
equivalent to the task of verifying an inequality propo-
sition regarding the minimax value of a continuous-
valued game tree [5] of identical structure, and, conse-
quently, the former cannot be more complex than the
latter. Thus, the quantity (~Jl - ~n)d should also lower
bound the expected number of nodes examined by any
algorithm searching a continuous-valued game tree.
This, together with Eq. (18), establishes the asymptotic
optimality of a-ft.

Received 5/80; revised 7/81; accepted l 1/81

References
I. Baudet, G.M. On the branching factor of the alpha-beta pruning
algorithm. Artificial Intelligence 10, 2 (April 1978), 173-199.
2. Fuller, S.H., Gaschnig, J.G., and Gillogly, J.J. An analysis of the
alpha-beta pruning algorithm. Department of Computer Science
Report, Carnegie-Mellon University, (1973).
3. Knuth, D.E., and Moore, R.N. An analysis of alpha-beta
pruning. Artificial Intelligence 6 (1975), 293-326.
4. Kuczma, M. Functional Equations in a Single Variable. Polish
Scientific Publishers, Warszawa, (1968), p. 141.
5. Pearl, J. Asymptotic properties of minimax trees and game-
searching procedures. Artificial Intelligence 14, 2 (Sept. 1980),
113-138,
6. Pearl, J. A space-efficient on-line method of computing quantile
estimates J. of Algorithms 2, 2 (June 1981) 24-28.
7. Roizen, I. On the average number of terminal nodes examined
by alpha-beta. UCLA-ENG-CSL-8108, Cognitive Systems
Laboratory, University of California, Los Angeles, (1981).
8. Slagle, J.R., and Dixon, J.K. Experiments with some programs
that search game trees. JACM 16, 2 (April 1969) 189-207.
9. Stockman, G. A minimax algorithm better than alpha-beta?
Artificial Intelligence 12, 2 (Aug. 1979), 179-196.
10. Tarsi, M. Optimal searching of some game trees. UCLA-ENG-
CSL-8108, Cognitive Systems Laboratory, University of California,
Los Angeles, (1981). (To appear in JA CM.)

Programming Techniques
And Data Structures

Ronald L. Rivest*
Editor

Heuristics for the Line
Division Problem in
Computer Justified Text
Hanan Samet
University of Maryland

Measures for evaluating solutions to the line division
problem in computer justified text are presented. They
are based on the belief that documents tend to have a
more pleasing visual appearance when the deviation be-
tween interword breaks in a paragraph is reduced. This
effect is achieved by not placing the maximum number of
words on each line. The measures are variations on the
variance of the number of extra spaces per interword
break in a paragraph. They are applicable to both fixed
and variable width fonts. One of the measures is exam-
ined in greater detail. It has the property that a lower
bound can be computed, thereby indicating when further
rearrangement of the text is futile. Several text rear-
rangement algorithms are proposed that make use of this
measure.

CR Categories and Subject Descriptors: 1.7.2 [Text
Processing]: Document Preparation--format and nota-
tion, photocomposition; H.4 [Information Systems Appli-
cation]: Office Automation--wordprocessing

General Term: Algorithms
Additional Key Words and Phrases: line division, text

justification, typesetting, layout, spacing, line breaking

I. Introduction

The dramatic rise in the use of interactive computer
facilities has been coupled with a rise in the use of text
editing programs. This has in turn led to the development
of document processing systems whose role is to trans-

564

* Former editor of Programming Techniques and Data Structures,
of which Ellis Horowitz is the current editor.

Author's present address: Hanan Samet, Department of Computer
Science, University of Maryland, College Park MD 20742.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0800-0564 $00.75.

Communications August 1982
of Volume 25
the ACM Number 8

form the input text into output which meets a certain
specification. The most notable of these new systems are
SCRIBE [6] and TEX [4].

One of the functions of such document processing
systems is to perform text justification. This is generally
achieved by processing the text in sequence, placing as
many words as can be fit within the margins in each line,
and then inserting extra spaces if necessary to achieve
the desired effect (termed filling). The main problem
with such a method is its unidirectionality, i.e., docu-
ments tend to look nonuniform because of long words
that cannot be fit at the end of certain lines (e.g., Fig. 1).
Note that this tendency could have been reduced by
moving forward some words from previously filled lines
to reduce the glaring nonuniformity in the line in ques-
tion. For example, Fig. 2 applies such a technique to Fig.
1. The problem of nonuniformity is termed the line
division problem by Knuth [3].

In this paper we discuss measures for evaluating
solutions to the line division problem. One of the mea-
sures is examined in greater detail and is shown to have
the property that a lower bound can be computed,
thereby indicating when further rearrangement of the
text is futile. The measure could be used as a cost
function and its value optimized through dynamic pro-
gramming techniques [1]. This approach is described in
[3], where a different measure is used. The measure is
applicable to both fixed and variable width fonts. As a
note of caution, we mention that nonuniformity is an
aesthetic property and thus our results are based in part
on our judgment that use of our measure leads to text
that is usually more attractive in a visual sense.

so does the value of the measure. This section motivates
the type of measure we seek and proposes two possible
candidates. One of the candidate measures is shown to
meet our criteria in a superior manner to the other.
However, first we make the following remark.

Remark 1. For a given parggraph, a text justification
method that processes the words in the body in increasing
order, packing as many words as possible in a line, uses
a minimum number of lines.

Proof Denote by B the result of justification in
increasing order and let n be the number of lines that are
required. Denote by B' the result of another justification
method that requires m lines. We say that B(k) and
B'(k) correspond to the number of words in lines k in B
and B', respectively. Define S(i) and S'(i) as follows:

i
S(i) = ~ B(k)

k : l

i

S'(i) = ~ B'(k).
k = l

By definition of the text justification method used to
obtain B we have

S(i) >_ S'(i), 1 <. i <_ min(m, n) (*)

Assuming n > m, we have that S(m) < S(n). Using (*),
we have S(n) > S(m) >_ S ' (m) or S(n) > S'(m). But
S(n) = S ' (m) = number of words in the paragraph, and
thus we have a contradiction. Therefore, we have proven
that there is no text justification method that uses fewer
lines than one that processes the body in increasing
order, packing as many words as possible in each line.

Q.E.D.

2. Measure

Any measure that we define must satisfy the follow-
ing criterion. First, it must be simple from the standpoint
of computational complexity. Second, it must correlate
with nonuniformity, i.e., as the nonuniformity decreases,

Nonuniformity can be defined formally as a property
of a document which is characterized by a wide fluctua-
tion in the amount of space in excess of a mandatory
minimum interword break. We make the following re-
mark.

Fig. 1. Text Sample.

Compiler test ing is a term we use to describe a means of proving that
given a compiler or fo r that matter any program t rans la t ion procedure
that the t rans la t ion has been cor rec t ly performed. We are especia l ly
interested in cases where the t rans la t ion involves a considerable amount
of opt imizat ion. Some possible approaches to th is problem include
program proving[London72], program testing[Huang75], and
decompilat ion[Hollander73].

Fig. 2. Result of Rearranging Fig. 1.

Compiler test ing is a term we use to describe a means of proving that
given a compiler or fo r that matter any program t rans la t ion procedure
that the t rans la t ion has been correct ly performed. We are especia l ly
interested in cases where the t rans la t ion involves a considerable
amount of opt imizat ion. Some possible approaches to th is problem
include program proving[London72], program testing[Huang75], and
decompilat ion[Hollander73].

565 Communications August 1982
of Volume 25
the ACM Number 8

Remark 2. The average amount of extra space per
interword break in a paragraph is a constant when the
text justification method uses a minimum number of
lines to contain the paragraph.

Proof. A direct consequence of Remark 1. Q.E.D.

In other words, the average amount of extra space
per interword break cannot be increased or decreased no
matter how we allocate the spaces within a line whenever
the minimum number of lines is used. We ignore the last
line of a paragraph since nonuniformity is not a factor
here, i.e., nothing can be moved from this line to the
previous lines and, similarly, moving words from previ-
ous lines into the last line will only result in increasing
the average amount of extra space per interword break
in the paragraph (excluding the last line). We assume
that the minimum interword break is a constant. This is
an oversimplification in the case of a period.

Since the average amount of extra space per inter-
word break is constant for each paragraph, we need at
least a measure of the second order variation of this
quantity (the average is the first order variation). Such
a measure is similar to the variance [5]. We propose two
possible measures. However, first let us define some
terms that are useful in describing our measures. Note
that in our definitions a paragraph is defined to begin at
the extreme left of the first line (i.e., no indentation) and
is said to contain all subsequent lines with the exception
of the last line. Also, space is defined in units appropriate
to the font being used (e.g., 1 for fixed width fonts and
mills for variable width fonts).

n = number of lines in a paragraph
w = number of words in a paragraph
b = w - n, number of interword breaks in a paragraph
s = minimum interword break length (s > 0)
e/: = extra space between words j and j + 1 in line i
e, = extra space in line i
wi = number of words in line i
b~ = w~ - 1, number of interword breaks in line i
/* = average extra space per interword break in a par-

agraph (a constant)
/*~ = edb~, average extra space per interword break in

line i
= Y,7=1 (/*i/n)

d i = e~ div b~, result of integer division of e~ and bi
m~ = e~ mod b~, remainder of integer division of e~ and

bi.

N o t e t h a t ei = bi*di 4- mi .

Two possible measures are given in (1) and (2):

n l b~
2 vij=Z-21 (el: --/*)2
i=1 (1)

n b I
Z E (eij -- /*)2
i=, :=1 (2)

b

566

The meaning of measure (2) is obvious: the average
variation of all the extra interword space in the para-
graph, without regard to its distribution. Measure (1),
however, is slightly more complex in that it consists of
finding the average variation per line and then finding
the average of this average throughout the paragraph.

Equation (1) can be reduced to yield (1') as follows.

l n l b i

- ~--l bii j ~= (e i j - 1

1 n 1 ~ ,
= - ~ 2 (ei 5 - 2/*eii +/*2)

n iT1 b// j= l

1 e2 ' 2/* b~
= - - t y - - - - ~ eij q-

n i=1 \ u i j = l bi j=l bi]]

1 ~ 1 ((~ 2) 2 e/)
= - - e i j -- /* bii + / . 2

rl .= j = l

1 ~ ~ e 2/*/*i +/*2
Y/ i=1 j = l]

(1 " (~ ~ 2)) 2/* (~1/*i) n/*"
= ~ ei j -- - - -t

t j= l ~ r/

= i=l ~- ~ l \ j = l (~ e2:) -2/*~t ÷ / * 2 . (1 ')

Equation (2) can be reduced to yield (2') as follows

1 n b i

-~ E Y, (eij--/*)2
i=1 j = l

l n b i

-- ~ Y, (ei~ -- 2geij +/*2)
b i=~ j=l

~ bi 2bt ~ b, 1 " _ 1 ~ e 2 . -
b i=l i=l ': --b i=l i=,Z eq + -~ i=,Z bill 2

l n b t
- Z Z e 2 - /*2

b i=1 j=l 'J 2/*2 +

l n b i
= _ e2_ /*2 . (2') 2 2 . b j= l

Note that we made use of the relation

II b i

E eij = b/*.
i = l j ~ l

We now have sufficient information at hand to eval-
uate the two measures. We do not use as our basis the
minimum variance of the estimator [2]; instead, we use
criteria based on the application at hand. First, measure
(1) is computationally more complex than measure (2).
This stems from the presence of the 2./**~ term which
must be re-evaluated whenever e,j changes. Second, and
most importantly, measure (1) is less desirable than
measure (2) because it tends to weigh equally lines with
a small number of long words and lines with a large
number of short words. This means that the overall

Communications August 1982
of Volume 25
the ACM Number 8

cont r ibut ion per word to the nonuni formi ty raggedness
measure f rom a line with a small n u m b e r of long words
is greater than the contr ibut ion of a line with a large
n u m b e r o f short words. Moreover , we want to distribute
the extra space evenly th roughout all o f the in terword
breaks in the pa rag raph ra ther than to distribute the
extra space evenly th roughout each line as measure (1)
favors. In other words, moving words into lines with a
small n u m b e r o f long words is more effective in reducing
nonun i fo rmi ty according to measure (1) than vice versa,
whereas we want to be able to move words onto any line
with an equal effect on the nonuni formi ty measure. This
is the case with measure (2).

Tak ing advan tage o f the discreteness o f the width of
characters leads us to obta in the following simplif ications
for our measures. Observe that any space distr ibution
a lgor i thm will al locate the extra spaces in the following
manner :

di spaces in each o f bz - m~ interword breaks in
line i (3a)
d, + 1 spaces in each o f m~ interword breaks in
line i. (3b)

Subst i tut ion o f (3a) and (3b) into (2 ') yields

1 n ba

i=l j=l

1 ~
= - ~, (d'~(bi - mi) + (di + 1) '~ mi) - g2

b i = l

1 n
- ~ (bid'~ - d~mi + d'~mi + mi + 2dimi) - #2

b i = l

l n
- ~ (bid~ + mi + 2dimi) - I~ 2

b i = l

I ~
-- b ~ (mi + di(bidi + 2m/)) - / z 2

1 ~
,~1= (mi + di(bidi + mi + mi)) #2

b

1 ~
b i= (mi + di(ei + mi)) tz 2.

Hence we only need to a t tempt to reduce the sum:

o = ~ (mi + di*(ei + mi)). (4)
i=1

In order to s implify future discussion we define the
following relationship.

Oi = m i + di*(ei + mi) .

The algebraic representat ion o f (4) has several im-
por tan t ramificat ions. First, notice that e~ is measured in
terms o f space units; thus, (4) holds for both fixed and
var iable width fonts. Second, (4) yields in format ion as to
whether fur ther text r ea r rangement is worthwhile. In
essence, (4) implies that there exists a lower bound for

the measure as given by the following remark .

R e m a r k 3. ~7=1 ei is a lower bound for measure (2)
and is a t ta ined when ei _< bi for every line i.

Proof. Recall that ei = bi*di + mi. Clearly, for 0 ___ ei
< bz, we have that d g = 0 and m~ = ev Also, for e, = b~,
we have that d i = 1 and m i = 0. Thus, whenever ei <- b~
for every line i, (4) at tains a m i n i m u m value and likewise
for measure (2). Q.E.D.

Therefore , when R e m a r k 3 is satisfied, no fur ther
work can reduce the value o f measure (2) and thus a one
pass a lgori thm, as is used in most documen t processors,
will achieve opt imali ty . Note, also, that (4) only involves
integer quanti t ies and thus, if it were to be implemented
in ha rdware (e.g., using a microprocessor) , then there
would be no need for a f loating point ar i thmetic capa-
bility.

At this point we e laborate fur ther on the opt imal i ty
cri terion set forth in the previous paragraph . The conclu-
sion that opt imal i ty is achieved when e~ is less than or
equal to bi for all i is intuitive. For example , consider the
case o f decreasing oj by moving, f rom lines j - 1 to j , nj
words occupying si units o f space. Such action causes
aj_~ to increase, and as long as sj is less than or equal to
bj-i - nj - ej-l, then o remains constant. 1 Otherwise, it
increases, or we must pe r fo rm a similar opera t ion be-
tween lines j - 2 and j - 1, and so forth. Opt imal i ty is
achieved whenever we encounter a line k such that the
previous condi t ion is satisfied, i.e., sk -< b,_~ - nt~ - ek-~.

The close relat ionship between (4) and opt imal i ty is
the reason for the selection o f measure (2) over measure
(1). Note that the simplif ications (3a) and (3b) appl ied
to (2') to obta in (4) could also have been appl ied to (1')
to obta in the following:

n

I-t 2 + ~ ((m i + di*(ei + m i) - 2 * ~ * e i) / b i) .
i ~ l

Any a lgor i thm that we would devise would a t tempt
to reduce the sum:

rt

((mi + di*(ei + mi) - 2*l~*ei)/bi). (5)
i = 1

However , unlike (4), there is no obvious way to
de te rmine how close a specific value o f (5) is to the lower
bound for opt imali ty . For example , letting oi denote the
e lements being summed, we have that when 0 ___ e~ _< b~,
ol =- (ei - 2*l.t*ei)/bi. Note that changes to ei within a
line cause b~ to change. Thus o~ is no longer constant for
0 _< ei ----- hi, as is the case when measure (2) [i.e., (4)] is
used.

T h e n e w n u m b e r o f i n t e r w o r d b r e a k s in l ine j - 1 is bj ~ - nj.
M o t i o n o f s / u n i t s o f space f rom l i n e s j - 1 t o j c a u s e s l i n e j - 1 to have
sj + ej- j ex t r a un i t s o f space . O p t i m a l i t y r equ i re s tha t this be less t h a n
o r e q u a l to the n u m b e r o f i n t e r w o r d b r e a k s w h i c h has n o w been
r e d u c e d to bj - R - nj. Hence , we h a v e t ha t sj + ej_ ~ _< bj_ ~ - nj o r sj --<
h i i - - n i - - e j - i .

567 C o m m u n i c a t i o n s A u g u s t 1982
o f V o l u m e 25
the A C M N u m b e r 8

Fig. 3. Alternative Rearrangement of Fig. 1.

Compiler testing is a term we use to describe a means of proving that
given a compiler or for that matter any program translation procedure
that the translation has been correctly performed. We are especially
interested in cases where the translation involves a considerable
amount of optimization. Some possible approaches to this
problem include program proving[London72], program testing[Huang75], and
decompi I a t i on[Hol I a n d e r 7 3] .

3. Example

As an example of the validity of our candidate mea-
sures, let us apply them to the paragraph in Fig. 1 and
see whether they can distinguish between Figs. 1, 2, and
3. The difference between Figs. 2 and 3 is in the fifth
and sixth lines of the paragraph where one more word
has been squeezed into line 6 of Fig. 3 and consequently
one less word occurs in line 5. We assume a fixed width
font. The values of the measures [using (4) and (5)] for
the three figures are given in Fig. 4. Notice that the value
of measure (2) for Fig. 2 is very close to the lower bound
for the measure which is 33. However, it should be clear
that there need not exist a version of the paragraph
whose measure value equals the lower bound. Hence
Fig. 2 corresponds to the optimal paragraph both from
an aesthetic point of view (this is somewhat arbitrary)
and as a result of the application of our measures. Thus
it is seen that both measures perform adequately in this
case. As expected, measure (1), relatively speaking, is
biased towards any rearrangement of text that reduces
the extra space between words in a line with a small
number of long words.

4. Algorithms

This section presents several heuristic algorithms for
reducing the value of ~. These algorithms differ in the
amount of work that they perform, although it is not
guaranteed that for all of the algorithms more work
implies greater closeness to optimality. Note that in the
case of fixed width fonts very little computat ion is nec-
essary since most often it is the case that di = 0 which
means that we are already at optimality for line i. Rarely
does one find di > 1 unless the length of the line is quite
short. Thus, for fixed width fonts, o u r measures and
algorithms may result in the avoidance of a good deal of
work. In the case of variable width fonts, di is greater
than or equal to 1 for most lines due to the small unit of
measure (i.e., mills). In such cases the presence of a
floating point capability would indicate that we might
prefer to use as our measure

n

(e'~,/ bi)
i = 1

which is the varying component of (2) when e~i is ap-
proximately equal to edb~ for all j, as is the case with a
variable width font.

Any algorithm that we devise must have two phases.
The first phase scans the paragraph in the forward
direction filling each line with as many words as possible.
The second phase processes the paragraph in the back-
ward direction and attempts to move words from lines i
- 1 to i. The exact number of words to be moved is
governed by the amount of extra space that is available.
Since we want to reduce the overall nonuniformity, we
will not want to fill all of the extra space in a particular
line as this will decrease the contribution to nonuniform-
ity due to line i at the expense of increasing the contri-
bution of line i - 1.

The worst approach from a computat ional complex-
ity point of view is one that enumerates all of the possible
rearrangements of words. Clearly, the optimal solution
will be found. As noted earlier, dynamic programming
can be employed as an alternative with our measure
serving as the cost function to be minimized. Given n
lines and a max imum of K words that can be fit on a
line, such an approach requires work on the order of
nK 2, where each line serves as a stage in the dynamic
programming solution and at each stage a K by K matrix
of values must be computed. Dynamic programming is
used by Knuth [3] in conjunction with a sixth order cost
function. Knuth points out that an improved algorithm
can be obtained whose running time is almost always of
order K.

We propose a pair of heuristic algorithms that make
use of our measure and may require considerably less
work for a reasonably sized paragraph (i.e., n and K
having the same order of magnitude) than an exhaustive
method such as dynamic programming. In particular,
our algorithms rely heavily on the optimality property of
the measure. One algorithm, Algorithm 2, will visit each
line in the backward direction only once, while the other,
Algorithm 1, will make at most n - i + 1 visits to line i.
Thus Algorithm 2 will make 2*n visits to all of the n
lines while Algorithm 1 will make a max imum of order
n 2 visits to all of the n lines. Both algorithms make use
of a "move heuristic" termed MOVE (see Sec. 5) to
decide how many words to move between adjacent lines.
As we shall see, the algorithms have the property that
the value of our measure will not increase although this
is no guarantee that optimality will be attained.

Fig. 4. Sample Measure Values.
Fig. 1 Fig. 2 Fig. 3

Measure (1), i.e., (5) 11.3 0.67 2.07
Measure (2), i.e., (4) 81 39 49

568 Communications August 1982
of Volume 25
the ACM Number 8

Prior to describing the algori thms let us define the
following terms in addit ion to o :

i--I

T i ~ X Oj
j = l

n

yi ~- ~ Oj
j = i + l

Note that zi, o~, and)'i denote the contr ibut ion o f
lines 1 to i - 1, line i, and lines i + 1 to n, respectively,
to the nonuni formi ty measure. For each line L the first
phase o f any o f our algori thms records e,, bi, ol, and r~.
The second phase records the value o f ~,~ for each line i.
Procedure MOVE(i) has the effect o f moving words f rom
lines i - 1 to i and returns as its value the number o f
words moved. In order to keep track o f the status o f each
line immediate ly after words have been moved in and
out, M O V E records the addit ional information specified
below. In the following, assume that M O V E has deter-
mined that v words o f total length t (not including the
manda to ry blanks) are to be moved f rom lines i - 1 to
i.

e~- i ~ e i -] + v * s + t

b~- i ~ b i - i - v

o~-1 ~ m ; - a + d } - l * (e ; - 1 + m'i-a)

e l ' <---e[- v * s - t

b " ~ b" + v

o ,, m,'¢ re. ,, i <--" • + d i (ei + m [')

Single primes indicate the state o f a line immediately
after words have been moved out o f it and before any
words have been moved into it f rom a previous line.
Double primes indicate the status o f a line once words
have been moved out o f it and into it. Clearly, for the
next to the last line, i.e., line n, in any paragraph e~,, b~,
and o~ must be initialized to e, , b , , and o, , respectively.

Algor i thm 1 is shown in Fig. 5. 2 The basic idea is to
process the paragraph starting at lines n and n - 1 and
to attempt, through the use o f MOVE, to move words
f rom lines n - l to n. This procedure is repeated for lines
n - 1 and n - 2, etc., until a pair o f lines k and k - 1 are
reached such that no words can be moved f rom lines k
- 1 to k. At this point, backtrack to the last line, say j ,
which had words moved into it without having any
words moved out o f it (i.e., line n in the initial case).
Next, find the m a x i m u m numbered line i, k _< i --<.L such
that the sum ~'i + o" + 3'i" is a minimum. U n d o the
M O V E operat ions between lines k + 1 and i - 1. Set e l ' ,

b[', and a," to e ' , b ' , and o;, respectively, and reapply
the algori thm starting at line i - 1. Notice that the
algori thm may make as m a n y as n - i + 1 visits to line
i. Hence the n lines m a y be visited a m a x i m um o f order
n 2 times in the backward direction.

2 We only describe the second phases of the rearrangement algo-
rithms.

Fig. 5. A l g o r i t h m 1.

procedure A L G O R I T H M 1 (i n t e g e r n) ;

begin
integer i, last, m, temp;

m <---- n ;

while m > O do
begin

last <-- m;
e ~ast e - - e last ;

b~ast ~ bl,,st;

O~ast *-- Olasg
while MOVE(m) NEQ O d o m *-- m - 1 ;

t emp *--- ~qast + o&st + ")'[~st;
for i , - - l a s t - 1 s t e p - 1 un t i l m d o

begin
if temp > r i + o" + 7, ' t h e n

begin / * f i n d a m i n i m u m * /

temp ~-- Ti + o" + - /" ;
last *-- i;

end ;

end ;
for i ~-- last s t e p - 1 un t i l m + 1 d o UNDO(MOVE(i)) ;

e f'st *-- e ~ast;

b'%st * - blast;
a .

Olast <--- (7last ,

m *--- last - 1 ;

end ;

end ;

Algor i thm 2, shown in Fig. 6, is very similar to
Algor i thm 1. Once again we apply procedure M O V E
until a line k is encountered such that no words can be
moved f rom lines k - 1 to k. The only difference is that
once the line i with m i n i m u m Ti + o/' +),/' is found, all
lines, j, k - l < j < i, are left alone and the algori thm is
reapplied starting at line k - 1 rather than at line i - 1
as is done in Algor i thm 1. Notice that each line is visited
at most once in the backward direction.

Fig. 6. Algorithm 2.

procedure ALGORITHM2(integer n);
begin

integer i, last, m. temp;

m ~- - n ;

while m > 0 do
begin

last *-- m;
e~ast * - - e last ;

o~ast *-- Cqasg
while MOVE(m) NEQ O d o m ,--- m - 1 ;

t emp <--- 7"last 4" O~ast -{- ~ [~s t ;

for i , - - l a s t - 1 s t e p - 1 un t i l m d o
begin

if t emp > r,. + o" + 7 " t h e n
begin / ' * f i nd a m i n i m u m * / '

temp ,-- r i + o" + - f " ;
last , , - i;

end ;

end ;

for i , - - last s t e p - 1 un t i l m + 1 d o UNDO(MOVE(i)) ;

e ~ t *-- e[~st;
u b s . b l a s t * - - last,
r~ f .

O last ,6-- O'last,

m * - - m - l ;
end ;

end ;

569 Communications August 1982
of Volume 25
the ACM Number 8

In each algori thm the statement "while M O V E (m)
N E Q 0 do m *-- m - 1;" acts as a pruning device on the
search since it identifies the segments o f text which can
be processed as independent blocks. Also, each algori thm
guarantees that the value o f the nonuni formi ty measure
will not increase as a result o f its application. This follows
f rom the choice o f a line in each independent block such
that the sum ~-~ + o" + y " is a minimum. Note that the
starting value o f the sum (i.e., i = n) is simply the value
obtained when the convent ional one-pass text justifica-
tion algori thm is used.

In the case o f fixed width fonts, we can make a
further simplification o f Algor i thm 2. Recall that an
opt imal solution is one where e~ is less than or equal to
b~ for all lines i. Therefore, we only at tempt to justify in
the backward direction lines whose value o f ei exceeds
that o f bi. Thus Algor i thm 2 is modif ied so that it is only
applied to the first such line that is found. The new
algorithm, termed Algor i thm 3, is shown in Fig. 7. Notice
that in the case o f variable width fonts this a lgori thm
can still be applied; however, it is most often identical to
Algor i thm 2 due to the small units in which space is
measured (e.g., mills).

5. Move

In the previous section we saw the need for a mech-
anism to decide how many words, if any, to move f rom
lines i - 1 to i in a t tempting to reduce the value o f the
nonuni fo rmi ty measure. There is often a choice. A right
choice means that there is no need to employ an algo-
r i thm which uses backtracking. This section describes
some possible decision mechanisms.

The simplest decision mechanism is termed the
"greedy mechanism." It moves as m a n y words as possible
f rom lines i - 1 to i, and likewise from lines i - 2 to i
- 1, and so on until a line j is found such that no words
can be moved from lines j - 1 to j. Such an approach
can be likened to a pyramid with the result that line j
will have a large value o f ej which will have an undesir-
able effect on the value o f our measure. Our proposed
mechanisms are a imed at reducing the "greediness" at
each line. However , it should be clear that if only one
word can be moved, then greediness may prevail. Hence
our solutions are geared to situations where there is a
choice o f how m a n y words to move. Three possible
decision mechanisms are given below.

(1) For each line the number o f words to be moved is
chosen to be the ceiling o f one-ha l f o f the m a x i m u m
number o f words that can be moved.

(2) Move a number o f words m f rom lines i - 1 to i,
such that moving m words results in e[' _< ei/2 and
moving m - 1 words results in e" > eJ2.

(3) Move a n u m b e r o f words m f rom lines i - 1 to i,
such that moving m words results in e;'-i <- 2*e~_~
and moving m + 1 words results in e;'-~ > 2*ei-1.

570

Fig. 7. Algorithm 3.

procedure A L G O R I T H M 3 (i n t e g e r n) ;

begin
integer i, las t , m , t e m p ;

m<--n ;
while m > 0 do

begin
if e m > bm then

begin
l as t *-- m ;

e fast ~ elast;

b{ast <-- b~ast;

O~ast ,e-- Olast;

while M O V E (m) N E Q 0 do m *-- m - 1 ;

t e m p *-- lq.st + a{.st + y['s t ;
for i *-- l as t - 1 s t e p - 1 u n t i l m do

begin
if t e m p > % + a ; + y," then

begin / * f i n d a m i n i m u m * /

t e m p . - - % + a~ + 7 " ;
l as t *-- i;

end;
end;

for i . - - l as t - 1 s t e p - 1 u n t i l m + 1 do
U N D O (M O V E (i)) ;

e ~ t *-" eta,,;

b{~st ~ b~ast;
o~s, < i O'{ast;

end;
m < - - m - l ;

end;
end;

Mechan i sm (1) is independent o f the amoun t o f space
moved. There is no way to distinguish between short
words and long words. Thus when words are not o f
un i form length, we may tend to move too much or too
little f rom one line to another depending on whether
there is a sequence o f long or short words, respectively,
at the end o f the line in question. Mechanisms (2) and
(3) are 50 percent rules. Mechanism (2) results in a 50
percent decrease in the amoun t o f extra space in line i,
while mechan i sm (3) results in a 50 percent increase in
the amoun t o f extra space in line i - 1. We feel that
mechan i sm (2) is the preferred o f the alternatives pro-
posed since its computa t ion only depends on the current
line and not on what happens in the future; i.e., mecha-
nism (3) must also take into account the effect o f moving
words f rom lines i - 2 to i - 1, etc. Note that a variat ion
o f mechan i sm (3) with e' substituted for e" is undesirable
because lines with small values o f ei-~ will have fewer
words moved than lines with larger values o f ei-1. How-
ever, often this is the opposite o f what should happen
since frequently small values o f el-] mean that more
words can be moved to line i with less deletorious effects
on the nonuni formi ty measure.

6. C o n c l u d i n g R e m a r k s

A measure and related algori thms for reducing the
nonuni fo rmi ty o f compute r justified text have been pre-
sented. The measure has been shown to be computa t ion-
ally simple as well as to have an attainable lower bound.

Communications August 1982
of Volume 25
the ACM Number 8

Once again, we reiterate that nonuniformity is an aes-
thetic property and thus our results are essentially only
valid if one adopts our measure. Nevertheless, visual
inspection of the result of its application does not refute
its reasonableness. The ultimate test lies in psychological
experiments.

The presence of a hyphenation capability will prob-
abily result in less of a need for the measure although it
remains useful in applications such as newspapers and
magazines where columns are relatively narrow. How-
ever, such a hyphenation capability does make our heu-
ristic algorithms more attractive than the dynamic pro-
gramming approach since their execution time is inde-
pendent of the maximum number of word segments in
a line (i.e., K). In particular, Algorithm 3 with its check
for optimality for each line should yield the best results
in terms of execution speed.

Acknowledgments. I have benefitted from discussions
with P. Agre, G. Knott, and S. Peleg. I would also like
to thank S. Peleg and R. Rivest for pointing out dynamic
programming as a possible solution.

Received 5/79; revised 3/81; accepted 10/81

References
I. Hillier, F.S., and Lieberman, G.J. Introduction to Ogerations
Research. Holden-Day, San Francisco, 1967.
2. Kendall, M. G., and Stuart, A. The Advanced Theory of Statistics,
Vol. 2, 3rd ed., Hafner Press, New York, 1973.
3. Knuth, D.E. and Plass, M.F., Breaking paragraphs into lines.
Software Practice and Experience. (Nov. 1981) 1119-1184.
4. Knuth, D.E. Tau Epsilon Chi, a system for technical text.
Stanford Computer Science Rep. CS675, Stanford University,
Stanford, CA, Sept. 1978.
5. Mood, A.M., Graybill, F.A., and Boes, D.C. Introduction to the
Theory of&at&tics, 3rd. ed. McGraw-Hill, New York, 1963.
6. Reid, B.K., and Walker, J.H. SCRIBE, introductory user's
manual, 2nd ed. Carnegie-Mellon University, Pittsburgh, PA, 1979.

571

Programming Techniques
and Data Structures

M. Douglas Mcllroy*
Editor

An Efficient Garbage
Compaction Algorithm
Johannes J. Martin
Virginia Polytechnic Institute and
State University

The garbage compaction algorithm described works
in linear time and, for the most part, does not require
any work space. It combines marking and compaction
into a two-step algorithm that is considerably faster than,
for example, Morris's method. The first step marks all
nongarbage cells and, at the same time, rearranges the
pointers such that the cells can be moved; the second
step performs the actual compaction.

CR Categories and Subject Descriptors: D.4.2 [Op-
erating Systems]: Storage Management--allocation~
deallocation strategies.

General Terms: Algorithms, Theory
Additional Key Words and Phrases: garbage collec-

tion, compaction, relocation, storage reclamation

I. Introduction

In a storage area divided into cells of possibly differ-
ent sizes where some but usually not all are accessible by
the user's program, a garbage compactor can move the
accessible cells to one end of the storage area and update
all pointers to these cells (pointers stored in cells as well
as those that point to cells from the outside) such that
they point to the new locations of the cells. At the other
end of the storage area, this process creates a block of
adjacent, unused fields as large as the sum of the fields
occupied by all inaccessible (garbage) cells. Algorithms
for this task consist of two phases. The first phase
identifies all accessible cells by marker bits; the second
phase performs the actual compaction.

* Former editor of Programming Techniques and Data Structures,
of which Ellis Horowitz is the current editor.

Author's Present Address: Johannes J. Martin, Department of
Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0800-0571 $00.75.

Communications August 1982
of Volume 25
the ACM Number 8

