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Abstract

We consider a recursive decomposition of a four-dimensional
hypercube into a hierarchy of nested 4-dimensional simplexes,
that we call pentatopes. The paper presents an algorithm for find-
ing the neighbors of a pentatope along its five tetrahedral faces
in constant time. To this aim, we develop a labeling technique
for nested pentatopes that enables their identification by using
location codes. The constant-time behavior is achieved through
bit manipulation operations, thus avoiding traversing the simpli-
cial hierarchy via pointer following. We discuss an application
of this representation to multi-resolution representations of four-
dimensional scalar fields. Extracting adaptive continuous approx-
imations of the scalar field from such a model requires generating
conforming meshes, i.e., meshes in which the pentatopes match
along their tetrahedral faces. Our neighbor finding algorithm en-
ables computing face-adjacent pentatopes efficiently.

1. Introduction

Time-varying volumetric data sets are sets of points in
the three-dimensional Euclidean space describing a scalar
field (e.g., pressure, temperature, strength of an electric or a
magnetic field) at different instances of time. Time-varying
scalar fields arise in engineering, biomedical and other sci-
entific applications, which produce very large data sets by
numerical simulations or acquisition. Time-varying fields
are often treated as four-dimensional scalar fields by consid-
ering time as the fourth dimension [13, 28]. The field can be
analyzed by extracting isosurfaces, consisting of tetrahedral
cells, which can be visualized at different instants of time.

+  This work was supported in part by the National Science Foundation
under grants EIA-99-00268, 11S-00-86162, and EIA-00-91474, and by
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A four-dimensional scalar field can be modeled by decom-
posing its domain either as a hypercubic grid or as a sim-
plicial mesh with vertices at the data points, obtained by tri-
angulating the former one. Isosurface extraction algorithms,
however, are much simpler on simplicial meshes.

Usually, time-varying data sets are very large, and thus,
a multi-resolution approach can be suitable for working
with them. Multi-resolution models, also called Level-OF-
Detail (LOD) models, have been widely used for describ-
ing free-form surfaces, two-dimensional height fields and
three-dimensional volume data sets (see [2, 4] for surveys).
They implicitly encode a virtually continuous set of simpli-
fied approximations at different LODs. Adaptive represen-
tations are extracted by varying the resolution (i.e., the den-
sity of the cells) in different parts of the field domain, or
in the proximity of interesting field values. For both two-
dimensional (terrain data) and three-dimensional (volume
data) scalar fields, defined at regularly-spaced data points,
nested meshes, generated by a recursive bisection process
of a triangle or of a tetrahedron along its longest edge, have
been used because of their capability of producing highly
adaptive representations.

In this work, we consider a recursive decomposition of
a hypercube into a hierarchy of nested 4-dimensional sim-
plexes, that we call pentatopes. We call the resulting hi-
erarchy a hierarchy of pentatopes. A hierarchy of pen-
tatopes can be used as the domain decomposition for a four-
dimensional scalar field. We address the problem of com-
puting face-neighbors of a pentatope. We propose a neigh-
bor finding algorithm which makes use of a pointer-less rep-
resentation of a nested simplicial mesh. In such representa-
tion, pentatopes are implicitly described as strings of bits,
called location codes, corresponding to a path from the root
of the hierarchy representing the nested simplicial mesh.
The algorithm performs bitwise manipulation of the loca-
tion code of the pentatopes to find neighbors in worst-case
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constant time. Such technique extends the one developed
in [14] for nested tetrahedral meshes.
The major contributions of this paper are:

e An algorithm for neighbor finding on a pointer-less
representation of a hierarchy of pentatopes.

o A version of such algorithm which works in worst-case
constant time.

An application of the proposed neighbor finding algo-
rithm is in extracting adaptive representations of a time-
varying scalar field from a multi-resolution model of the
field based on a hierarchy of pentatopes. Adaptive repre-
sentations can be extracted by a top-down traversal of the
hierarchy which recursively computes the isosurfaces inter-
secting each pentatope [27]. This would produce a tetrahe-
dral mesh from which isosurfaces for different time values
can be generated. If the nested mesh elements do not prop-
erly meet at faces, then the isosurfaces can present cracks.
Mesh consistency must be maintained by splitting clusters
of face-adjacent pentatopes, at the same time. Such clusters
can be efficiently computed through the neighbor finding al-
gorithm described here.

The rest of this paper is organized as follows. Section 2
reviews some related work. Section 3 introduces back-
ground notions on nested simplicial meshes. Section 4 de-
scribes nested 4-dimensional simplicial meshes, which we
call Hierarchies of Pentatopes (HPs). Section 5 introduces
a labeling scheme for an HP which enables us to define lo-
cation codes for pentatopes. Section 6 discusses the prob-
lem of generating nested conforming meshes, and states the
neighbor finding problem. Section 7 presents a technique
for neighbor finding based on location codes. Section 8 de-
scribes a worst-case constant time implementation of the
neighbor finding algorithm. Concluding remarks are drawn
in Section 9.

2. Related work

In this section, we review related work on multi-
resolution models based on nested tetrahedral meshes for
three-dimensional scalar fields, on neighbor finding ap-
proaches, and on modeling techniques for four-dimensional
scalar fields.

Multi-resolution models based on nested meshes. Nested
tetrahedral meshes have been studied in finite element anal-
ysis and in computer graphics for describing scalar fields
when the field values are given at the vertices of a regular
square grid in 3D space. Examples are tetrahedral meshes
generated by the so-called red/green tetrahedron refinement
technique (see, for instance, [10]), or nested meshes formed
by tetrahedral and octahedral elements [9].

Nested meshes generated by recursively bisecting tetra-
hedra along their longest edge have been introduced for do-
main decomposition in finite element analysis [11, 16, 20],
and they have been applied in scientific visualization [3,
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7,8, 17, 19, 22, 29]. A generalization to arbitrary dimen-
sions is presented in [18]. Nested tetrahedral meshes are ei-
ther described through hierarchies of tetrahedra, thus rep-
resenting the containment relation induced by the subdivi-
sion process [7, 29], or as a directed acyclic graph in which
the nodes represent clusters of tetrahedra which need to be
split at the same time and the arcs define the parent/child re-
lation among such clusters [8].

When an adaptive mesh is extracted from a nested repre-
sentation, the field associated with the extracted mesh (and,
thus, the resulting isosurfaces) may present discontinuities
in areas of transition. Continuity can be ensured through
error saturation [7, 29], thereby implicitly forcing all par-
ents to be split before their descendants, or through neigh-
bor finding [14]. In [3], we have shown that the latter ap-
proach exhibits the same performances in terms of compu-
tation times as approaches based on error saturation, while
generating fewer tetrahedra for the same value of the ap-
proximation error.

Neighbor finding algorithms. The earliest results on neigh-
bor finding deal with algorithms to compute adjacent
blocks (i.e., neighbors) of greater or equal size in re-
gion quadtrees [23] and region octrees [24], described
through pointer-based data structures. Subsequently,
pointer-less methods for representing such structures have
been developed, in which each block B in the decom-
position is represented by a location code, i.e., by en-
coding the path from the root of the tree to B as a bit
string (e.g., [6]). Pointer-less representations enable find-
ing neighbors of equal size in constant time through bit
manipulations involving arithmetic and logical opera-
tions.

Worst-case constant time neighbor finding algorithms
have been developed for region quadtrees [26], for triangle
quadtrees [15], i.e., hierarchical meshes of equilateral trian-
gles generated by splitting a triangle into four, and for hi-
erarchies of right triangles, in which a triangle is split into
two triangles [5].

The technique proposed by Hebert [11] computes par-
ents, children, and neighbors in a nested tetrahedral mesh
in a symbolic way. Finding neighbors still takes time pro-
portional to the depth in the hierarchy. A neighbor finding
technique for nested tetrahedral meshes has been proposed
in [14], which computes the face-neighbors of a tetrahedron
in worst-case constant time.

Modeling four-dimensional data. The problem of modeling
and encoding time-varying scalar fields have been recently
considered by some authors [1, 12, 13, 21, 28]. In [12], a
loss-less single resolution compression technique is pro-
posed for encoding very large and regularly-sampled 4D
data. In [13], the problem of tracking and visualizing lo-
cal features from a time-varying volumetric data set is con-
sidered, based on extracting time-varying isosurfaces and
interval volumes using isosurfaces in higher dimensions.
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Algorithms for isosurface extraction from a 4D scalar
field have also been developed. Extensions of the march-
ing cube algorithm to 4D have been proposed [1, 21], which
differ in the number of cases counted for the 4-cube, that
is, 272 [21], and 222 [1]. Weigle and Banks [27] have pro-
posed a recursive algorithm for isosurface extraction from
simplicial meshes, counting 5 possible different cases for a
4-simplex. The algorithm has been applied in [28] for visu-
alizing unsteady 3D scalar fields.

3. Nested simplicial meshes

A k-dimensional simplex, or k-simplex o, for brevity, in
IE? is the locus of the points in IE¢ that can be expressed
as the convex combination of £ + 1 affinely independent
points V,. Any ¢-simplex, with ¢ < k, which is generated
by a subset of points of V,, is called a face of 0.

A collection X of k-simplexes in EY k=1,2,...d1is
a d-dimensional simplicial mesh if and only if all the faces
of simplexes in X belong to X as well, the interiors of any
pair of d-dimensional simplexes belonging to ¥ are disjoint,
and any k-simplex of 3, with £ < d, bounds at least one d-
simplex of X.

A simplicial mesh X is called conforming if and only if,
for each pair of d-simplexes ¢; and o5 in X, the intersection
of the boundaries of ¢y and o3 is either empty, or consists
of a k-face belonging to the boundary of both ¢; and o3, for
some k < d. Note that a conforming mesh is the same as
a regular simplicial complex in algebraic topology. More-
over, we are interested in simplicial meshes with a manifold
domain. Intuitively, a d-dimensional manifold (with bound-
ary) M is a subset of the d-dimensional Euclidean space
such that each point P of M has a neighborhood homeo-
morphic (i.e., topologically equivalent) to an open ball, or to
an open ball intersected with a plane (if P is on the bound-
ary of M). The use of conforming meshes as decomposi-
tions of the domain of a scalar field, which is sampled at
a finite set of points on a manifold, provides a way of en-
suring at least C° continuity for the resulting approxima-
tion, without requiring to modify the values of the field at
the faces where discontinuities may arise.

A mesh in which the simplexes are defined by the uni-
form subdivision of a d-simplex into scaled copies of it is
called a nested mesh. A nested mesh is not necessarily con-
forming. Note that, in this paper, we consider only nested
meshes in which the vertices are on a d-dimensional hyper-
cubic lattice.

A special class of nested simplicial meshes are those
generated through d-simplex bisection. The bisection rule
for a d-simplex o in a d-dimensional mesh X consists of re-
placing o with the two d-simplexes obtained by splitting
o at the middle point v, of its longest edge e and by the
hyper-plane defined by v,,, and the vertices of o which are
not endpoints of e. This rule is applied recursively to an
initial decomposition of the d-dimensional hyper-cubic do-
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main into d! d-simplexes and generates a nested mesh, that
we call a hierarchy of d-simplexes. The containment rela-
tion among the d-simplexes induces a natural tree represen-
tation, in which the nodes are d-simplexes and the two chil-
dren of a d-simplex ¢ are the two d-simplexes generated by
bisecting o.

4. A hierarchy of pentatopes (HP)

In this section, we consider an instance of a hierarchy
of d-simplexes, formed by 4-simplexes, that we call pen-
tatopes. We call the resulting hierarchy, a Hierarchy of Pen-
tatopes (HP).

The general decomposition strategy starts with a hyper-
cube, which is subdivided into 24 pentatopes, all sharing
an edge which connects a pair of vertices of the hypercube
which do not belong to the same face (cube, square or edge)
in the hypercube. A pentatope is bounded by 5 0-simplexes
(vertices), 10 1-simplexes (edges), 10 2-simplexes (trian-
gles), and 5 3-simplexes (tetrahedra). Two of the five tetra-
hedral faces of each pentatope o are contained within one of
the eight cubic faces of the hypercube, while each of the re-
maining three faces is shared by two pentatopes in the sub-
division of the hypercube.

The pentatopes at level 0 in an HP result from the initial
subdivision of the hypercube. The pentatopes at level ¢ + 1
are generated by bisecting pentatopes at level i. We need
four bisection steps in order to create a pentatope at level ¢
(¢ > 3) which is a factor of two smaller in all directions than
its ancestor at level ¢ — 4. Pentatopes at level ¢ are congruent
to their ancestors at level ¢ — 4 modulus reflections. In other
words, the bisection rule generates four classes of congruent
pentatopes. This result has been proven by Maubach [16] in
the general d-dimensional case: the amount of congruency
classes generated through bisection is equal to d, indepen-
dently of the level of refinement.

For clarity, we describe and classify the four simplicial
shapes generated by the bisection process (we denote with
h the initial hypercube) as follows:

e h-pentatope: pentatope initially generated at level 0 by
the subdivision of hypercube h.

e c-pentatope: pentatope initially generated at level 1 by
splitting an h-pentatope along its longest edge, which
is the diagonal of hypercube h.

e s-pentatope: pentatope initially generated at level 2 by
splitting a c-pentatope along its longest edge, which is
the diagonal of a cubic face of hypercube h.

e e-pentatope: pentatope initially generated at level 3 by

splitting an s-pentatope along its longest edge, which
is the diagonal of a square face of hypercube h.

Note that an h-pentatope is then generated at level 4 by
the subdivision of an e-pentatope at level 3 along the one
among its longest edges, which is an edge of hypercube h.
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(a) (b)

() (d)

Figure 1. Example of (a) an h-pentatope, (b) a c-pentatope, (c) an s-pentatope and (d) an e-pentatope.
The figures show the unfolding in 3D space of each pentatope by representing its five tetrahedral

faces.

Note that the e-pentatope has three edges with maximum
length: the split edge is always the one aligned with the co-
ordinate axis. We will call the split edge of a pentatope o
the edge along which o is split in the recursive subdivi-
sion process. In an HP there are h-pentatopes at levels 47,
c-pentatopes at levels 45 4 1, s-pentatopes at levels 45 + 2,
and e-pentatopes at levels 45 + 3,5 = 0,1, ..., 4.

Figure 1 shows examples of the four possible shapes of
a pentatope in an HP: each shape is described by unfolding
its five tetrahedral faces.

5. Labeling pentatopes in an HP

Each pentatope o in a hierarchy of pentatopes, with the
exception of those belonging to the subdivision of the initial
hypercube, is labeled with one bit, depending on whether o
is the child O or child 1 of its parent. In this way, any pen-
tatope in the hierarchy can be uniquely identified through a
location code. A location code for a pentatope o in an HP
consists of a pair of numbers, in which the first number de-
notes the level of ¢ in the tree, while the second number de-
notes the path from the root of the tree to o. This path is a
sequence of bits each corresponding to a pentatope in the
path from the root to o.

We denote the path-component of the location code of o
as lc(o): le(o) = [by, ..., b;], where by = 0,1 s = 1,..., 4.
Note that b; = 0, 1, depending on whether o is labeled as
child O or child 1 of its parent. In general, b, = 0,1, s =
1,...,i — 1, depending on whether the (i — s)-th ancestor
of o is child 0 or child 1 of its parent. Note that from lc(o)
we can determine the shape of o. Let 7 = ¢ mod 4: o is an
h-pentatope if j = 0, a c-pentatope if j = 1, an s-pentatope
if j = 2, and an e-pentatope if 7 = 3.

Let o = [v1, v2, U3, V4, Us] be a pentatope and v,,, be the
midpoint of the split edge of o. We denote with oy and o,
child 0 and child 1, respectively, of . Eight cases arise de-

Proceedings of the Shape Modeling International 2004 (SMI'04)
0-7695-2075-8/04 $20.00 © 2004 IEEE

pending on whether o is an h-pentatope, a c-pentatope, an
s-pentatope, or an e-pentatope, and on the parent-child re-
lations in the hierarchy. Such cases are summarized in Ta-
ble 1. The table shows the shape of the pentatope which is
split, its split edge and the two resulting pentatopes. Note
that for a c-pentatope o, two possible cases arise depending
on whether ¢ is a child 0 or a child 1. For an s-pentatope o,
there are four cases which depend on the parent-child rela-
tion between o and its parent, and between the parent and
the grandparent of o.

6. The neighbor finding problem

The pentatope bisection rule generates nested meshes,
that in general are not conforming (see Figure 2 for an ex-
ample in the case of tetrahedral meshes). To produce a con-
forming mesh, when bisecting a pentatope o, all pentatopes
that share a common edge with o, must be split at the same
time to guarantee consistency.

We call any set of pentatopes which share their split edge
a diamond. There are four types of diamonds based on the
four choices of orientation of the split edge, that we call
h-diamonds, c-diamonds, s-diamonds, and e-diamonds, re-
spectively. These four diamonds correspond to the four ge-
ometrically similar pentatopes, and each diamond will con-
tain only pentatopes with the same shape:

e an h-diamond is a hypercube formed by 24 h-
pentatopes (the initial domain subdivision is an
h-diamond), all sharing the diagonal of a hyper-
cube, and has 36 tetrahedral and 14 triangle faces.

e a c-diamond is formed by 12 c-pentatopes, all shar-
ing the diagonal of a cube (which thus lies on a hyper-
plane parallel to one of the four coordinate hyper-
planes), and has 18 tetrahedral and 8 triangle faces.
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Case Shape G | P | Split Edge Resulting Children
1 h-pentatope [v4,v5] c-pentatopes: o9 = [Up,, U1, V2,3, Us], 01 = [V, U1, U2, U3, V4]
2 c-pentatope 0 [v4,v5) s-pentatopes: 0g = [V, U1, U2, U3, Us], 01 = [Um, V1, U2, U3, V4]
3 c-pentatope 1 [v2,v5) s-pentatopes: 0g = [V, U1, Us, U3, Va], 01 = [Um, V1, U2, U3, V4]
4 s-pentatope | 0 | 0 [v4,v5) e-pentatopes: 0o = [V, U1, U2, U3, V], 01 = [U, U1, V2, U3, Us]
5 s-pentatope | 0 | 1 [vs,v5) e-pentatopes: 0o = [V, U1, U2, U3, V], 01 = [Up, U1, V2, Us, V4]
6 s-pentatope | 1 | 0 [v3,v4] e-pentatopes: g = [V, U1, U2, Us, U3], 01 = [Um, U1, V2, Us, V4]
7 s-pentatope | 1 | 1 [v3,v5) e-pentatopes: 0o = [V, U1, U2, U3, V], 01 = [Upm, U1, V2, Us, V4]
8 e-pentatope [v4,v5) h-pentatopes: 0g = [y, U1, V2, U3, V4], 01 = [Up, U1, U2, V3, Us]

Table 1. Table with splitting rules. The second column denotes the shape of the pentatope o which
is split, the third column (G) indicates whether the parent of o is child 0 or child 1 of the grandparent
of o, the fourth column (P) indicates whether o is child 0 or child 1 of its parent, the fifth column
shows the split edge of o, the sixth column shows the pentatopes resulting from the split, and their

vertices.

e an s-diamond is formed by 16 s-pentatopes, all shar-
ing the diagonal of a square (which thus lies on a plane
parallel to one of the six coordinate planes), and has 24
tetrahedral and 10 triangle faces.

e an e-diamond is formed by 48 e-pentatopes, all shar-
ing an edge aligned with one of the four coordinate
axes, and has 72 tetrahedral and 26 triangle faces.

Figure 2. Example of a non-conforming tetra-
hedral subdivision (on the left) and a con-
forming one (on the right) along with the cor-
responding isosurfaces.

Given a diamond D, let us consider the graph G asso-
ciated with D and embedded on the sphere, defined as fol-
lows: the nodes of GG are the triangles in D sharing edge e,
the arcs of GG are the tetrahedra in D sharing edge e, and
the faces of GG are the pentatopes in D sharing edge e. It is
easy to see that each pentatope in D corresponds to a trian-
gular face in G, since each pentatope in D has three tetra-
hedral faces in common with other pentatopes incident at
e.

To produce a nested conforming subdivision, we need
to be able to compute efficiently, for each pentatope o that
must be split along an edge e, all pentatopes which belong to
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the same diamond as ¢. Given a pentatope ¢ and edge e of
o, the problem consists of computing the pentatopes shar-
ing edge e with o which form a diamond D. This can be per-
formed by traversing the pentatopes incident at e and mov-
ing from one pentatope o to a pentatope adjacent to o along
a tetrahedral face. This process can be viewed as a traver-
sal of the dual graph G'* of the graph G associated with di-
amond D. In graph Gx, the nodes are the pentatopes in D
and the arcs are their tetrahedral faces incident at edge e.
Note that each pentatope incident at e has three tetrahedral
faces incident at e, and, thus, there are at most three arcs in-
cident in each node of graph G'x.

The neighbor finding problem that we have to solve, can
thus be formulated as follows: given a pentatope o and a
tetrahedral face ¢ of o, find the pentatope o' sharing face ¢
with o and having the same shape as o.

7. The basic neighbor finding algorithm

We denote with fi, k =1, ..., 5, the tetrahedral face of a
pentatope o = [vy, U2, U3, U4, v5] defined by all the vertices
of o except v,. We define five neighbor types for a given
pentatope 0 = [v1, V2, V3, v4] depending on the tetrahedral
face shared with o: the k-neighbor, £ = 1,...,5 of o is the
pentatope ¢’ that shares face fj, with o.

The basic approach we use for neighbor finding is sim-
ilar to that defined in [25] for region quadtrees. The neigh-
bor finding algorithm consists of two steps, which will be
described in the following two subsections:

1. Identify the nearest common ancestor of ¢ and of its
k-neighbor o'.

2. Find the k-neighbor ¢': the location code for o, lc(o'),
is computed from lc¢(o) by using the information ob-
tained while finding the nearest common ancestor.
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The algorithm requires only a slight modification to take
into account the first subdivision of the hypercubic domain
into 24 pentatopes.

7.1. First step: locating the nearest common ances-
tor

Let o be the given pentatope and ¢’ the k-neighbor of ¢
we want to find. We denote the nearest common ancestor of
o and its k-neighbor ¢’ with o 4. The objective is to com-
pute, from the location code lc(o) of o, the location code,
lc(o 4), of the nearest common ancestor.

To find o 4, the hierarchy of pentatopes must be ascended
up from o to o4 by reversing the path from o4 to 0. We
stop when we identify o 4. Since we are using a representa-
tion based on location codes, the bottom-up retrieval of the
nearest common ancestor consists of scanning the bit string
in the location code of o from right to left and deleting the
rightmost bit from the bit string at each step. This corre-
sponds to moving to the parent of the current pentatope in
the hierarchy. At the end of the process, we obtain the loca-
tion code of the nearest common ancestor o 4.

Let le(o) = [b1,...,b;], bs = 0,1. Bit b; indicates
whether o is child 0 or child 1 of its parent. The location
code of the parent op of o is lc(op) = [b1,...,b;—1)]. In
general, [b1, . .., b(;_q)] is the location code of the g-th an-
cestor of 0.

Let 7 denote the current ancestor of o we are consider-
ing in the tree ascending process towards o 4. Let lc(7) =
[b1,...,b.], with r < 4. At each step of the traversal, we
need

o to identify the neighbor type [ of 7 we are looking for,
i.e., the face f; of 7 that contains face fj of o, if we
were originally looking for the k-neighbor ¢’ of o.

e to establish if 7 is the child of the nearest common an-
cestor o 4 (stopping rule).

To identify the face f; of T containing face f; of o, we
consider the child 7¢ of 7 and the face f,, of 7 which con-
tains face fi. From the location code of 7¢, we can de-
termine whether 7¢ is an h-pentatope, a c-pentatope, an
s-pentatope or an e-pentatope. Then, face f; can be deter-
mined from face f,, by inverting the labeling rules summa-
rized in Table 1.

Let us consider first some examples. Suppose that 7¢
is an h-pentatope and that n = 4, i.e., f, = fs. We in-
vert rule 8, which generates two h-pentatopes from an e-
pentatope. Now, fi = [1,2,3,5],i.e., fs is defined by ver-
tices vy, vs,v3 and vy in 7¢. If 7o is child O of 7, then
[1,2,3,5] corresponds to vertices v,,, v1, V2, v4 in the sub-
division of the parent 7 by vertex v,, (which is the mid-
point of edge [v4,vs]). Thus, the face in 7 containing face
fa of 7¢ is face f3 = [1,2,4,5]. If 7¢ is child 1 of 7, then

[1,2,3,5] corresponds to vertices v,,, vy, Us, U5 in the sub-
division of parent T by vertex v,,,. The face in 7 containing
face fy of 7¢ is again face f3 = [1, 2,4, 5].

Suppose that 7¢ is an h-pentatope and that n = 1, i.e.,
fn = fi. Now, f1 = [2,3,4,5], i.e., f1 is defined by ver-
tices va,v3,v4 and vy in 7¢. If 7 is child O of 7, then
[2, 3,4, 5] corresponds to vertices vy, vz, Vs, vg in the sub-
division of the parent 7. Thus, the face in 7 containing face
f1 of 7¢ is face f5 = [1,2,3,4]. If 7¢ is child 1 of 7, then
[2, 3,4, 5] corresponds to vertices vy, U3, v3, U5 in the subdi-
vision of parent 7. Thus, the face in 7 containing face f; of
7 is face fy = [1,2,3,5].

In general, let oy and o, be two children of a pentatope o
in any of the rules in Table 1. Let 0g = (v, v}, v, 07, vp]
and oy = [vm,v%,v;,vi,v;]. Now,ifn = 1,ie., f, = f1

0,0

. _ 0 0 .
in 7¢, then f; = [v7, v}, 03, v,)] if T¢ corresponds to oy, or

fi = [vi, v}, vg,v;] if ¢ corresponds to a1 If n # 1, then
let f,, = [1,a,b,c], where a, b and ¢ assume distinct val-
ues between 2 and 5. Let v,, vp, v, be the three vertices in
o9 = [vm,v?,v?,vg,vg] orino; = [vm,v},v},v}c,v;] in
positions a, b and ¢, depending on whether 7¢ corresponds
to og or to o1. Let [vp,v,] denote the edge of 7 split by
Um. Then, f; in 7 is the face defined by four distinct ver-
tices in the set {vq, vp, Ve, Up, Ug }. Note that one of the ver-
tices vg, vy, U, is the same as either v, or v,.

To identify the nearest common ancestor 04 of o and
o', we observe that o4 is the pentatope which is split by
the tetrahedral face f4 containing the k-face fj of . Thus,
o 4 is the parent of the ancestor o% of o bounded by face
fa. This does not have to be verified geometrically, but
we can decide whether we need to continue the process or
stop based on the shape of the current simplex 7 (whether
it is a e-pentatope, an h-pentatope, a c-pentatope or an s-
pentatope), on the type of neighbor, and the value of the
rightmost four bits in the current location code.

From the labeling rules summarized in Table 1, the par-
ent of 7 is the nearest common ancestor o4 if and only if
one of the rules reported in Table 2 applies. In Table 2, the
second column reports the possible shape types of simplex
T, the third and the fourth column the child type of the par-
ent of 7 and of 7, respectively, the fifth column the face fj,
along which we are looking for a neighbor (i.e., the neigh-
bor type), the sixth column the condition on the correspon-
dence between f, and the splitting face in the parent and
the seventh column the shape type of the parent. For in-
stance, if 7 is a c-pentatope, and we are looking for neigh-
bor along face f5 = [1,2,3,4], the parent of 7 is the near-
est common ancestor iff f5 corresponds to the splitting face
[Um, V1, V2, v3] in the parent of 7.

7.2. Step 2: Computing the neighbor and its loca-
tion code

In the second step, we need to find the k-neighbor o’ of
o, and we identify it through its location code lc¢(o”). Find-
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Case Shape G|P Sibling Face Condition Shape of the Parent
1 c-pentatope f5=11,2,3,4] | f5 corresponds to [vy,, v1, U2, U3] h-pentatope
2 s-pentatope 0| f5 =11,2,3,4] | f5 corresponds to [vy,, vy, Vs, 3] c-pentatope
3 s-pentatope 1| fs=1[1,2,4,5] | f3 corresponds to [Up,, v1, U3, V4] c-pentatope
4 e-pentatope | 0 | 0 | f5 =[1,2,3,4] | f5 corresponds to [vy,, v, Vs, U3] s-pentatope
5 e-pentatope | 0 | 1 | fa =11,2,3,5] | fa corresponds to [vy,, vy, Vs, v4] s-pentatope
6 e-pentatope | 1 | 0 | f5 =1[1,2,3,4] | f5 corresponds to [vy,, v, Vs, Us] s-pentatope
7 e-pentatope | 1 | 1 f4 =[1,2,3,5] | fa corresponds to [Up,, v1, U2, V4] s-pentatope
8 h-pentatope =[1,2,3,4] | f5 corresponds to [up,, v1, U2, Vs3] e-pentatope

Table 2. Table with inverse rules. The first column shows the case, the second column reports the
possible shape types of simplex 7, the third and the fourth column the child type of the parent of
and of 7, respectively, the fifth column the face f, along which we are looking for a neighbor (i.e., the
neighbor type), the sixth column the condition on the correspondence between f; and the splitting

face in the parent and the seventh column the shape type of the parent.

ing o' requires descending the hierarchy of pentatopes from
the nearest common ancestor o 4 by reflecting the path from
optoo.

The location code lc(o”) of o' is obtained from the loca-
tion code lc(o) of o by just inverting the bit in position p
corresponding to the child of the nearest common ancestor
oa.If le(o) = by, ba, ..., b; and b, is the bit corresponding
to the child of 04, then Ic(oa) = [bo, b2, ..., b(p—1)]. Thus,
all the bits on the left of p are unchanged in the location code
of o'. The bits in lc(o) on the right of b, are also not affected
because of the way the pentatopes are labeled. The labeling
technique ensures that face-adjacent pentatopes of the same
shape are reflections of each other. This process works re-
gardless of the original neighbor type which we are trying
to find, since the location code of the nearest common an-
cestor of o and ¢’ is the only information needed in order
to determine which bit needs to be inverted.

8. Neighbor finding in constant time

In this section, we describe how to perform neighbor
finding in worst-case constant time. For the sake of simplic-
ity, we consider only the case in which the input pentatope
o is an h-pentatope. In the case that o is not an h-pentatope,
we just need to move up in the hierarchy by at most four lev-
els: either we find the nearest common ancestor (and, thus,
the k-neighbor we are looking for) in a maximum of four
steps (changes in level), or we find an h-pentatope, since the
four shapes are cyclic on four levels. Note that h-diamonds
are hypercubes with cubic faces subdivided into tetrahedra.

In Subsection 8.1, we examine the rules for finding the
nearest common ancestor of ¢ and of its k-neighbor ¢’ in
order to determine the bit to be changed for finding ¢’. In
Subsection 8.2, we describe how such rules can be applied
to the location code of o to generate the location code of o’
in worst-case constant time.

Proceedings of the Shape Modeling International 2004 (SMI'04)
0-7695-2075-8/04 $20.00 © 2004 IEEE

8.1. Finding the five neighbors of an h-pentatope

Let lc(o) = [by,-. ., b;]. We partition l¢(o) into groups
of four bits starting from the rightmost bit b;: four bits cor-
respond to four consecutive levels in the hierarchy. Let us
consider the rightmost four bits in the location code of o,
that we denote as By, Ba, Bs, By, from left to right. Bit B,
corresponds to o (an h-pentatope), Bs to the parent o7 (an
s-pentatope) of o, B, to the grandparent o (a c-pentatope)
of 0, and B; to the third ancestor o3 (an e-pentatope) of o.
Table 3 summarizes the results of neighbor finding by just
looking at these last four bits (see the first column): it spec-
ifies how the corresponding four bits change, if the neigh-
bor can be determined by considering B;, By, B3, By, or
the neighbor type to look for in the next group of four bits
to the left of By, Bs, B3, B4 in the location code of o, other-
wise. Table 3 is generated by inverting the subdivision rules
introduced in Section 5.

As an example, we describe how the rules for neigh-
bors of type 5 and 4 are derived. The neighbor of type 5
of an h-pentatope o (i.e., along face f5) is always the sib-
ling of o, since an h-pentatope is generated by splitting an
e-pentatope (see rule 8 in Subsection 5) and face f5 of o
is the splitting face [v,,,, v1,v2, v3] in the parent of o. Find-
ing the sibling is simply a matter of inverting the bit By in
the location code.

The neighbor of type 4 of an h-pentatope o (i.e., along
face f4) is always outside the h-diamond defined by the h-
pentatope which is the fourth ancestor 7 of o and by those
sharing their longest edge with 7. Face f4 of o is always
contained in either face f, or face f5 of the fourth an-
cestor 7. Let 01, 02,03, and o4 denote the parent, grand-
parent, third and fourth ancestor of o, respectively. Face
fa=11,2,3,5] in o is contained in face f3 = [1,2,4, 5] of
e-pentatope o1, since f4 = [1,2,3,5] corresponds to sub-
face vy, v1, U2, v4] in 07 when split by vertex vy, if o is
child 0 of o or to sub-face [v,,,, v1,v2,vs5] in o7 when split
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Current Bits | Neighbor 5 | Neighbor4 | Neighbor 3 | Neighbor 2 | Neighbor 1
0000 0001 Cont 4 Cont 3 0100 0010
0001 0000 Cont 4 Cont 3 0101 Cont 1
0010 0011 Cont 4 Cont 3 Cont 2 0000
0011 0010 Cont 4 Cont 3 Cont 2 Cont 1
0100 0101 Cont 4 1100 0000 Cont 2
0101 0100 Cont 4 1101 0001 0111
0110 0111 Cont 4 1110 Cont 1 Cont 2
0111 0110 Cont 4 1111 Cont 1 0101
1000 1001 Cont 5 Cont 1 Cont 2 1010
1001 1000 Cont 5 Cont 1 Cont 2 Cont 3
1010 1011 Cont 5 Cont 1 1110 1000
1011 1010 Cont 5 Cont 1 1111 Cont 3
1100 1101 Cont 5 0100 Cont 3 Cont 2
1101 1100 Cont 5 0101 Cont 3 1111
1110 1111 Cont 5 0110 1010 Cont 2
1111 1110 Cont 5 0111 1011 1101

Table 3. The table indicates how to proceed at each level when searching for the neighboring pen-

tatope.

by vertex v,,, if o is the child 1 of o; (by applying rule
8). Face f4 in o7 is contained in face fo = [1,3,4,5] of
s-pentatope oy, in all four cases defined by rules 4-7. Face
f2 in o4 is contained in face f; of c-pentatope o3 (by ap-
plying rules 2 and 3). Finally, face f; in o3 is contained in
face f, of o4 if o3 is child O of o4, face f; in oy is con-
tained in face f5 of o4 if o3 is child 1 of o4 (by applying
rule 1). Note that, in this latter case, o4 is an h-pentatope
and that the 4-neighbor of ¢ is just the sibling of 74.

When the neighbor can be identified by looking at the
four bits By, By, B3, By, we need to invert bit B, for neigh-
bor of type 5, bit B; for neighbor of type 3, bit B; for neigh-
bor of type 2, and bit B3 for neighbor of type 1. We need to
continue the search on the next group of four bits in the fol-
lowing cases:

e Neighbor of type 4: continue if not(B;)
e Neighbor of type 3: continue if not(B2)
e Neighbor of type 2: continue if not(B; = Bs)
e Neighbor of type 1: continue if not(By = By)

Note that, for neighbor of type 4, the location code is al-
ways modified beyond the current four bits, but if B;, the
neighbor is the sibling of the fourth ancestor o4 of o, thus
we simply need to invert the first bit on the left of B; in the
location code. If not(B;), then we need to continue search-
ing using the same neighbor type.

For the remaining three neighbor types (3, 2, and 1), the
neighbor type at the next level is determined by the combi-
nation of bits B; and B5, namely:

e not(B) and not(Bs): continue with the same neigh-
bor type
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e not(By) and Bs: if we are looking for a neighbor of
type 2, we continue with a neighbor of type 1 and vice
versa

e By and not(Bs): if we are looking for a neighbor of
type 3, we continue with a neighbor of type 1 and vice
versa

e B and Bs: if we are looking for a neighbor of type 3,
we continue with a neighbor of type 1; if we are look-
ing for a neighbor of type 2, we continue with a neigh-
bor of type 3; if we are looking for a neighbor of type
1, we continue with a neighbor of type 2.

We can apply the rules described in Table 3 to each group
of four consecutive bits in the location code of o by pro-
ceeding right to left. We would do bit operations to identify
the different bit patterns, but this is still a sequential search
which does not achieve a constant time behavior. To this
aim, we need to be able to predict the neighbor type we will
be looking for in all groups of four bits at the same time,
thus avoiding an iterative process.

8.2. Techniques for constant-time neighbor find-
ing

We now present techniques that make use of the carry
property of addition to find a neighbor without specifically
searching for the nearest common ancestor. In particular,
we replace the step-by-step process sketched in the previ-
ous subsection, by an arithmetic operation that takes con-
stant time instead of time proportional to the depth of the
tree. The algorithms make use of bit manipulation opera-
tions which can be implemented in hardware using a few
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machine language instructions. Of course, the constant time
bound arises because the entire bit string which identifies
the path in the location code is assumed to fit in one com-
puter word. This, however, allows us to deal with data sets
containing up to 256 points in each of the four dimensions,
or over 10 total points.

Since our goal is to use bit operations in order to find the
nearest common ancestor, we need to identify which bit pat-
terns indicate that the nearest common ancestor is farther up
in the tree (beyond the current set of four bits). Being able
to identify these patterns in a logical notation, as in Sec-
tion 8.1, allows for a conversion into bit operations that per-
form the same logical function over the entire location code
in a fixed number of operations. This is regardless of the ac-
tual length of the location code, since bit operations can be
performed over an entire computer word in a single opera-
tion.

Identifying positions in the location code where we need
to continue searching for the nearest common ancestor can
be done simultaneously for all sets of four bits as described
below. Let us denote with b, the bit in position p in the lo-
cation code of o

e Neighbor of type 4: continue if not(bsg+1)

e Neighbor of type 3: continue if 70t (bag12)

e Neighbor of type 2: continue if not(bag+1 = bagt3)

(
(
(
e Neighbor of type 1: continue if not(bsg+2 = bag+4)

where ¢ =0,1,...,i/4.

This assumes that the neighbor type does not change
from level to level. Since neighbors of types 3, 2, and 1
change depending on bits bsq41 and byy2, we need to cap-
ture those changes in another mask, called the neighbor
mask, in order to determine which neighbor type to use in
each group of four bits. This information needs to be avail-
able before processing the location code so that all opera-
tions can occur simultaneously.

For a given starting neighbor type, two bits in the neigh-
bor mask can be used to determine the appropriate neigh-
bor type for each set of four bits (bag+1,ba¢+2,b1¢+3,b4944)
in the location code. We simply code a neighbor of type 3
as 01, type 2 as 10, and type 1 as 11, in our neighbor mask.
When starting with neighbor type 3, we use bits my441 and
My4q+2 in the neighbor mask. Likewise, we use bits 74443
and my,+4 to capture the state when starting with neighbor
type 2. We could use an additional two bits in the neigh-
bor mask for the case when we are starting with neighbor
type 1, but these two bits would always contain the only re-
maining neighbor choice for each set of four bits in the lo-
cation code, and so we can save memory by avoiding this
redundant information.

The complete logical expression that determines when to
continue when starting with neighbor type 3 is given below.

(not(mag+1) and mygyz and not(bygi2)) or
(Mmag+1 and not(mygy2) and not(bygr1 = bagt3)) or
(m4q+1 and Myg4-2 and not(b4q+2 = b4q+4))

Notice that this expression combines the logical parts
given previously for each of the three neighbor types (3, 2,
and 1). The complete logical expressions for neighbor types
1 and 2 are similar. We simply substitute the appropriate bits
for myq+1 and my,4» in the expression for neighbor type 3.

Using the above expression, we can identify all positions
in the location code which should propagate a carry. This
makes finding the location of the nearest common ancestor
as simple as a single addition, where the final carry deter-
mines which bit gets inverted in order to get the neighbor-
ing pentatope.

9. Concluding remarks

We have considered a decomposition of a hypercube
into nested four-dimensional simplexes that we called pen-
tatopes, thus generating a hierarchy of pentatopes (HP). We
have developed a labeling technique for nested pentatopes
which enables us to identify a pentatope through its location
code. We have shown how face-neighbors of a pentatope
can be extracted by manipulating location codes, and we
have proposed a neighbor finding algorithm which works
in worst-case constant time. The constant-time behavior is
achieved by using bit manipulation operations.

We have considered the application of a hierarchy of
pentatopes to the multi-resolution representation of four-
dimensional scalar fields. Our aim is to develop tools for ex-
tracting approximated, simplified, representations of a time-
varying volumetric data sets from its multi-resolution rep-
resentation. Such simplified representations are based on
adaptive meshes of smaller size with respect to the mesh
at full resolution, and having a resolution varying in dif-
ferent parts of the field domain, or in the proximity of in-
teresting field values, according to user requirements. The
meshes extracted from a multi-resolution representation
must be conforming as so as to avoid discontinuities in the
corresponding field approximation. Generating conforming
nested meshes requires computing diamonds composed of
pentatopes which must be split at the same time. Diamonds
can be extracted from the HP by finding the neighbors of
a pentatope along one of its five tetrahedral faces, and this
can be done efficiently by using the neighbor finding algo-
rithm proposed here.

A hierarchy of pentatopes, when used as the domain de-
composition of a four-dimensional scalar field, does not
need to be explicitly stored either in a pointer-based rep-
resentation or through location codes.

Current and future work includes developing algorithms
for generating an HP from time-varying volumetric data
sets, for extracting isosurfaces from an HP at variable res-
olution as well as a tool for visualizing and analyzing such
isosurfaces at different time frames.
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