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Abstract
Algorithms that use point-cloud models make heavy use of the neighborhoods of the points. These neighborhoods
are used to compute the surface normals for each point, mollification, and noise removal. All of these primitive
operations require the seemingly repetitive process of finding the k nearest neighbors of each point. These algo-
rithms are primarily designed to run in main memory. However, rapid advances in scanning technologies have
made available point-cloud models that are too large to fit in the main memory of a computer. This calls for more
efficient methods of computing the k nearest neighbors of a large collection of points many of which are already in
close proximity. A fast k nearest neighbor algorithm is presented that makes use of the locality of successive points
whose k nearest neighbors are sought to significantly reduce the time needed to compute the neighborhood needed
for the primitive operation as well as enable it to operate in an environment where the data is on disk. Results
of experiments demonstrate an order of magnitude improvement in the time to perform the algorithm and several
orders of magnitude improvement in work efficiency when compared with several prominent existing method.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques; I.3.8 [Computer Graphics]: Applications;

1. Introduction

In recent years there has been a marked shift from using
triangles to using points as object modeling primitives in
computer graphics applications (e.g., [AGPS04, HDD � 92,
JDD03, LPC � 00, PKKG03]). A point-model (often referred
to as a point-cloud) usually contains millions of points. Im-
proved scanning technologies [LPC � 00] have resulted in
even larger objects being scanned into point-clouds. Note
that a point-cloud is nothing more than a collection of
scanned points and may not even contain any topological
information. However, most of the topological information
can be deduced by applying suitable algorithms on the point-
clouds. Some of the fundamental operations performed on a
freshly scanned point-cloud include the computation of sur-
face normals in order to be able to illuminate the scanned
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object, applications of noise-filters to remove any residual
noise from the scanning process, and tools that change the
sampling rate of the point-model to the desired level. What
is common to all three of these operations is that they work
by computing the k nearest neighbors for each point in the
point-cloud. There are two important distinctions from other
applications where the computation of neighbors is required.
First of all, neighbors need to be computed for all points
in the dataset, although there is a potential scope to opti-
mize this task. Second, no assumption can be made about
the size of the dataset. In this paper, we discuss the k-
nearest-neighbor( kNN) algorithm, also known as the all-
points k-nearest-neighbor algorithm, which takes a point-
cloud dataset R as an input and computes the k nearest neigh-
bors for each point in R.

We start by comparing and contrasting our work from the
related work of Clarkson [Cla83] and Vaidya [Vai89]. Clark-
son proposes an O � n logδ � algorithm for computing the near-
est neighbor to each of n points in a dataset S, where δ is the
ratio of the diameter of S and the distance between the clos-
est pair of points in S. Clarkson uses a PR-quadtree [Sam06]
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Q on the points in S. The running time of his algorithm
depends on the depth d � δ of Q. This dependence on the
depth is removed by Vaidya who proposes using a hierarchy
of boxes, termed Box tree, to compute the k nearest neigh-
bors to each of the n points in S in O � kn logn � time. There
are two key differences between our algorithm and those of
Clarkson and Vaidya. First of all, our algorithm can work
on most disk-based (out of core) data structures whether
they are based on a regular decomposition of the underlying
space such as a PMR quadtree [Sam06] or on object hier-
archies such as an R-tree [Gut84]. In contrast to our algo-
rithm, the methods of Clarkson and Vaidya have only been
applied to memory-based (i.e., incore) data structures such
as the PR quadtree and Box tree, respectively. Consequently,
their approaches are limited by the amount of physical mem-
ory present in the computer on which they are executed. The
second difference is that our algorithm can be easily modi-
fied to produce nearest neighbors incrementally, i.e., we are
able to provide a variable number of nearest neighbors to
each point in S depending on a condition, which is speci-
fied at run-time. The incremental behavior has important ap-
plications in computer graphics. For example, the number
of neighbors used in computing the normal to a point in a
point-cloud can be dependent on the curvature of a point.

The development of efficient algorithms for finding the
nearest neighbors for a single point or a small collec-
tion of points has been an active area of research [HS95,
RKV95]. The most prominent neighbor finding algorithms
use Depth-First Search (DFS) [RKV95] or Best-First Search
(BFS) [HS95] methods to compute neighbors. Both algo-
rithms make use of a search hierarchy which is a spatial data-
structure such as an R-tree [Gut84] or a variant of a quadtree
or octree (e.g., [Sam06]). The DFS algorithm, also known
as branch-and-bound, traverses the elements of the search
hierarchy in a predefined order and keeps track of the clos-
est objects so far from the query point. On the other hand,
the BFS algorithm traverses the elements of the search hi-
erarchy in an order defined by their distance from the query
point. The BFS algorithm that we use, stores both points and
blocks in a priority queue. It retrieves points in an increasing
order of their distance from the query point. This algorithm
is incremental as the number of nearest neighbors k need not
be known in advance. Successive neighbors are obtained as
points are removed from the priority queue. A brute force
method to perform the kNN algorithm would be to com-
pute the distance between every pair of points in the dataset
and then to choose the top k results for each point. Alterna-
tively, we also observe that repeated application of a neigh-
bor finding technique [MA97] on each point in the dataset
also amounts to performing a kNN algorithm. However, like
the brute-force method, such an algorithm performs waste-
ful repeated work as points in proximity share neighbors and
ideally it is desirable to avoid recomputing these neighbors.

Some of the work in computing the k nearest neighbors
can be reduced by making use of the approximate near-

est neighbors [MA97]. In this case, the approximation is
achieved by making use of an error-bound ε which restricts
the ratio of the distance from the query point q to an ap-
proximate neighbor and the distance to the actual neighbor
to be within 1

� ε. When used in the context of a point-
cloud algorithm, this method may lead to inaccuracies in
the final result. In particular, point-cloud algorithms that de-
termine local surface properties by analyzing the points in
the neighborhood may be sensitive to such inaccuracies. For
example, such problems can arise in algorithms for com-
puting normals, estimating local curvature, as well as sam-
pling rate and local point-cloud operators such as noise-
filtering [JDD03, FDCO03], mollification and removal of
outliers [WPH � 04]. In general, the correct computation of
neighbors is important in two main classes of point-cloud al-
gorithms: algorithms that identify or compute properties that
are common to all of the points in the neighborhood, and al-
gorithms that study variations of some of these properties.

An important consideration when dealing with point-
models that is often ignored is the size of the point-cloud
datasets. The models are scanned at a high fidelity in or-
der to create an illusion of a smooth surface. The resul-
tant point-models can be on the order of several millions of
points in size. Existing algorithms such as normal compu-
tation [MN03] which make use of the suite of algorithms
and data structures in the Approximate Nearest Neighbor
(ANN) library [MA97] are limited by the amount of physi-
cal memory present in the computer on which they are ex-
ecuted. This is because the ANN library makes use of in-
core data structures such as the k-d tree [Ben75] and the
BBD-tree [AMN � 94]. As larger objects are being converted
to point-models, there is a need to examine neighborhood
finding techniques that work with data that is out of core
and and thus out-of-core data structures should be used. Of
course, although the drawback of out-of-core methods is the
incurrence of I/O costs thereby reducing their attractiveness
for real-time processing, the fact that most of the techniques
that involve point clouds are performed offline mitigates this
drawback.

There has been a considerable amount of work on effi-
cient disk-based nearest neighbor finding methods [HS95,
RKV95,XLOH04]. Recently, there has also been some work
on the kNN algorithm [BK04, XLOH04]. In particular, the
algorithm by Böhm [BK04], termed MuX uses the DFS al-
gorithm to compute the neighborhoods of one block, say
b, at a time (i.e., it computes the k nearest neighbors of
all points in b before proceeding to compute the k near-
est neighbors in other blocks) by maintaining and updat-
ing a best set of neighbors for each point in the block
as the algorithm progresses. The rationale is that this will
minimize disk I/O as the k nearest neighbors of points in
the same block are likely to be in the same set of blocks.
The GORDER method [XLOH04] takes a slightly differ-
ent approach in that although it was originally designed for
high-dimensional data-points (e.g. similarity retrieval in im-
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age processing applications), it can also be applied to low-
dimensional datasets. In particular, this algorithm first per-
forms a Principal Component Analysis (PCA) to determine
the first few dominant directions in the data space and then
all of the objects are projected to this reduced space thereby
resulting in drastic reduction in the dimensionality of the
point dataset. The resulting blocks are organized using a reg-
ular grid, and at this point, a kNN algorithm is performed
which is really a sequential search of the blocks

Even though both Xia [XLOH04] and Böhm [BK04]
methods compute the neighborhood of all points in a block
before proceeding to process points in another block, each
point in the block keeps track of its k-nearest neighbors en-
countered thus far. Thus this work is performed indepen-
dently and in isolation by each point with no reuse of neigh-
bors of one point as neighbors of a point in spatial proxim-
ity. Instead, we identify a region in space that contains all of
the k nearest neighbors of a collection of points (the space
is termed locality). Once the best possible locality is built,
each point searches only the locality for the correct set of
k nearest neighbors. This results in large savings. Also, our
method makes no assumption about the size of the dataset or
the sampling-rate of the data. Experiments (section 6) show
that our algorithm is faster than the GORDER approach and
performs substantially fewer distance computations.

The rest of the paper is organized as follows. Section 2
defines the concepts that we use and provides a high level
description of our algorithm. Section 3 describes the local-
ity building process for blocks. Section 4 describes an in-
cremental variant of our kNN algorithm, while Section 5
describes a non-incremental variant of our kNN algorithm.
Section 6 discusses results of experiments, while Section 7
discusses related applications that can benefit from using our
algorithm. Finally, concluding remarks are drawn in Sec-
tion 8.

2. Preliminaries

In this paper we assume that the data consists of points in a
multi-dimensional space and that they are represented by a
hierarchical spatial data structure. Our algorithm makes use
of a disk-based quadtree variant that recursively decomposes
the underlying space into blocks until the number of points
in a block is less than some threshold limit (B) [Sam06]. In
fact, any other hierarchical spatial data structure could be
used including some that are based on object hierarchies
such as the R-tree [Gut84]. The blocks are represented as
nodes in a tree access structure which enables point query
searching in time proportional to the logarithm of the width
of the underlying space. The tree contains two types of
nodes: leaf and non-leaf. Each non-leaf node has at most
2d nonempty children, where d corresponds to the dimen-
sion of the underlying space. A child node occupies a re-
gion in space that is fully contained in its parent node. Each
leaf node contains a pointer to a bucket that stores at most

B points. The root of the tree is a special block that cor-
responds to the entire underlying space which contains the
dataset. While the blocks of the access structure are stored in
main-memory, the buckets that contain the points are stored
on disk. In our implementation, a count is maintained of the
number of points that are contained within the subtree of
which the corresponding block b is the root and a minimum
bounding box of the space occupied by the points that b con-
tains.

MAXDIST

Qb
S

MINDIST

Figure 1: Example illustrating the values of the MINDIST

and MAXDIST distance estimates for blocks Qb and S.

We use the Euclidean metric (L2) for computing distances.
Our kNN algorithm can be easily modified to accommodate
other distance metrics. Our implementation makes extensive
use of the two distance estimates MINDIST and MAXDIST

(Figure 1). MINDIST � q � e � between two blocks Qb and S
refers to the minimum possible distance between any point
q in Qb and e in S. When a list of blocks is ordered by their
MINDIST value with respect to a reference block or a point,
the ordering is called a MINDIST ordering. MAXDIST � q � e �
refers to the maximum possible distance between any possi-
ble q and e in Qb and S respectively. An ordering based on
MAXDIST is called a MAXDIST ordering. The kNN algo-
rithm identifies the k nearest neighbors for each point in the
dataset. We refer to the set of k nearest neighbors of a point
o as the neighborhood of o. While the neighborhood is used
in the context of points, locality defines a neighborhood of
blocks. Intuitively, the locality of a block b is the region in
space that contains all the k nearest neighbors of all points
in b. We make one other distinction between the concepts
of neighborhood and locality. While neighborhoods contain
no other point other than the k nearest neighbors, locality is
more of an approximation and thus the locality of a block b
may contain points that do not belong to the neighborhood
of any of the points contained within b.

Our algorithm has the following high-level structure. It
first builds the locality for a block and later searches the
locality to build neighborhood for each point contained
within the block. The pseudo-code presented in Algorithm 1
explains the high level workings of the kNN algorithm.
Lines 1-2 traverse each block in the dataset R and build an
approximate locality. Lines 3-4 build a neighborhood using
the approximate locality for all points in b.

Algorithm 1
Procedure kNN(R � k)
( � high-level description of kNN algorithm � )
1. for each block b in R
2. do Build locality l for b in R
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3. for each point p in b
4. do Build neighborhood of p using l and k
5. return

3. Building the Locality of a Block

As the locality defines a region in space, we need a mea-
sure that defines the extent of the locality. Given a query
block, such a measure would implicitly determine if a point
or a block belongs to the locality. We specify the ex-
tent of a locality by a distance-based measure that we call
PRUNEDIST. All points and blocks whose distance from the
query block is less than PRUNEDIST belong to the locality.
The challenge in building localities is to find a good esti-
mate for PRUNEDIST. Finding the smallest possible value
of PRUNEDIST requires that we examine every point which
defeats the purpose of our algorithm which is why we resort
to estimating it.

We proceed as follows. Assume that the query block(Qb)
is in the vicinity of other blocks of various sizes. We want
to find a set of blocks so that the total number of points that
they contain is at least k, while keeping PRUNEDIST as small
as possible. We do this by processing the blocks in increas-
ing order of their MAXDIST order from Qb and adding them
to the locality. In particular, we sum the counts of the num-
ber of points in the blocks until the total number of points in
the blocks that have been encountered exceeds k and record
the current value M of MAXDIST. At this point, we pro-
cess the remaining blocks according to their MINDIST or-
der from Qb and add them to the locality until encountering
a block b whose MINDIST value exceeds M . All remaining
blocks need not be examined further and are inserted into
list PRUNEDLIST. Note that an alternative approach would
be to initially process the blocks in MINDIST order, adding
them to the locality, and use the MAXDIST value M when
the sum of the counts is greater than k to prune every block
whose MINDIST is greater than M . This approach does not
yield as tight an estimate for PRUNEDIST as can be seen in
the example in Figure 2.

MIND IST

MIND IST

MAXD IST (Qb,B)

MAXD IST (Qb,A)

Qb

B,20

A,10

(Qb,A)

(Qb,B)

Figure 2: Query block Qb in the vicinity of two other blocks
A and B containing 10 and 20 points respectively. When k
is 15, choosing A with a smaller MINDIST value does not
provide the lowest possible PRUNEDIST bound.

The pseudo-code for the locality building process is given
below in Algorithm 2. The initial inputs to the BUILDLO-
CALITY procedure are the query block(Qb), the initial local-

ity locality, and k. Using these inputs, the algorithm com-
putes a new locality for Qb. Lines 4-8 select blocks in the
MAXDIST ordering from Qb. The loop terminates when k
or more points have been found which is kept track of by
detecting when the allowance variable is less than or equal
to 0 having been initialized to k at the start of the algo-
rithm. Lines 10-14 further add blocks to the locality whose
MINDIST to Qb is closer than PRUNEDIST. Line 15 returns
the new locality and the pruned list of blocks.

The mechanics of the algorithm are illustrated in Figure 3.
The figure shows Qb in the vicinity of several other blocks.
Each block has a label and the number of points it con-
tains. For example, suppose that the allowance is initialized
to 3. The algorithm selects blocks by the MAXDIST order-
ing from Qb until 3 points are found. Hence, X and Y are
selected and PRUNEDIST is now known. The next step is
to choose all blocks whose MINDIST from Qb is less than
PRUNEDIST and thus B � E � F � I � D � P� R � V � M � and O are cho-
sen.

Qb

X1 Y2

A2

C1

J2

L2

B3

D1

E1 F1

I1

V2

M1

O2

P1 R1

Figure 3: Illustration of the workings of the BUILDLOCAL-
ITY algorithm. The labeling scheme assigns each block a la-
bel concatenated with the number of points that it contains.
Qb is the query block. Blocks X and Y are selected based
on the value of MAXDIST, while blocks B,E,F,I,D,P,R,V,M,
and O are also selected as their MINDIST value from Qb �

PRUNEDIST.

Algorithm 2
Procedure BUILDLOCALITY[Qb,locality,k ]
Input: Qb is the Query point.
Input: locality is a list of blocks; denotes initial locality
Output: newlocality is the pruned locality of Qb
( � Count is the number of points contained in a block � )
1. ( � maxorder stores the locality in increasing order of

MAXDIST with respect to Qb � )
2. ( � PRUNEDLIST is a list of pruned blocks � )
3. allowance � k
4. while (allowance � 0)
5. do blocki � Next(maxorder)
6. PRUNEDIST � MAXDIST (Qb,blocki)
7. allowance � allowance - Count(blocki)
8. newlocality.Insert(blocki)
9. ( � minorder is a list; denoting the remaining blocks in

maxorder in a MINDIST ordering from Qb � )
10. while (Exists(minorder))
11. do blocki = Next(minorder)
12. if (MINDIST (Qb,blocki)

� PRUNEDIST)
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13. then newlocality.Insert(blocki)
14. else PRUNEDLIST.Insert(blocki)
15. return newlocality,PRUNEDLIST

4. Incremental kNN Algorithm

We briefly describe the working of an incremental variant
of our kNN algorithm. This algorithm is useful when vari-
able number of neighbors are required for each point in the
dataset. For example, when dealing with certain point-cloud
operations, where the number of neighbors required for a
point p is a function of its local characteristics (e.g., cur-
vature), the value of k cannot be pre-determined for all the
points in the dataset, i.e., few of the points may require more
than k neighbors. The incremental kNN algorithm as seen
in Algorithm 3, can produce as many neighbors as required
by the point-cloud operation. This is contrast to the ANN al-
gorithm [MA97], where retrieving the k

�
1th neighbor of p,

would entail recomputing all of the first k
�

1 neighbors to
p.

If Qb in Algorithm 2 is a leaf-block, then for each point
p � Qb, Algorithm INCKNN(p, locality of Qb) is invoked.
A priority queue Q in line 3 that retrieves elements by their
MINDIST from p, is initialized with the locality of Qb. If
an element E retrieved from the top of Q is a BLOCK, it is
replaced with its children blocks (line 6–7). Note that the
locality of Qb is only guaranteed to contain the first k near-
est neighbors of any p � Qb, after which the PRUNEDLIST

(subsequently, an ancestor) of Qb is added to Q, as shown
in lines 9–14. If E is a point, it is reported (line 15) and the
control of the program returns back to the user. Additional
neighbors of p are retrieved by making subsequent invoca-
tions to the algorithm.

Algorithm 3
Procedure INCKNN[p,locality ]
Input: p is the Query point
Input: locality is a list of blocks
1. PB � PARENT(p)
2. PDIST � PRUNEDIST(PB)
3. Q � Priority Queue initialized with locality
4. while (Q not EMPTY)
5. do E � Q � pop � �
6. if (E is BLOCK)
7. then insert children of E in Q
8. else ( � E is a POINT

� )
9. if (DIST � E � PB ��� PDIST)
10. then insert PRUNEDLIST of PB in Q
11. if PB is ROOT

12. then PDIST ���
13. else PB � PARENT(PB)
14. PDIST � PRUNEDIST(PB)
15. report E as next neighbor (and return)

5. Non-Incremental kNN Algorithm

In this section, we describe our kNN algorithm that com-
putes k neighbors to each point in the dataset. A point a
whose k neighbors are being computed, is termed the query
point. An ordered set containing the k nearest neighbors to a
is collectively termed the neighborhood n � a � of a. Although
the examples in this section use a two-dimensional setup,
the concepts hold true for any arbitrary dimension. Let n � a �
= � qa

1 � qa
2 � qa

3 ����� qa
k � be the neighborhood of point a, such that

qa
i is the ith nearest neighbor of a, 1 	 i 	 k with qa

1 being the
closest. We represent the L2 distance of a point, qa

i � n � a � as
La

2 � qi � ��
 qi � a 
 or da
i . Note that, all points in the neigh-

borhood qa
i � n � a � are drawn from the locality.

The neighborhood of a succession of query points is ob-
tained as follows. Suppose that the neighborhood of the
query point a has been determined by a search process. qa

k
is the farthest point in the neighborhood and all k neighbors
are contained within a circle (a hypersphere in higher dimen-
sions) of radius da

k centered at a. Let b be the next query
point under consideration. As mentioned earlier, the algo-
rithm benefits from choosing b to be close to a. Without loss
of generality, assume that b is to the east and north of a. As
both a and b are spatially close to each other, they may share
many common neighbors and thus we let b use the neighbor-
hood of a as an initial estimate of b’s neighborhood, termed
the approximate neighborhood of b and denoted by an � b � ,
and then try to improve upon it. At this point, let dk

b record
the distance from b to the farthest point in an � b � , the approx-
imate neighborhood of b.

Of course, some of the points in an � b � may not be in the
set of k nearest neighbors of b. The fact that we use the L2
distance metric means that n � a � , the neighborhood of a, has
a circular shape. Therefore, as shown in Figure 4a, we see
that some of the k nearest neighbors of b may lie in the
shaded crescent-shaped region formed by taking the set dif-
ference of the circle of radius dk

b centered at b and the circle
of radius dk

a centered at a (i.e., n � a � ). Thus in order to en-
sure that we obtain the k nearest neighbors of b, we must
also search this crescent-shaped region whose points may
displace some of the points in an � b � . However, it is not easy
to search such a region due to its shape, and thus the kNN
algorithm would benefit if the shape of the region containing
the neighborhood could be altered to enable efficient search
while still ensuring that it contain the k nearest neighboring
points although it could contain a limited number of addi-
tional points.

We achieve such a result by defining a simpler search re-
gion which is in the form of a hyper-rectangular bounding
box around n � a � which we call the bounding box (BBox � a � )
of n � a � . BBox � a � is a square-shaped region centered at
a with width 2 
 dk

a . Once we have such a search region
BBox � a � for a query point a, we obtain a similarly-shaped
hyper-rectangular, but not necessarily square, search region
BBox � � b � for the next query point b by adding 4 simple
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hyper-rectangular regions to BBox � a � as shown in Figure 4b.
In general for a d dimensional space, 2d such regions are
formed. This process is deceptively simple but may have the
unfortunate consequence that its successive application to
query points will result in larger and larger bounding boxes.
This would defeat the idea of using locality to limit the com-
putational complexity of the kNN algorithm. We avoid this
repeated growth by following the determination of dk

b us-
ing BBox � � b � with a computation of a smaller BBox � b � with
width 2 
 dk

b .

From the above we see that the computation of BBox � a �
of n � a � is an important step in our algorithm and its pseudo-
code is given by Algorithm 4. Note that BBox � a � contains all
points oi that satisfy La� � oi � 	 dk

a . BBox � a � contains at least
k points and all points of n � a � . While estimating a bound
on number of points in BBox � a � is difficult, at least in two-
dimensional space we know that the ratio of the non-overlap
space occupied by BBox � a � to n � a � is 4 � π

π . Consequently,
the expected number of points in the non-overlap region is
proportionately larger than n � a � .

K=6
qo=b

a
da

kqa
k

b

Non-overlap
region

(a)

a
da

kqa
k

b

Non-overlap
region

dx

dy

dab
dab+dx

dab+dy

dab-dy

dab+dx

BBox(a)

12

3

4

(b)
Figure 4: a) Searching the shaded region for points closer to
b than qb

k is sufficient. b) To compute BBox � b � from BBox � a �
requires four simple region searches. Compared to the cres-
cent shaped region, these region searches are easy to per-
form.

The input to Algorithm 4 is a locality consisting of an ini-
tial set of points and a query point a. n � a � is built in lines 3-5,
by choosing the first k closest points. This is done by mak-
ing use of an incremental nearest neighbor finding algorithm
such as BFS. Note that at this stage, we could also make
use of an approximate version of BFS as pointed out in Sec-
tion 1. Once the k closest points have been identified, the
value of da

k is known (line 6). At this point we add the re-
maining points that are in BBox � a � as they may be needed
for the computation of the neighborhood of the next query
point b (i.e., n � b � ). In particular, BBox � a � is constructed by
adding points o that satisfy the La� � o � 	 da

k distance crite-
rion (lines 8-10).

Algorithm 4
Procedure BUILDBBOX[localitya,a ]
Input: localitya list of points in the locality of a
( � localitya stores points in order of increasing distance from a � )

1. count � 0

2. BBoxa � empty
3. while (count � k)
4. do BBoxa.INSERT(NEXTNEARESTNEIGHBOR(localitya))
5. count � count+1
6. da

k � La
2(BBoxa[k ])

7. ( � add all points that satisfy the L � criterion � )
8. while (La� � localitya ��	 da

k )
9. do BBoxa.INSERT(NEXTNEARESTNEIGHBOR(localitya))
10. count � count + 1
11. return

6. Experiments

A number of experiments were performed to evaluate the
performance of our kNN algorithm. The experiments were
run on a Quad Intel Xeon server running Linux(2.4.2) op-
erating system with one Gigabyte of RAM and SCSI hard
disks. The dataset used for evaluation consisted of several
commonly used 3D scanned models. The three-dimensional
point-cloud models range from 2k to 3200k points. We de-
veloped a toolkit in C++ using STL that implements the
kNN algorithm. The performance of our algorithm was eval-
uated by varying a number of parameters that are known to
influence its performance. We collected statistics about the
performance of the algorithm under the experimental envi-
ronment. For a dataset containing n points, a good bench-
mark for evaluating a kNN algorithm is the distance sensi-
tivity [XLOH04] which is defined as follows.

distance sensitivity �
Total distance calculations

n logn

A reasonable algorithm should have a low, and, more impor-
tantly, a constant distance sensitivity value.

We evaluated our algorithm by comparing its execu-
tion time and its distance sensitivity with that of the
GORDER method [XLOH04] and the method of Böhm et
al. [BK04]. We also included traditional methods like the
nested-join [UGMW01] and a variant of the BFS algorithm
that invoked a BFS algorithm for each point in the dataset,
were used in the comparison. We use both a PMR quadtree
and an R-tree variant of the algorithm in the comparative
study. Our evaluation was in terms of three-dimensional data
as we are primarily interested in databases for computer
graphics applications. Our algorithm was tested with a disk
page size (B) of 32. Note however, that the values of B and
k are chosen independent of each other. We retained 10%
of the disk pages in the main memory using a LRU based
page replacement policy. For the GORDER algorithm, we
used the parameter values that led to its best performance,
according to its developers [XLOH04]. In particular, the size
of a sub-segment was chosen to be 1000, the number of grids
were set to 100, and the size of the data set buffers was cho-
sen to be more than 10% of the data set size. For the MuX
based method, a page capacity of 100 buckets and a bucket
capacity of 1024 objects was adopted. We used a bucket
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Figure 5: The plot shows the performance of our kNN algo-
rithm along with the BFS, GORDER, MuX and the Nested-join algo-
rithms. The pseudo name ’kNN-Q’ in the plots refer to the quadtree
implementation of our algorithm while ’kNN-R’ refers to the R-tree
implementation of our method. Plots a–b show the performance
of the techniques on the Stanford Bunny model containing 35947
points for values of k ranging between 1 and 256. (a) Records the
distance sensitivity, and (b) the time taken to perform the algorithm.
Plots c–d record the performance of all the techniques on datasets of
various sizes for k � 8. (c) The time taken to perform the algorithm,
and (d) the resultant distance sensitivity.

capacity of 1024 for the BFS and nested-join [UGMW01]
methods. The results of our experiments were as follows.

1. Our algorithm clearly out-performs all the other meth-
ods for all values of k on the Stanford Bunny model as
shown in Figure 5a–b. The MuX method performs sig-
nificantly better than the GORDER method whose per-
formance was comparable to the BFS and the nested-join
methods. However, our algorithm leads to at least an or-
der of magnitude improvement in the distance sensitivity
over the MuX method for smaller values of k ( 	 32) and
at least 50% improvement for larger k ( � 256) as seen
in Figure 5a. We record atleast 50% improvement in the
time to perform the algorithm (Figure 5b).

2. However, as size of the input dataset is increased the
performance of the MuX algorithm was comparable to
the nested, BFS and the GORDER based methods (Fig-
ure 5c). Moreover, our method has an almost constant
distance sensitivity even for large datasets. The distance
sensitivity of the comparative algorithms are at least an
order of magnitude higher for smaller datasets and up to
several orders of magnitude higher for the larger datasets
in comparison to our method (Figure 5d). We record sim-
ilar time speedups as seen in Figure 5c.

3. Figure 5c–d show similar performance for the R-tree and
the PMR Quadtree variants of our algorithm.

Having established that our algorithm performed better
than the GORDER method, we next evaluated the use of
our algorithm in a number of applications for different data
sets that included several publicly available and a few large
synthetically generated point-cloud models. The size of the
models ranged from 35k points (Stanford Bunny model) to
50 million points (Syn-50 model). We have developed a few
graphical applications that works in conjunction with our
kNN algorithm. They include computing the surface normals
to each point in the point-cloud using a variant of the algo-
rithm by Hoppe et al. [HDD � 92] and removing noise from
the point surface using a variant of the bilateral filtering
method [JDD03, FDCO03]. Figure 6 shows the time needed
to compute 8 neighbors for each point in the point-cloud
model. We also provide in Figure 6 the time needed to com-
pute the surface normals and to correct noise when a neigh-
borhood containing 8 points is employed. As we can see, use
of our algorithm results in scalable performance even as the
size of the dataset is increased to a point that it exceeds by
several orders of magnitude the amount of available physi-
cal memory in the computer. The scalable nature of our ap-
proach is also apparent from the almost uniform rate of find-
ing the neighborhoods, i.e., 5900 neighborhoods

�
second for

the Stanford Bunny model and 7779 neighborhoods
�
second

for the Syn-50 point-cloud models.

7. Related Applications

The most obvious application of the kNN algorithm is in
the construction of kNN graphs. kNN graphs are use-
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Bunny(Bu) 0.037 6.22 9.0 9.64
Femme(F) 0.04 7.13 10.5 13.9

Igea(I) 0.13 24.05 36.6 47.52
Dog(Do) 0.195 32.9 53.4 64.45

Dragon(Dr) 0.43 72.62 118.9 122.2
Buddha(Bu) 0.54 93.04 152.3 157.25

Blade(Bl) 0.88 185.92 304.2 270.0
Dragon(Ld) 3.9 663.84 900 1209.8

Thai(T) 5 940.04 1240 1215.7
Lucy(L) 14 2657.9 3504 3877.78

Syn-38(S) 37.5 4741.79 - -
Syn-50(M) 50 6427.5 - -

(a) (b)

Figure 6: (a) Execution time of the kNN algorithm for different point models, and (b) the time to execute a number of operations
(i.e., normal computation and noise removal) which make use of the kNN algorithm. All results are for k = 8.

(a)

(b) (c)
Figure 7: Three noisy models which were de-noised using
filtering and mollification techniques. In the pairs of figures
shown for each of the models, the figure on the left is the
noisy model, while the figure on the right is the corrected
point-model. The (a) Igea and (b) dog models were denoised
with the filtering method, while the (c) femme model was
denoised using the mollification technique.

ful when repeated nearest neighbor queries need to be per-
formed on a dataset. Our kNN algorithm may also be used in
point reaction-diffusion [Tur91] algorithms, in order to cre-
ate most naturally occurring patterns in nature. We have ap-
plied our algorithm to the bilateral mesh filtering algorithms
in [JDD03, FDCO03], the results are shown in Figure 7.

Weyrich et. al. [WPH � 04] have identified useful point-
cloud operations that make use of the moving least squares
(MLS) [ABCO � 01] technique of Alexa et al. Of these oper-
ations, we believe that MLS point-relaxation, MLS smooth-

(a) (b)
Figure 8: (a) A noisy mesh-model of a dragon, and (b) the
corresponding model whose surface normals were recom-
puted using our kNN algorithm. The algorithm took about
118 seconds and used 8 neighbors.

ing, and MLS based upscaling would benefit from using our
kNN algorithm.

Tools that perform upscaling [GH97, PGK02] and down-
scaling [ABCO � 01] of point-clouds can use our kNN al-
gorithm to generate datasets at various levels of detail
(LOD) [LRC � 03]. Using the quadratic error simplification
techniques in [GH97, PGK02], we we have generated point-
models at different levels of details, as shown in Figure 9.

8. Concluding Remarks

We have presented a new kNN algorithm that yields an im-
provement of several orders of magnitude for distance sen-
sitivity and at least one order of magnitude improvement in
execution time over an existing method known as GORDER
method designed for dealing with large volumes of data
that are disk-resident. We have applied our method to point-
clouds of varying size including some as large as 50 mil-
lion points with good performance. A number of applica-
tions of the algorithm were presented. Although our focus
was on the computation of correct k neighbors, our methods
can also be applied to work with approximate k neighbors
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14k,70s 48k,87s 78k,104s 99k,114s 111k,120s 135k,original

Figure 9: Sizes and execution times for the result of applying a variant of the The Igea point-model of a simplification algorithm
[GH97] using the kNN algorithm to the Igea point-model of size 135k.

by simply stopping the search for the k nearest neighbors
when k neighbors of the query point within ε of the true dis-

tance of the kth neighbor have been found. We also plan to
explore the applicability of some of the concepts discussed
in this paper to high-dimensional datasets using techniques
in [DIIM04, GPB05, XLOH04].
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Figure 9: Sizes and execution times for the result of applying a variant of the The Igea point-model of a simplification algorithm
of Garland and Heckbert [GH97] using the kNN algorithm to the Igea point-model of size 135k.

(a) (b) (c)

Figure 7: Three noisy models which were de-noised using filtering and mollification techniques. In the pairs of figures shown
for each of the models, the figure on the left is the noisy model, while the figure on the right is the corrected point-model.
The (a) Igea and (b) dog models were denoised with the filtering method, while the (c) femme model was denoised using the
mollification technique.
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Figure 5: The plot shows the perfor-
mance of our kNN algorithm along with
the BFS, GORDER, MuX and the Nested-
join algorithms. The pseudo name ’kNN-
Q’ in the plots refer to the quadtree imple-
mentation of our algorithm while ’kNN-
R’ refers to the R-tree implementation of
our method. Plots a–b show the perfor-
mance of the techniques on the Stanford
Bunny model containing 35947 points for
values of k ranging between 1 and 256. (a)
Records the distance sensitivity, and (b)
the time taken to perform the algorithm.
Plots c–d record the performance of all the
techniques on datasets of various sizes for
k � 8. (c) The time taken to perform the
algorithm, and (d) the resultant distance
sensitivity.
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