi-
trary data back and forth between clients and servers by
placing it in an HTTP wrapper, using the HTTP protocol
to send the data through the firewall.
The HTTP protocol enforces a client pull model. HTTP

is a request/responce protocol where the request originates
from the client. The HTTP session has two phases. In the
first phase, the client sends data to the server. In the second
phase the server receives data from the client. Once the
second phase starts, no more data may be sent to the server
during that session. When the second phase is complete,
there is no more activity until a new request is issued by the
client. The protocol does not provide any way for servers to
send data without an initial client request.
The HTTP client pull model is a problem in the ISS. Up-

dates to the base relations on the server side from external
sources other than the client require the server to push data
to clients to update visualization displays. Since HTTP does
not support server initiated sessions, the server can not uni-
laterally push data to a client. To get around this, a client
polls the server for updates in a continuous never ending
HTTP session that quickly moves to the second phase and
stays there. This is called the ISS polling session. If for some
reason the connection is terminated (e.g., the proxy closes
the connection after a time out period), then the client im-
mediately establishes a new polling session.
Multi-threading can be used to enable the client to con-

tinually poll the server and still send data to the server at
the same time allowing more than one HTTP connection or
session to be active at a time between a client and server.
Multi-threading is supported in most popular general pur-
pose computer systems today, either directly by the operat-
ing system, or through programming libraries.
The threads handling the polling session are called the ISS

push threads. There is both a client side push thread and
a server side push thread (see Figure 8). The client push
thread initiates an HTTP polling session with the server.
The server spawns its own server side push thread when
contacted by the client to service the polling session. Other
threads running in the server handle processing of data. The
other threads push data to the client by placing the data on
a queue. When data is placed on the queue, the server push
thread wakes up, pops the data off the queue, and transmits
it to the client. On the client side, the client push thread
receives the data and places it on a queue. Another thread in
the client, called the data processing thread, processes each
item on the queue in turn. Having a separate thread to
receive data and place it on the clients queue enables data
to be transmitted while processing data already received in
parallel.
If the data pulled off the queue is an update to a relation,

or a query result, then the appropriate visualization displays
are updated. To accomplish this, each cell controlling its
own display window registers a callback with the communi-
cation event thread to be invoked when data is received from
the server. Callback procedures or methods are registered
with the data processing thread to be invoked when particu-
lar kinds of data are transmitted from the server. The data

158

thread
query

...
query
thread

thread
push

i
n
i
t
i
a
t
e

s
e
s
s
i
o
n

thread
push

processing
data

thread ...

display
callback

display
callback

display
callback

Server

q
u
e
u
e

u
p
d
a
t
e
s

q
u
e
u
e

Client

Figure 8: ISS client-server polling session. The client initiates the HTTP session. Updates generated in the
server query threads are placed on a queue in the server. The server’s push thread pops updates off the
queue and transmits them to the client. The client push thread receives the updates and places them on
the client’s queue. The client data processing thread pops the data off the queue and executes the display
callbacks. Each display callback is associated with a particular spreadsheet cell in the client.

processing thread invokes the appropriate callbacks depend-
ing on the nature of the data it pops off the queue.
Let us now consider again the example from Section 4 set

up in the spreadsheet shown in Figure 7. Recall that relation
s is updated at time t0+1 by deleting tuple {y, (5, 3), 1} and
inserting tuple {y, (4, 3), 1}. The selection predicate on the
view in cell (0,1) is τs[type] = 1. The update propagation
algorithm computes d = {y, (5, 3), 1}, and i = {y, (4, 3), 1}
for cell (0,1). Before moving on to the next cell, data from
d and i are placed on the server’s push queue by the query
thread processing the transaction. The data needed for ren-
dering in this case is the object id and old location, {y,
(5, 3)}, and the object id and new location, {y, (4, 3)}. The
server’s push thread reads this data off the queue, and then
transmits this information to the client where the client’s
push thread places the update information for cell (0,1) on
its own queue. The data processing thread of the client in
turn pops this data off the queue. It invokes all callbacks
that are registered for update data on cell (0,1). These call-
backs take the update information as an argument and use
it to update data visualization displays.

7. INTERACTIVE VISUALIZATION
The spatial attributes of base relations and query results

are transmitted to the client to be rendered. This enables
interactive visualization without the need to transmit data
from the server again when the perspective changes and a
new rendering is needed. The user can pan and zoom with-
out any further interaction with the server.
In the ISS, every client cell owns its own display window

to display spatial data from the corresponding cell on the
server. The data used to create the rendering is saved in a
separate data structure to be used for rendering when the
perspective changes. Any cell can also display data belong-
ing to other cells. This allows the user to overlay data from
different cells in the same display window. Although this
other data is owned by the other cells, it is not rendered by
other cells. This is because each cell may have a different

perspective (e.g. different zoom or pan). Each cell renders
data according to its own perspective.
In a network based environment, the spatial data to be

displayed must fit in main memory on the client. This re-
quirement can be relaxed if the client is allowed to write
files to the local machine. Non-spatial data, other than ob-
ject ids, are not transmitted to the client except in small
amounts when the user wants to know the details about a
particular object.

8. CONCLUSION
As a proof-of-concept we implemented the algorithms and

techniques described here in JAVA (client and server front
end), Tcl (server interface), and C/C++ (database server
engine). The implementation demonstrated the ability of
this approach to achieve the goal of keeping client visualiza-
tions of spatial data up-to-date as materialized view results
change. This was accomplished in the Internet environment
constrained by firewall security. We have not performed any
empirical studies of the ISS yet. Future work includes a com-
parison of this approach with a more conventional approach,
such as rendering images on the server and transmitting the
finished image to the client for display. In particular, we
want to investigate how the database update rate and data
set size affect network load and response time.

9. REFERENCES
[1] T. Berners-Lee and D. Connolly. Hypertext markup

language–2.0. Technical Report RFC 1866, Network
Working Group, November 1995.

[2] C. Esperança and H. Samet. Spatial database
programming using SAND. In Proceedings of the
Seventh International Symposium on Spatial Data
Handling, volume 2, pages A29–A42, Delft, The
Netherlands, August 1996.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol–http/1.1. Technical Report RFC

159

2616, The Internet Society, Network Working Group,
June 1999.

[4] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In Proceedings of the ACM
SIGMOD Conference, pages 328–339, San Jose, CA,
May 1995.

[5] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings of the
ACM SIGMOD Conference, pages 157–166,
Washington, D.C., May 1993.

[6] G. Iwerks and H. Samet. The spatial spreadsheet. In
Visual Information and information Systems: Third
International Conference, VISUAL’99, volume 1614,
pages 317–324, Amsterdam, The Netherlands, June
1999. Springer-Verlag.

[7] G. Iwerks and H. Samet. Incremental view
maintenance of spatial joins. Technical Report
CS-TR-4179, University of Maryland, College Park,
MD, August 2000.

[8] M. Levoy. Spreadsheets for images. In Proceedings of
the SIGGRAPH’94 Conference, pages 139–146, Los
Angeles, CA, July 1994.

[9] J. Rasure and C. Williams. An integrated visual
language and software development environment.
Journal of Visual Languages and Computing,
2(3):217–246, September 1991.

[10] N. Roussopoulos and H. Kang. Principles and
techniques in the design of adms±. IEEE Computer,
19:19–25, December 1986.

160

