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Abstract

Similarity search isavery important operation in multimedia databases and other database applica-
tions involving complex objects, and involvesfinding objectsin a data set S similar to aquery object q,
based on some distance measure d, usualy a distance metric. Existing methods for handling similarity
search inthissettingfall into one of two classes. Thefirst isbased on mappingto alow-dimensional vec-
tor space (making use of datastructures such asthe R-tree), whilethe second directly indexesthe objects
based on distances (making use of datastructures such asthe M-tree). Weintroduceagenera framework
for performing search based on distances, and present an incremental nearest neighbor algorithm that op-
erates on an arbitrary “search hierarchy”. We show how this framework can be applied in both classes
of similarity search methods, by defining a suitable search hierarchy for anumber of different indexing
structures. Armed with an appropriate search hierarchy, our algorithm thus performs incremental simi-
larity search, wherein the result objects are reported one by onein order of similarity to a query object,
with aslittle effort as possible expended to produce each new result object. Thisis especially important
in interactive database applications, asit makesit possible to display partial query resultsearly. Thein-
cremental aspect aso provides significant benefits in situations when the number of desired neighbors
isunknown in advance. Furthermore, our algorithmisat |east as efficient as existing k-nearest neighbor
algorithms, in terms of the number of distance computations and index node accesses. In fact, provided
that the search hierarchy isproperly defined, our agorithm can be shownto be optimal in the senseof per-
forming as few distance computationsand node accesses as possibl e, given the availableindex structure.
An experimental study confirms our reasoning, and suggeststhat the overhead due to theincremental as-
pect is modest, especialy if distance computations are expensive and/or the indexing structure or data
objects are stored on disk.

This work was supported in part by the National Science Foundation under Grant IRI-97-12715.



1 Introduction

Multimedia data are becoming increasingly important in modern database applications. Examples of
such data include images, video, and text documents, and even such exotic data as protein and DNA
sequences. One of the most common types of queries on multimedia data is similarity searching, aso
termed content-based or similarity retrieval. This commonly involves finding the nearest neighbor to a
sample object, based on some similarity measure. Usually, what is desired isto retrieve severa of the
nearest neighbors. 1n some applications, the number of desired neighborsis fixed in advance, in which
case we can use k-nearest neighbor algorithms. In other applications, the number of desired neighbors
isunknownin advance. Thisiswhereincremental nearest neighbor algorithms prove useful. By incre-
mental, we mean that such an algorithm computes the neighbors one by one, attempting to report the
next neighbor with as little effort as possible. An important area where incremental nearest neighbor
algorithms are beneficia is in computing complex queries where one of the conditionsis a “ nearest”
predicate. In this situation, we do not know how many neighbors must be retrieved before oneisfound
that satisfies all the conditions. Another advantage to incremental solutionsisthat ininteractive user in-
terfaces they make it possibleto quickly present some answer to the user, before the entire query result
has been computed.

A common feature of most kinds of multimedia data is that evaluating the similarity between two
objects is complicated, and thus time-consuming. Usually, some sort of distance metric is defined that
indicates the degree of similarity between two objects. Thus, we can view the objects as residing in
ametric space (S, d), where Sisthe finite set of objects and d is the distance metric. When evaluating
proximity queries, we can only rely on properties of distance metrics (i.e., non-negativity, symmetry, and
the triangle inequality). Contrast this with data residing in a coordinate space, where more information
is available (the locations and extents of the objects). Multimedia data objects are actually frequently
represented as pointsin avector space (often termed feature vectors). For example, color and shapehis-
tograms are commonly used to characterize images[23, 30]. However, indexing and search methodsfor
coordinate spaces usually work well only for low-dimensional spaces. Even indexing methods specifi-
cally designed to handle a higher number of dimensions(e.g., the X-tree[6], L SD"-tree [33], and hybrid
tree [13]) typically end up accessing nearly all index pages for any non-trivia query when the number
of dimensions exceeds 20 and often even when it is lower. In contrast, feature vectors for multimedia
objects are often of much higher dimensionality (e.g., color histograms often lead to 64, or even as high
as 256-dimensional vectors).

Two strategies have been proposed for handling proximity queriesin metric spaces. Thefirst isto
work directly within the metric space, often by building hierarchical distance-based index structures|[9,
11, 19, 66]. Nearest neighbor and k-nearest neighbor algorithms have been proposed for many of these
structures. The second strategy maps the database objects into a low- to medium-dimensiona vector
space and then makes use of efficient spatial indexing methods available there, such as the R-tree [29].
The index on the mapped objects serves as afilter in proximity queries, but the actual objects must be
consulted to compute the final answer; thus, algorithms based on thisfilter and refine [56] approach are
sometimes said to be multistep. A k-nearest neighbor algorithm for such ascenario was proposedin [41],
and later improved in [60].

In [35, 36] we proposed ageneral incremental nearest neighbor algorithm that worksfor virtually all
hierarchical spatial index structures. A similar agorithmwas presented in[32], targeted for the LSD tree.
In this paper, we show how our earlier a gorithm can be adapted to handle incremental nearest neighbor
search in metric spaces, whether the data set i s represented in adistance-based index or has been mapped
into avector space (and is represented in a spatial index). A key step isaformulation of theincremental
nearest neighbor algorithm in terms of an arbitrary search hierarchy, which is derived from the partic-
ular data structure used to organize a data set. The search hierarchy represents the decomposition of a
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proximity-related search problem on the data set. In most cases, the structure of the search hierarchy
is identical to (or easily derived from) the hierarchical nature of the data structure!, so the main chal-
lenge is to determine lower bounds on distances between a query object and the objects in subtrees of
the hierarchy. Theincremental nearest neighbor algorithmis shown to be correct when thislower-bound
criterion is fulfilled. Also, we describe various useful extensions of the algorithm, such as finding the
farthest neighbor first, and we show how better performance can be gained when complete accuracy is
not crucial. We present search hierarchiesboth for the mapping-based approach and for various distance-
based indexes, and prove that correctness of the agorithmis ensured. During this discussion, we survey
anumber of different mapping methods and distance-based indexing methods. When compared to exist-
ing nearest neighbor and k-nearest neighbor agorithmsfor these methods, our algorithm has the distinct
advantage of being incremental. This gives it much better performance for distance browsing queries,
wherein we browse through a database based on distance and may terminate the browsing at any time
— that is, the number of desired objects is unknown in advance. Moreover, even for a fixed number
of neighbors, our algorithm can be shown to be at least as efficient as existing k-nearest neighbor algo-
rithms, in terms of the number of distance computations (and 1/0O operations, if needed). Furthermore,
the overhead due to the incremental aspect of the algorithm is usually relatively modest, and is usually
overwhelmed by savings due to the better search pruning exhibited by our algorithm. An experimen-
tal study confirms these conclusions, where we perform experiments on various data sets using both the
mapping-based approach (with the R*-tree spatial index) and a distance-based index (with the M-tree).
The rest of the paper is organized as follows. In Section 2 we present a generalized version of our
incremental nearest neighbor algorithm. In Section 3 we give an overview of different types of mapping
methods, and show how the general incremental nearest neighbor algorithm can be applied to the map-
ping-based approach. In Section 4 we describe the main principles behind most distance-based indexes,
and show how to apply our agorithm to a number of representative indexing methods. In Section 5, we
compare our agorithm to existing k-nearest neighbor algorithms, in terms of thelevel of pruningthat is
achieved. In Section 6 wereport theresultsof our experiments, while conclusionsaredrawnin Section 7.

2 Generalized Incremental Nearest Neighbor Algorithm

In this paper, wewill show how to perform incremental nearest neighbor (abbreviated INN) search based
on avariety of different data structures for similarity search. The nature of such search isto report the
objectsinadataset SC U, oneby one, in order of distancefrom aquery object q € U based on adistance
function d, where U isthe domain (usually infinite) from which the objects are drawn. In al cases, the
same basic algorithm is adapted to the specific nature of each data structure. Thus, in this section we de-
scribe ageneralized version of theincremental nearest neighbor a gorithm of [35, 36], that encompasses
all the specific instances presented in later sections. In order to make the discussion more concrete, we
use the R-tree, acommonly used spatial data structure, as an example data structure.

The rest of this section is organized as follows: In Section 2.1, we briefly describe the R-tree. In
Section 2.2, we introduce the basic framework for performing search, in the form of asearch hierarchy.
In Section 2.3, we present a general incremental nearest neighbor agorithm, based on the abstract con-
cept of a search hierarchy. This agorithm can be adapted to virtually any data structure, by a suitable
definition of a search hierarchy, and weillustratethisin the case of the R-tree. In Section 2.4, we show
the algorithm can be extended in avariety of ways, including setting limits on the distances of the result
objects or on the number of result abjects, and reporting the objects in reverse order of distance (i.e.,
finding the farthest neighbor first). Furthermore, in situations where complete accuracy is not critical,
we show how the performance of theal gorithm can beimproved at therisk of having the objectsreported

IHowever, aswe notein Section 4.6, a search hierarchy can be formalized even when the data structure is not hierarchical.
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somewhat out of order.

21 R-Tree

The R-tree [29] (see Figure 1) is an object hierarchy in the form of a balanced tree inspired by the B -
tree[21]. Each R-tree node contains an array of (key, pointer) entrieswhere key isa hyper-rectangle that
minimally boundsthe data objectsin the subtree pointed at by pointer. In an R-treeleaf node, the pointer
is an object identifier (e.g., atupleD inarelational system), whilein anonleaf nodeit isa pointer to a
child node onthe next lower level. If the geometric description of the objectsissimple(e.g., for pointsor
line segments) it is a so possibleto store the objects directly in the leaf nodes, instead of their bounding
rectangles. The maximum number of entriesin each nodeistermed itsnode capacity or fan-out and may
be different for leaf and nonleaf nodes. The node capacity isusually chosen such that anodefillsup one
disk page (or asmall number of them).
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Figure 1: An R-tree index for a set of nine line segments. (a) Spatial rendering of the line
segments and bounding rectangles, and (b) a tree access structure for (a). The bounding
rectangles for the individual line segments are omitted from (a) in the interest of clarity.

2.2 Search Hierarchy

Theincremental nearest neighbor algorithm is applicable whenever the search space can be represented
in ahierarchical manner, provided that certain conditionshold. In this section, we define what we mean
by “search hierarchy” and use the R-tree as a specific example.

Thealgorithm operateson afiniteset SC U of objects, aquery object q € U, and adatastructureT that
organizesthe set Sor providesinformation about it. The search hierarchy is composed of elements g of
severa different typest, witht = 0, ..., tmax. Figure2 depictsthe search hierarchy for aset of 14 abjects,
A through Np, where there are three types of elements. As depicted in the figure, the search hierarchy
forms atree, withthe objectsasleaves. Each element represents asubset of S, with an element e of type
Orepresenting asingleobjectin S Anelement g of typet can giveriseto oneor more*®child” e ements of
types 0 through tmax. Thus, the search problem for g is decomposed into several smaller subproblems.
Often, all child elements are of the same type, but thisis not a requirement. In this presentation, we
assume that an element has only one “parent” in the search hierarchy and that each object is represented
only once in the hierarchy, but the algorithm can be adapted to handle multiple parents and duplicate
object instances as well.

At thispoint, it may seem superfluousto use different types of elements, when they al merely repre-
sent subsetsof S, However, for any particul ar search problem, thevarious element typesrepresent differ-

3



Do Eg Fo Go Hp lp Jo Ko Lo My Ny

Figure 2: A sample search hierarchy for objects Ag though Np.

ent kinds of entities, and therefore have different pieces of information attached to them. Furthermore,
each specific search hierarchy will have a different definition of what types of elements can be produced
from each element type. In theexamplein Figure 2, for instance, elements of type 2 produce el ements of
types 2, 1, or 0, whileelements of type 1 produce only elements of type 0. Elements of each typet have
an associated distancefunction d(q, & ) for measuring the distance from a query object g to the elements
of that type. Naturally, computation of d;(q, & ) isbased only on the specific information attached to the
parent element of g (since the computation occurs when the parent element is processed). Furthermore,
for the algorithmto be practical, this computation must be substantially less expensivethan the total cost
of computing do(q, &) for al the objects e represented by &. Aswe shall see, it is sufficient for cor-
rectness that di(q, &) < do(q,ep) for any object ey in the subset represented by &. Some of the variants
of the algorithm (e.g., farthest neighbors; see Section 2.4) make use of another set of distance functions,
d}(q, &), that bound from above the distances from q of the objects in a subtree (of course, do = do, SO
do is not really needed). In other words, d}(q, &) > do(q,ep) for any object ey in the subset represented
by &.

In most cases, the search hierarchy arises naturally from the hierarchical structureof T. Inthe search
hierarchy for the R-tree, for instance, we have three types of elements. Elements of type O are the spa
tial objects themselves, elements of type 1 are minimum bounding rectangles for single objects, while
elements of type 2 represent R-tree nodes. The reason for distinguishing between the spatial objectsand
their bounding rectangles will become clear later. The distance functions are typically based on a dis-
tance metric dp( 1, p2) defined on pointsin the space, such as the Euclidean metric. Thus, for arbitrary
spatial objects 0, and 0,, we define d(01,02) = MiNp, co, pyc0,1dp( P1, P2)}2. Thisdefinition servesasa
basisfor the distancefunctionsfor all threetypes of e ements, the only difference being the types of the
arguments. Given an object 0 and any rectangler that bounds o (i.e., r can be the minimum bounding
rectangle of o or the rectangl e associated with any ancestor of the leaf node containing o), thisdefinition
guaranteesthat d(q,r) < d(q,0), thus ensuring correctness. In fact, according to this definition, the dis-
tance functions obey an even stricter condition, namely that di(q,&) < du(q,e:) for any element g, that
is adescendant of g in the search hierarchy.

2.3 Algorithm

The key to our incremental nearest neighbor algorithm [36] is that it traverses the search hierarchy in
a “best-first” manner, like the classic A*-algorithm [59], instead of the more traditional depth-first or
breadth-first traversals. In other words, at any step of the algorithm, the algorithm visits the element
with the smallest distance from the query object among al unvisited elementsin the search hierarchy (or,

2|n other words, if 0, and 0, have at least a point in common, then d(01,0,) = 0. Otherwise, d(04,0,) equalsthe smallest
distance between the boundaries of 0; and 0.



more accurately, all unvisited elements whose parents have been visited). Thisisdone by maintaining a
global list of elements, organized by their distance from the query object. A data structure that supports
the necessary operations (i.e., insert and delete minimum) is an instance of an abstract data type termed
apriority queue. In order to break ties among e ements having the same distance, we give priority to
elements with lower type numbers, and among € ements of the same type, priority is given to elements
deeper in the search hierarchy. Thisallowsthe algorithm to report neighbors as quickly as possible.

Thegenera incremental nearest neighbor a gorithmisshownin Figure 3, whereqisthe query object,
Sthe set of objects, and T a data structure that organizes S. Since we make no assumptions about the
objectsor the datastructure, the algorithm is presented in terms of the search hierarchy induced by them.
The agorithm starts off by initializing the priority queuewith theroot of the search space (lines1-3). In
the main loop, the element g closest to g istaken off the queue. If itisan object, wereport it asthe next
nearest object (line 7). Otherwise, the child elements of & in the search hierarchy are inserted into the
priority queue (line10). Letting o, bethek™ object reported by theal gorithm, observethat the non-object
elements on the priority queue (i.e., eements g witht > 0) essentially represent portions of the search
hierarchy that did not have to be explored to establish o, as the k" nearest neighbor. Thus, if oy isthelast
neighbor requested, those portions are said to be pruned by the algorithm, and all distance computations
for abjects descended from the non-abject elements on the priority queue are avoided. Aswe show in
Section 2.5, the a gorithm achieves maximal possible pruning with respect to the given search hierarchy.
Of course, if more neighborsare requested, some of those elementsmay beprocessed later. Neverthel ess,
thefact that their processing is deferred means that o is reported as quickly as possible.

INCNEAREST(Q, S T)

1 Queue — NEWPRIORITYQUEUE()

2 @ < root of the search hierarchy induced by g, Sand T
3 ENQUEUE(Queue, &, 0)

4 whilenot ISEMPTY(Queue) do

5 @ < DEQUEUE(Queue)

6 ift=0then/* g isanobject*/

7 Report g as the next nearest object
8 edse

9 for each child element e of g do

10 ENQUEUE(Queue, &, dy(Q, &))

11 enddo
12 endif
13 enddo

Figure 3: Generalized incremental nearest neighbor algorithm.

Interestingly, in the spatial domain, the algorithm can be viewed as having an initial phase that cor-
responds to an intersect query (or, if q isa point, a point-location query). In particular, the algorithm
first processesall elementsein the search hierarchy withd(q,e) = 0, namely those elementsthat q inter-
sects (fully or partially). Thus, at the conclusion of thisinitial phase, all leaf hodesin the spatial index
intersecting g have been processed and their contents inserted into the priority queue, and all objectsin-
tersecting q have been reported. A similar observation a so holds for many of the search hierarchies for
similarity search that we present in the remaining sections.

To get abetter ideaof how thealgorithmfunctions, |et us examine how it behaveswhen appliedto the
R-tree for spatial data objects. Initialy, the root of the R-tree (representing all the data objects) is placed
on the priority queue. At subsequent steps, the element at the front of the queue (i.e., the closest el ement
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not yet examined) isretrieved, and thisis repeated until the queue has been emptied. Informally, we can
visualize the progress of the algorithm for a query object q as follows, when q isapoint (see Figure 4).
We start by locating the leaf node(s) containing g. Next, imagine a circle centered at g being expanded
from a starting radius of 0; we call thiscircle the search region (for query objects other than points, the
search region will have amore complex shape). Each time the circle hits the boundary of anode region,
the contents of that node are put on the queue (and similarly for the bounding rectangle of an object), and
each time the circle hits an object, we have found the object next nearest to g. We can characterize the
contents of the priority queue based on their relationshipswith the search region. The elements still on
the queue are outside the search region (but they al have parents that intersect the search region), while
all elementsthat have been dequeued lieat least partialy inside. Also, nodeswhose bounding rectangles
are fully contained in the search region will have had their entire subtrees already taken off the priority
queue. Therefore, al the queue elements are contained in nodes whose bounding rectangles intersect
the boundary of the search region. Similarly, for al objects on the priority queue, their corresponding
bounding rectangles intersect the boundary of the search region.

JER
2BAS

I
prae]
R

Figure 4: The circle around query object q depicts the search region after reporting 0 as
next nearest object. For simplicity, the leaf nodes are represented by a grid; in most spatial
indexes, the shapes of the leaf nodes are more irregular. Only the shaded leaf nodes are
accessed by the incremental nearest neighbor algorithm. The region with darker shading
is where we find the objects in the priority queue.

It should be clear now why we choose to distinguish between the spatial objects and their bound-
ing rectangles in the R-tree implementation of the incremental nearest neighbor agorithm. Usually the
precise geometry of the objectsis stored in a separate file on disk, whereas the bounding rectangles are
stored directly in the leaf nodes of the R-tree. Thus, computing the distance from the query object to the
bounding rectangle of an object is much less expensive than computing the distance to the object itself.
When aleaf hodein the R-tree isvisited by the algorithm, the bounding rectangles for the objectsin the
leaf node are inserted on the priority queue. The actual distancefrom the query object to adata objectis
computed only when its bounding rectangle reaches the front of the priority queue.

In fact, at times, we can report an object as a nearest neighbor without ever having to compute its
distance from the query object. Such a situation can arise when using an R-tree, where we recall that
elements of type 1 represent minimum bounding rectangles of objects — that is, each element e; rep-
resents only one object. In particular, when processing such an element e;, we can sometimes use the
distance d](q, e1) toimmediately report the object o represented by e;, without computing the actua dis-
tanced(q,0). Thiscan be doneprovidedthat dy(q,e;) < D, where D isthe distance of the element at the
front of the queue (i.e., after e; hasbeen removed), sincewe then know that d(q, 0) isalso no larger than
D. Thisprincipleisgenerally applicableany timethat one (or more) of theelement typest > O represents
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single objects and the upper-bound distance function d; can be defined.

Deferring the computation of theactual distancesusually leadsto many fewer object distance compu-
tations, except when alarge number of neighbors must be reported (i.e., k neighborsare required, where
k isasignificant fraction of N, the size of the data set §). Hence, when the algorithmis terminated (i.e.,
enough neighbors have been obtained), any bounding rectangles present on the priority queue represent
distance computationsthat were avoided by their use. Of course, these benefits come at the cost of more
priority queue operations. Similar considerations apply to other search structures.

Asa practical matter, we have observed that a careful implementation of the priority queueis often
crucia for achieving good performance; how important this is depends on the relative cost of priority
gueue operationsand other operationsin the algorithm, such as distance computations. Typically, the al-
gorithm performs more enqueue operations than dequeue operations, and this should guide the selection
of what priority queue algorithmto use. Also, we have found that careful attentionto memory allocation
isan important aspect. In particular, rather than relying on dynamic all ocation for each individual queue
element, the implementation should manage the all ocation from a pool of large memory blocks (thisis
made easier if each type of queue element occupies the same amount of space; aternatively, separate
pools can be kept for each type). Thisway, all the elements remaining on the queue when the algorithm
is terminated can be deallocated inexpensively, since the pool consists only of afew blocks. In our ex-
perience[36], the size of the priority queue usually remains very modest compared to the size of the data
set, soitisunlikey that an externa (i.e., disk-based) implementation is needed.

2.4 Algorithm Extensions

The agorithm is easily adapted to take advantage of imposed distance bounds (as in arange query) as
well as maximum result size (asin ak-nearest neighbor query). In particular, given a maximum distance
bound Dy, We only enqueue elements having distances from q less than or equal to Dyax. A minimum
distance bound Dy, can be exploited in a similar way, but doing so requiresthe additional distancefunc-
tions d}(q, &) for each element type that provide an upper bound on the distances from q of the objects
in the subtree represented by . Taking advantage of such distance bounds reduces the size of the pri-
ority queue (since fewer items will be enqueued) and, consequently, the average cost of priority queue
operations. However, the number of distance computationsor the number of search hierarchy elements
visited isnot decreased when using Dmax, and possibly not even when using Dynin, depending onitsvalue
(infact, utilizing Dmin may even lead to worse performance as it requires computing the d distances).

The simplest way of exploiting a maximum result size, say K, isto simply terminate the algorithm
once k neighbors have been determined. Alternatively, the agorithm can be modified in such a way
that the distance of the ki candidate nearest neighbor is used to reduce the number of priority queue
operations. However, such a modification carries the cost of additional complexity in the algorithm. In
particular, we must use two priority queues, one for the objects and the other for the remaining types of
elements, and we must be able to identify and remove the el ement in the object priority queue with the
largest distance. In thisway, we can keep track of oy, the current candidate ki nearest neighbor, whose
distance is used to prune the search in the same way we used Dya« above.

A useful extension of thea gorithmistofinding thefarthest neighbor of aquery object, i.e., theobject
in Sthat is farthest from g. Thissimply requires replacing d:(q, &) as akey for any element & on the
priority queuewith —d}(q, &) (or, aternatively, ordering the elementson the priority queuein decreasing
order of key values, and using d(q, &) asakey value). Thus, oncean object o hasreached thefront of the
priority queue, we know that no unreported object has a greater distance from g. Observethat asin the
discussion of the nearest neighbor algorithmin Section 2.3 (by reversing the roles of d and d), at times,
we can even report an object as afarthest neighbor without ever having to computeits distance from the
guery object.



In many applications, obtaining exact resultsis not critical. Therefore, users are willing to trade off
accuracy for improved performance. Thisis another direction in which the algorithm can be easily ex-
tended. For approximate nearest neighbor search [2], acommon criterion isthat the distance between g
and theresulting candidate nearest neighbor o’ iswithin afactor of 1+ € of thedistanceto the actual near-
est neighbor o, i.e., d(g,0") < (14 ¢€)d(g,0). Theincrementa nearest neighbor agorithm can be made
approximatein this sense by multiplyingthe key valuesfor non-abject elements on the priority queue by
1+e€. Inother words, for an element &, t > 0, weuse(1+ €)di(q, &) asakey. With thisextension, for the
object o) returned asthe k" nearest neighbor by the algorithm and the actual k™ nearest neighbor oy, we
have d(q,0,) < (1+¢€)d(q,0x). However, notice that in this case, the result objects are not necessarily
reported by the algorithm in strictly increasing order of distance from g. Other methods for performing
approximate nearest neighbor search can often be integrated into the algorithm by similarly modifying
the distancesused in thepriority queue (e.g., themethod of Chen et al. [16], which involvesshrinkingthe
radii of bounding sphereswhen computing their distances). For approximate farthest neighbor searchin
high-dimensional point data, Duncan et al. [22] suggest the criterion that o' is an approximate farthest
neighbor of qif d(qg,0') > d(q,0) — €D, where o is the actual farthest neighbor and D isthe diameter of
the point set (i.e., the distance between the two farthest points)3. Thiscriterion can also beincorporated
into our incremental algorithm in a straightforward manner.

Theversion of theincremental nearest neighbor algorithm presented in thispaper isactually slightly
lessgeneral than our earlier presentation[35, 36] inthat duplicateinstancesof objectsinthesearch hierar-
chy are not diminated. Such duplicate detectionis necessary for spatia indexing methods that represent
each spatial object inall leaf nodeswhose mutually non-intersecting regionsintersect the object (e.g., the
PMR quadtree [51] and the R*-tree [61]). Adding thisfeature to the algorithm in Figure 3 is straight-
forward and only requires a few extralines[36]. However, thisis not needed for the present purposes,
since none of the methods for similarity search presented below result in duplicate instances of objects
in the search hierarchy.

2.5 Correctness and Optimality of the Algorithm

Asaluded toin Section 2.2, the correctness of the algorithm depends on the distance functions used on
the elements of the search hierarchy:

Lemmal Let g be an arbitrary element in the search hierarchy. The following correctness criterion
guarantees that the algorithmin Figure 3 reports neighborsin order of non-decreasing distance: for
any object e in the subtree represented by &, we have d;(q, &) < do(q, €p).

Proof We prove the lemma by contradiction. Assume that the condition holds for all elements of the
search hierarchy and assume that ey and €, represent two objects, with do(0, €) < do(q, &), that are
reported out of order (i.e., €, first). Thisimpliesthat a some point, €, isthe element in the queue with
the smallest distance from ¢, while an element g that represents some subset that contains ey isaso on
the queue. In other words, di(q,&) > d(q, ;). However, since di(q,&) < do(q,€) < d(q, &), we have
d(0,&) < d(q.€;), contradicting the assumption that € is reported before gy. Thus, thelemmaholds. m

Some of the variants of our algorithm outlined in Section 2.4 make use of the upper-bound distance
functions d;. For these variantsto be correct, these functions must indeed upper-bound the distances of

3The motivation for basing the criterion on an absolute error bound based on D rather than arelative error bound based on
d(q,ok) isthat the absolute error bound gives atighter bound in the farthest neighbor case. For example, all pointsin Swould
tend to be the approximate farthest neighbor according to the relative error bound if the pointsin Swere relatively closewhile
q isvery far from these points [22].



objectsin asubtree— that is, for any object ey in the subset represented by g, we must have d}(q, a)>
dO(qv eO)

Visiting an element in the search hierarchy and computing distances can both be expensive opera-
tions. For example, for the R-tree version, visiting an R-tree node involvesnode 1/0O, and computing the
distances of objects may aso involve I/O (if stored outside the R-tree) in addition to potentially expen-
sive geometric computation (e.g., for polygons). Thus, our goal isto visit as few e ementsin the search
hierarchy as possible. Thisnotion is captured in the notion of r-optimality (range optimality):

Definition 1 Let o, bethe k™ nearest neighbor to a query object q reported by a nearest neighbor algo-
rithm, which operates on a search hierarchy induced by a set of abjects S, a data structure T, and the
guery object g, using distance functionsd;. The algorithmisr-optimal if for all visited elements g inthe
search hierarchy, di(q,&) < d(q, o).

Accordingto thisdefinition, anearest neighbor algorithmisr-optimal if it visitsthe same search hier-
archy elementsaswould arange query with query radiusd(qg, o), implemented with atop-downtraversal
of the search hierarchy. Theincremental nearest neighbor algorithmis r-optimal, as shown below:

Lemma 2 If thedistancefunctionssatisfythecorrectnesscriterion, thealgorithmin Figure3isr-optimal.

Proof Again, we proceed by contradiction. Let o be the k' nearest neighbor to g, and assume that g
is an element that was visited before o, was reported, with di(q, &) > d(q,0). Thisassumption means
that when g was visited, some ancestor g of the element e representing oy in the search hierarchy ex-
isted in the priority queue, with di(g,&) < dv(q,&:). By the correctness criterion, we have di (g, &) <
do(0, &) = d(q,0x) whichimpliesthat d;(q,&) > dyv(q,e). Thiscontradictsthe initial assumption that
g was visited before o, was reported, so the lemma holds. m

Underlying both lemmas is the premise that for any object ey that has not been reported, thereis a
representative  on the priority queue (i.e., g isan ancestor of ey inthe search hierarchy). Thisisclearly
trueinitially, sincetheroot of the search hierarchy representsall the objectsin S. The only actions of the
algorithm are to remove objects from the priority queue and to replace search hierarchy elements with
all their children. Thus, the algorithm never violates the premise.

Observe that the correctness criterion (i.e., di(q, &) < do(q, ep)) does not actually guarantee that all
search hierarchy elements are obtained from the priority queue in strict order of distance. In particular,
the criterion does not prevent the possibility that we may obtain the elements g and & in succession,
where di(g, &) > dy (g, &) and neither element is an object*. The implication is that the algorithm has
not necessarily visited all elements g with d;(g,&) < d(g, 0x) when the k! neighbor oy of qis reported.
However, thisdoes not change the fact that object e ements are obtained from the priority queuein order
of distance. Often, however, the distance functions satisfy the stricter criterion that di(g,&) < dv(q,e)
for any element e that is a descendant of & in the search hierarchy. Thiswas the case for the distance
functions defined for the R-tree in Section 2.2. This stricter criterion guarantees that elements are ob-
tained from the priority queuein order of increasing distance from the query object, regardless of their
type.

It isimportant to note that r-optimality does not imply that the incrementa nearest neighbor algo-
rithm for the given search hierarchy isnecessarily optimal in some absol ute sense (whether we consider
only the number of distance computationsrequired or the overall work). First, actua search performance
is highly dependent on theindex structure that the search hierarchy isbased on. Performance can suffer

4In other words, g isachild of g that iscloser to the query object thanits parentis. Suchasituation couldarise, for example,
in the vp-tree (see Section 4.2.1).



if theindex structurepoorly capturesthe inherent structure of the search space. Second, it is often possi-
ble to define more than one search hierarchy for agiven index structure, each with different performance
characteristics. In some cases, different choices of a search hierarchy even represent a tradeoff between
the amount of work required to maintain the priority queue operations and to compute the various dis-
tance functions (e.g., see Section 4.6). Moreover, it is sometimes possibleto tailor the algorithm more
closely to the givenindex structurethan is achieved with our general notion of search hierarchy. Finally,
even for a specific search hierarchy, it is possiblethat ak-nearest neighbor algorithmis more efficient for
any fixed value of k. Thus, some sacrifice in performance can be expected for the flexibility offered by
the incremental aspect. However, when the number of desired neighborsis unknown prior to initiating
the search, an incremental algorithm provides much better performance on the average than al gorithms
that require fixing the number of neighborsin advance (we observe this experimentally in Section 6).

3 Incremental Similarity Search with M apping-Based Approaches

In mapping-based approaches, objects are mapped into multidimensional points (also known as feature
vectors) in such away that distancesin the mapped space approximate the distances among the original
objects. Formally, let SC U beafiniteset of dataobjectstakenfromauniverseU,andletd : U x U— R ™
be a distance function on U. The key to such methodsis amapping F : U — R™and an accompanying
distancefunctiond: R™x R™— R*. Typically, 6 issomeMinkowski metric L, themost common being
the Euclidean (L), the Cityblock (L), and the Chessboard (L.,) distance metrics. F is often termed an
embedding of (S,d) into (R™,d), and a Euclidean embedding when & is the Euclidean metric.

By applying F to dl the elements of S the result of a query on Swith a query object g can be ap-
proximated by also mapping the query object g and then applying a corresponding query to F(S) with
F(q) asaquery object. The advantage of doing so isthat it allows replacing the expensive computations
of d(q,0), for o0 € S by the much less expensive computationsof &(q',0'), for d = F(g) and o’ € F(S).
Most importantly, by using a spatia index to represent F(S), many pointso’ in F(S) can be pruned from
the search without having to evaluate (', 0'). Aswe shall see in Section 3.2, the property of F being
contractiveisimportant for such queries, i.e., that & F(01),F(0,)) < d(0;,0;) for al 01,0, € S.

In principle, any spatial indexing method can be used to implement search with the mapping-based
approach. However, when the mapping resultsin m, thedimensionality of the mapped space, being high,
indexing methods specifically designed for high-dimensional spaces should be employed. Examples of
such methods include hierarchical spatial indexes such as the X-tree [6], LSD-tree [33], and hybrid
tree[13] (typically applicable up to 2030 dimensions). These methodsbreak downfor very high dimen-
sionsin which case alinear scan is often faster. In such a case, attention has been focused on speeding
up the linear scan process by reducing the size of the data that is examined during the scan (via the use
of quantization), thereby, hopefully, pruning most irrelevant objects from further consideration. Thisis
the basis of the VA-file method [ 72, 25], and the hybrid 1Q-tree method [5].

The remainder of this section is organized as follows: In Section 3.1, we present a brief overview
of mapping-based approaches, which are shown to fall into three classes. In Section 3.2, we go into the
background of how search is performed by using the mapping. In Section 3.3, we show how to per-
form incremental nearest neighbor search with mapping-based approaches. In Section 3.4, we demon-
strate that the result is a correct algorithm when F is contractive, and discuss the implications of non-
contractiveness.

3.1 Mapping Methods

Numerous methods have been proposed for mapping objectsinto multidimensional vectors. Such meth-
odsfall into three general categories:
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¢ Domain-specific mapping methods are derived using some special properties of the abjects.

¢ Dimensionality-reduction methods apply when the data objects are aready represented by multi-
dimensional points, but of too high adimensionality for practical use of spatia indexes.

¢ General embedding methods perform the mapping based solely on the distance function d and its
properties.

Below, we briefly describe afew examples of methods from each category. Each method makes differ-
ent assumptionsabout Sand d and their properties. In some cases of domai h-specific mapping methods,
no explicit distance function d may exist, beyond the subjective judgments of human domain experts.
However, the vectors resulting from domain-specific mapping methods often have amuch larger dimen-
sionality thanis practical for spatial indexing, so it may be necessary to apply dimensionality reduction.

3.1.1 Domain-Specific Methods

Domain-specific methodsexist for awide variety of datatypes and applications, such asimages, strings,
and time series. Such methods are often referred to as feature extraction, and their results as feature
vectors.

For images, anumber of similarity measures have been proposed, based on different aspects of im-
ages, such as color [30], texture [46], and shape [1, 41]. The color histogram[30] is a common feature
extraction method that allows matching images by color. Inits simplest form, such histograms are con-
structed by dividingthe color spectruminto anumber of intervals, and then counting the number of pixels
in the image whose colorsfall into each interval. More accuracy is obtained by dividing theimage into
several equal-sized parts, each of which hasits own color histogram. Thus, the dimensionality of color
histogram feature vectors can be quite large, often ranging from 64 to 256. A feature extraction method
for shape matching in collections of 2D medical images, specifically tumor images, was presented by
Korn et al. [41]. Their method is based on applying a series of morphol ogical operationsto each image,
resulting in a series of derived images. The vaues of the components of the feature vector of an image
are then simply the numbers of black pixelsin each of the derived images (including the original image).
The Chessboard distance (L.,) between the feature vectors of two images a and b isthen alower bound
onthedistanced(a, b), whered isdefined in terms of pixel-wisecomparison between the derived images
of aandb.

3.1.2 Dimensionality-Reduction Methods

Dimensionality-reduction methods are applicablewhen SC U = R". The rationale for applying dimen-
sionality reduction is that the pointsin Soften lie in a subspace of lower dimensionality than n. Thus,
theimplicit goal of dimensionality-reduction methodsis to identify a subspaceV of R" that contains S,
alowing al distancesto be preserved. Of course, the dimensionality of V may still be high, so it may
be impossible to completely preserve the distances when reducing the dimensionality down to the tar-
get dimensionality m (which is usualy significantly smaller than n). The reason why it is advantageous
to work with lower-dimensional point setsisthat working with high-dimensional point sets can be very
expensive. Partly, thisisdueto thefact that the distance computations are more expensive. Moreimpor-
tant, however, are various geometric effects that arise in high-dimensional spaces. For example, spatial
indexing becomes increasingly ineffective as the dimensionality increases, so that even simple queries
may result in examining al the pointsin S. Recall that the dimensionality of the vectors that result from
domain-specific methods is often very high, making it necessary to reduce their dimensionality.

The most common dimensionality-reduction methods are based on linear transformationsof thevec-
tor set S Examples of such methods are the essentially equivalent Karhunen-Loéve transform (KLT),
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singular value decomposition (SVD), and principal component analysis (PCA) methods. Briefly, these
methods apply a linear transformation to S, yielding S, that involves rotation and translation. Further-
more, the coordinate axesin S are ordered based on “importance”, as measured by variance. In partic-
ular, the linear transformation is such that thefirst axisin S isthe axisthat yields the greatest possible
variancefor thevectorsin S, etc. Thisenablesusto keep only thefirst few dimensionsof thevectorsin S
while retaining as much information as is possiblewith alinear transformation. The drawback of these
methods isthat they are data-dependent, in that the mapping F is constructed based on all the abjectsin
S. Thus, they are most appropriatein situationswherethe databaseis static (e.g., stored on CD-ROM) or
changeslittle(at least in terms of data distribution). Neverthel ess, somework has been done on adapting
them to situations where the database is dynamic [39].

Other dimensionality-reduction methods exist where the mapping F isindependent of S, thus mak-
ing them more appropriate for dynamic databases. Examples of these methods are the discrete Fourier
transform (DFT), the discrete cosine transform (DCT), and wavel et transforms.

Most dimensionality-reduction methods result in a contractive mapping only for certain typesof dis-
tance functionsd. For example, the linear transformati on-based methods require d (and d) to be the Eu-
clidean metric, as it is the only metric that is invariant to rotation. For other choices of d, it is often
possibleto derive asuitable  that ensures contractiveness, but thismay be at the cost of lower precision
of querieson F(S) (see Section 3.2).

3.1.3 General Embedding Methods

In many applications, evaluating distances according to the distance function d is very expensive, and
deriving a suitable domain-specific mapping is difficult or impossible. Thisiswhere general embedding
methods come to the rescue, as the mapping F that they produceis derived based purely on inter-object
distances as measured by d, rather than on any knowledge about the properties of the objectsin S. Most
such methodsrequired to be adistance metric, thussatisfying the symmetry, non-negativity, and triangle
inequality properties. Clearly, such methods can aso be used for dimensionality reduction, and may in
some cases be preferable to pure dimensionality-reduction methods. Examples of general embedding
methods are multidimensional scaling (MDS) [42, 75], FastMap [24], MetricMap [71], and Lipschitz
embeddings [43].

In MDS, the mapping F is obtained by minimizing some cost function that measures the quality of
the embedding. A common cost function is stress, defined as

Y on0zes(8(F(01), F(02)) — d(01,02))?)
Zol,ozesd(olaoz)z '

Minimizing stressis essentially a non-linear optimization problem, where the variables are the N - mco-
ordinate values corresponding to the embedding (i.e., m coordinate values for each of the N objects).
Unfortunately, MDSis virtually useless for similarity search applications, since deriving F(q) — for the
purpose of searching in F(S) — requires computing the distances of all objectsin Sfrom a query object
g. Thus, using MDS for similarity searching isjust as expensive as applying brute force search, as both
require O(N) distance computations.

In contrast, other methods typically require O(m) distance computations (where mis the target di-
mensionality) to derive F(q). One such method is FastMap, which is based on theideathat we can imag-
ine that the objects represent points in some Euclidean space of unknown dimensionality. The coordi-
nate axes of this (imaginary) space are constructed one by one, in each iteration choosing two objects,
imagining a line passing through them and projecting the rest of the objects onto thisline. This process
is continued until some fixed number of coordinate axes has been obtained. The operations performed
by FastMap are essentialy equivaent to rotations and translations [37], so FastMap can be seen as a
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heuristic version of KLT/SVD/PCA when Sis drawn from a Euclidean space. Unfortunately, when Sis
not drawn from a Euclidean space (i.e., d is hot the Euclidean distance metric), the mapping produced
by FastMap is not contractive [37]. Thisdrawback is shared by MetricMap [71], which isa so based on
concepts from linear agebra.

Lipschitz embeddi ngs define a coordinate space where each axis correspondsto areference set which
isasubset of S. Each coordinate of an object o € Sisdefined as the minimum distancefrom o to an abject
inthe corresponding reference set (if d isnot the Chessboard metric, asuitablescaling factor must also be
applied [43] to guarantee contractiveness). SparseMap [38] isavariant of the Lipschitz embeddingsthat
attempts to reduce the computational cost of the embedding, thus making it more suitablefor similarity
search applications. The heuristicsinvolvedin SparseMap mean that the mapping F that is produced is
not contractive, but this drawback can be alleviated by a suitable modification of the method [37].

3.2 Object Mapping and Distance Functions

The success of mapping-based approaches clearly depends on how well the distances among the mapped
objects correspond to the distances among the original objects. In other words, &(F(0;),F(02)) should
be areasonable approximation of d(01,0,) for 01,0, in S, at least on theaverage. At best, we can achieve
complete distance preservation with F, such that 3(F(0;),F(0,)) = d(04,0,) for al 0,0, € S® How-
ever, thisisrare, so we must be sati sfied with the distance correspondence being approximate. Thus, the
set R C Sresultingfrom aquery performed on F(S) (or more accurately, R = F~1(Rg), whereRe C F(S)
is the result of the query on F(S)) may not match exactly the result R of the corresponding query on
S Two measures, termed precision and recall, are often used to characterize the correspondence be-
tween the two result sets. Precision measures the proportion of the objectsin R that areadso inR (i.e,,
IRNR'|/|R|), whilerecall measurestheproportionof theobjectsinRthat areasoinR (i.e, [RNR|/|R]).
Clearly, they can both be 100% only when R = R, and both are zero if RN R = 0. Reduced precision
reflects more “garbage” in R (often termed false positives) while reduced recall reflects more “good”
objects missing from R’ (often termed false dismissals).

Asan example, consider arange query, wherewewishto determineall objectswithindistancee from
aquery object g. Making use of F(S) and itsspatial index, we perform arangequery on F(S) using F(q)
as aquery object and the same query radius € (in some cases, amore appropriate choiceisto use aquery
radius of f(g), where f dependson F and &). In the case of such arange query on F(S), low precision
indicates that the distances &(F(q),F(0)) are often much smaller than d(q,0), 0 € S In theworst case,
O(F(q),F(0)) < € =d(q,on) for al objectso € S where oy, is the nearest neighbor of g in S, causing
aprecision of nearly zero. On the other hand, low recall indicates that the distances &(F(q),F(0)) are
typically much larger thand(qg,0), 0 € S. To seewhy, observethat an object o that isafal se positive(i.e,
0€ R buto¢ R, where Rand R are defined as above) means that 8(F(q),F(0)) < € < d(qg,0), whileo
suffering falsedismissal (i.e., 0 € Rbuto ¢ R) meansthat d(g,0) < € < &F(q),F(0)). Thus, thequality
of the mapping F with respect to d depends on the extent to which it achieves a balancing act between
high precision and high recall. In other words, for any objects 01,0, € S the distance 8(F(01),F(02))
between them should ideally be as large as possible, while not exceeding d(0;,0;) by a wide margin.
The definitionsof precision and recall are clearly symmetric with respect to the result setsRand R'. For
range queries this symmetry is reflected in the fact that by using a smaller query radius than € for F(S),
precision increases but recall decreases, whereas alarger query radius causes precision to decrease but
recall toincrease. However, whileincreasingthequery radiusistheonly way toincreaserecall (assuming
that it is not aready 100%), precision can be increased to 100% by simply eliminating from R’ those
objects that are not within adistance of € from g (of coursg, it isstill possiblethat R does not contain all

5When this occurs and d and & are distance metrics (i.e., satisfy the symmetry, non-negativity, and triangle inequality prop-
erties; see Section 4.1), F is said to be an isometry and (S, d) and (R™, ) are said to be isometric.
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elements of R). Thisgivesriseto atwo-step filter and refine process, where we use the spatial index on
F(S) as afilter in thefirst step (i.e,, finding all objects o that satisfy 8(F(q),F(0)) < €), and then refine
the resulting candidate set in the second step by using the original distance function d. Thus, we gain
enhanced precision at the cost of having to perform more work. Of course, use of the filter and refine
process (and the spatial index) does not necessarily lead to 100% recall. To ensurethat it does, we adjust
the query radiusfor F(S) to ce, where &(F(q),F(0)) < cd(qg,0) forall o€ S Thus, if 8 F(q),F(0)) > ce
for someo € S thend(q,0) > €, soF(0) canbesafely rejected intherange query on F(S). Unfortunately,
for agiven query object g € U and dataset S C U, we cannot efficiently derive such avalue c on a per
guery basis. Therefore, the only feasible alternativeisto derive a value of ¢ that holds over all possible

ge SandSC U:
&(F(01),F(02))
= —_ . 1
¢ OIB??U{ d(Ol,Oz) ( )
Thevaueof cin Equation 1 clearly dependsprimarily on F and 8, and istermed the expansion of F with
respect tod and d.

For some choices of F and 9, the value of ¢ may be o, or so large that & F(q),F(0)) < ce for most
o0 € S, thusleadingto aprecision of nearly zero (since nearly all objectsin Swould bereported asaresult
of the query). Thus, in such cases, 100% recall can berealized only at the cost of poor performance. In
many applications, achieving 100% recall is not crucial, in which case performance can be improved at
the cost of reduced recall. For the special case when the expansion of F as determined by Equation1is
nomorethanl,i.e, & F(01),F(02)) < d(01,02) forall 01,02 € U, F issaid to be contractivewith respect
to d and &. Clearly, when F is contractive, arange query on F(S) with query radius € always achievesa
recall of 100%. Of course, the expansion ¢ may be lessthan 1, in which case a query radius of ce for a
range query on F(S) providesimproved precision compared to aquery radius of €.

3.3 Incremental Nearest Neighbor Search

In Section 3.2 we saw how we could increase the precision of range queriesto 100% through a two-step
filter and refine strategy that uses a spatial index T on F(S), the result of mapping al the objectsin S
Furthermore, we saw that if F is contractive (or if we adjust the query radius based on the expansion of
F), itisaso possibleto achieve 100%recal. In other words, when F is contractive, the filter and refine
range query strategy obtainsthe exact result that would have been obtained by alinear scan of S(i.e., by
checking therange condition against each object in turn, thereby computing N distances, whereN = |S)).
In this section, we first present afilter and refine strategy for performing incremental nearest neighbor
search that is applicable when F is contractive and that also guarantees that the result is aways correct
(i.e., 100% precision and recal). In Section 3.4, we discussthe implicationsof F not being contractive,
and describe possible variants of the strategy for that case.

Incremental nearest search for the mapping-based approach fitsreadily into the framework presented
inSection 2. Infact, if T, the spatial index on F(S), isan R-tree, the search hierarchy isastraightforward
extension of the search hierarchy for performing incremental nearest neighbor search using R-trees (see
Section 2.2). In genera, regardless of what data structure is used for T, the search hierarchy for the
mapping-based approach is obtained by extending the search hierarchy for T. In the search hierarchy
for T, the elements of type O are pointsin F(S), while the other elements represent nodesin T (and/or
possibly some other aspects of the datastructure). When extending the search hierarchy for T toformthe
new search hierarchy, we increment the type numbers for al the element types of the search hierarchy
of T, and add the objectsin Sas the new elements of type 0. Thus, an element e; of type 1, representing
apoint F(0), has as a child the element e, of type O that represents the corresponding object o € S. For
the specific case of the R-tree, recall that the elements of type 1 were minimum bounding rectangles
of the objects. However, each object F(0) in F(S) is actualy a point, so its minimum bounding box
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is degenerate, and thus equivalent to F(0). Therefore, the elements of type 1 in the (original) search
hierarchy for the R-tree, representing minimum bounding rectangles, always have identical distances as
the corresponding el ements of type O (i.e, in the original search hierarchy), which represent the points
in F(S) (recall that elements of type 2 represent R-tree nodes; see Section 2.2). Thus, the elements of
type 1 can be thought of as representing the pointsin F(S)®, leaving usfree to let the elements of type 0
represent the objectsin S(replacing the original type 0) when extending the search hierarchy for R-trees.
The distance functions of the elementsin the hierarchy are based on d and 9, the distance functions
for Sand F(S), respectively. In particular, for an element e, of type 0, do( g, &) = d(g,0) whereo € Sis
the object that correspondsto . The distance function for elements of type 1, corresponding to points
in F(S), isdefined as
dl(qvel) = 6(F(q)7 F(O))v )

where F(0) isthe point represented by e;. An element of typet > 2 essentially representsaregioninR™
that containsall the pointsin the corresponding subtree. If T isan R-tree, for example, elements of type
2 represent nodes, which cover regions that are rectilinear hyperrectangles. Thus, for t > 2, we define
the distance function

h(0.) = min{8(F(a).p)}. ©

where Ris the region covered by element . Usualy, Equation 3 can be evaluated with fairly simple
geometric calculations (e.g., if 8 issome Minkowski metric and T is an R-tree, the distance is equd to
the distance between F(q) and one of the faces of the hyperrectangle R, or zero if F(q) isinside R).
The upper-bound distance functions ok (see Section 2.4 for their usage) can be defined in a similar way,
except that max would be used in the equivalent of Equation 3. However, since &F(q),F(0)) cannot
simultaneously be an upper and lower bound on d(q,0) unless&(F(q), F(0)) = d(q,0), we cannot define
dr exactly like d; in Equation 2. In Section 3.4 we discuss how a suitable definition can be arrived at,
but this may not always be practical.

Clearly, arange query on the search hierarchy defined aboveisequivalent to thetwo-step range query
algorithm described in Section 3.2, using the same query radius €. Assumingthat T isan R-tree, incre-
mental nearest neighbor search using the hierarchy would proceed as follows (see Figure 3). Initialy,
the root of the R-tree would be inserted on the queue as an element of type 2. If the element g taken
off the queueis of type 2, representing a node n, we insert elements of type 1 (if nisaleaf node) or 2
(if nisanonleaf node) into the priority queue based on the entriesin n. If the element g that comes off
the priority queueis of type 1, we insert the corresponding object as an element of type0. Findly, if the
element g isof type 0, we report the corresponding object as the next nearest neighbor. Figure 5 depicts
how the algorithm would proceed on a small example consisting of three objects and their mapped ver-
sions. Both are shown here as two-dimensional points; we can also think of thefigure as merely showing
the relative distances of the objectsfrom q and the mapped objectsfrom F(q). Observe that the distance
d(q, ) need not be computed by the algorithm, since 8(F(q),F(c)) > d(q,b).

3.4 Correctness and Performance

The distance functions defined above guarantee the correctness of the algorithm when F is contractive,
as they satisfy the correctness criterion outlined in Section 2.5. In particular, for any elements ey and
ey, representing o and F(0), respectively, we have di(q,e;) = 8(F(q),F(0)) < d(qg,0) = do(q, &). Fur-
thermore, for any ancestor &, t > 1, of an element ey, we know that d;(q,&) < di(qg,e1) < do(Q, &),
where e isthe parent of e, since the region represented by & must contain the mapped point F(o) rep-
resented by e;. Thus, if oy isthe k" nearest neighbor of g, the algorithm will perform as many distance

6Since points occupy half as much space as rectangles, we could even replace the minimum bounding rectanglesin the |eaf
nodes of the R-tree by the points themselves, thus doubling the capacity of the leaf nodes.
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Figure 5: Progress of the incremental nearest neighbor algorithm on a small example
involving three objects. Both the objects and their mapped versions are depicted as two-
dimensional points. (a) The search region first reaches F(a), and d(q,a) is computed. (b)
F(b) is reached next, causing d(q,b) to be computed. (c) The object b is determined to
be the nearest neighbor of q.

computations (i.e., using d) as arange query on the same search hierarchy with € = d(g, ox) (since both
would visit exactly the same elements of type 1, i.e., those whose distance from q is less than or equal
to d(q,0x)). Observethat the precision of the range query on F(S) with € = d(q, o) determines the per-
formance of the algorithm, in terms of the number of distance computations. In particular, the precision
P of the range query equals |RN R|/|R| = |R|/|R| (the equality is due to the contractiveness of F),
where R= {0]| d(g,0) < d(qg,0x)} and R = {F(0) | 8F(q),F(0)) < d(q,0x)}. On the other hand, the
proportion of excess distance computations, |R|/|R| — 1= 1/P— 1, isan appropriate measure of the per-
formance of the incremental nearest neighbor algorithm. In the best case, the precision is 100% and the
proportion of excess distance computation is 0%.

If F isnot contractive (i.e., ¢ > 1, as determined by Equation 1), then we may have & F(q),F(0)) >
d(q,0) in which case the correctness criterion doesn’t hold, implying that the algorithm may not return
the correct result — that is, the object o reported as the K nearest neighbor of g may not be the actual
k" nearest neighbor o. In other words, the result of the agorithm would only be approximate in that
the objects in S may not be reported in strictly increasing order of distance from g. For example, in
Figure5, if 8 F(q),F(c)) > d(q,b) > d(q,c), then c would be the actual nearest neighbor rather than b,
but the algorithm would still report b as the nearest neighbor. Nevertheless, we can still characterize the
performance of the incremental nearest neighbor agorithm in terms of a corresponding range query. In
particular, obtaining thefirst k “approximate” neighborswith the al gorithm requires the same number of
distance computations as would be performed with arange query with € = maxX_,{d(q,0)}, where o/
isthei™ object returned by the algorithm.

By suitable modification of the distance functions, it is possibleto achieve 100% recall even if the
expansion c of F is greater than 1 (as determined by Equation 1). In particular, thisis done by adding
% as amultiplicative factor to the distance functionsin Equations 2 and 3 (e.g., by defining d;(qg,e;) =
O(F(qg),F(0))/c). Inthiscase, to obtain k neighborswith the algorithm, the set R of objects whose dis-
tances are computed corresponds to the result of arange query on F(S) with query radiuse = cd(q, o),
where oy is the K nearest neighbor of q. However, if the precision of this range query with respect to
the range query on Swith query radius d(q, o) tends to be low, the proportion of excess distance com-
putations(i.e., |R|/k— 1) tendsto be high, so modifying the distance functionsin thisway may cause an
unacceptable degradation in performance. Thus, in order to get good performance, we may need to live
with the distance functionsin Equations 2 and 3, thereby sacrificing accuracy in the result of the incre-
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mental nearest neighbor algorithm. On the other hand, if ¢ is substantially smaller than 1, modifying the
distance functions should improve the performance measurably, since the precision of arange query on
F(S) would be better withe = cd(q, 0x) thanwithe = d(q, o) (i.€e., withrespect toarange query on Swith
query radiusd(q, 0x)). Ingeneral, if afunction f can bederived suchthat f(&(F(q),F(0))) < d(qg,0),for
al o € S thenwe can achieve correctness by defining the distance functionsd, and d;, t > 2, asfollows:

di(a.er) = f(3(F(q),F(0))), and
d(a.@) = min{f(3(F(a),p))},t=2,

where 0 and R are defined as in Equations 2 and 3. The definitionsabove for the case of an expansion of
c are special cases of these definitions, where f(x) = x/c.

Theupper-bound distance functi onsd; can be properly definedinasimilar way. In particular, assume
that a function g can be defined such that g(&(F(q),F(0))) > d(q,0) for al o € S and let

di(a.er) = g(3(F(q),F(0))), and

~

d(g.a) = rggg{g(é(F(q),p))},tzz,

where 0 and R are, again, defined as in Equations 2 and 3. For example, if ¢'d(q,0) < &(F(q),F(0)),
then g(x) = x/c’. Incidentally, the quantity c/c’ is termed the distortion of F with respect to d and 5,
wherec’d(04,0,) < 8(F(01),F(0,) < cd(0y,0,) forall 0;,0, € U. Recall that thed; functionsare needed
only when a minimum bound Dpi,, is set on the distances of the desired objects, or when finding farthest
neighbors (see Section 2.4). The performance of the algorithm in these applications using the above
definition of d depends on the precision of a“reverse”’ range query on F(S), i.e., aquery that seeks the
objects o such that d(g,0) > A. If many objects o € Sexisted such that g(&(F(q),F(0))) > A while
d(qg,0) < A, the performance would clearly suffer as many false positiveswould occur.

4 Incremental Similarity Search with Distance-Based Indexing

In Section 3 we described a solution to similarity search that involved mapping into alow-dimensiona
vector space in order to take advantage of spatia indexing structures. An aternativeisto construct in-
dex structuresthat are based solely on distances between objects. A number of such methods have been
proposed over the past few decades, some of the earliest being due to Burkhard and Keller [11]. These
methods generally assume that (S d) forms afinite metric space (see Section 4.1). Typica of distance--
based indexing structures are metric trees [65, 66], which are binary trees that result in recursively parti-
tioning adata set into two subsetsat each node. Uhlmann [66] identified two basic partitioning schemes,
ball partitioning and generalized hyperplane partitioning.

Inball partitioning, thedataset i s partitioned based on distancesfrom one di stingui shed abject, some-
times called a vantage point [74], i.e., into the subset that is inside and the subset that is outside a ball
around the object (e.g., see Figure 6a). In generalized hyperplane partitioning, two distinguished objects
a and b are chosen and the data set is partitioned based on which of the two distinguished objectsis the
closest, i.e, dl the objectsin subset A are closer to a than to b, while the objects in subset B are closer
tob (e.g., see Figure 6b).

Below, we collectively usethe term pivot to refer to any type of distinguished object that can be used
during search to achieve pruning of other objects, followingthe convention of Chavez et al. [15]. Inother
words, apivot p € Sisan object for which we have some information about its distance from some or
al objectsin S, e.g., for all objectso € S C Swe know

1. the exact value of d(p,0),
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2. that d(p,0) lieswithin somerange [rio, '] of values, or

3. that oiscloser to p than to some other object p’ € S.

(a) (b)

Figure 6: Possible top-level partitionings of a set of objects (depicted as two-dimensional
points) in a metric tree using (a) ball partitioning and (b) generalized hyperplane parti-
tioning.

While most distance-based indexing structures are variations on and/or extensions of metric trees,
afew radicaly different approaches exist. Several methods based on distance matrices have been de-
signed [67, 49, 70]. In these methods, all or some of the distances between the objectsin the data set are
precomputed. Then, when evaluating queries, once we have computed the actual distances of some of
the objects from the query object, the distances of the other objects can be estimated based on the pre-
computed distances. Clearly, these distance matrix methods do not form a hierarchical partitioning of
the data set, but combinations of such methods and metric tree-like structures have been proposed [47].
The sa-tree [50] isanother departure from metric trees, inspired by the Voronoi diagram. In essence, the
sa-tree records a portion of the Delaunay graph of the data set, a graph whose vertices are the Voronoi
cells, with edges between adjacent cells.

In this section, we describe a number of distance-based indexing methods and show how to perform
incremental nearest neighbor search on them. Thefocusof the discussionison how to construct asearch
hierarchy for each structure such that incremental nearest neighbor search can be implemented. Thus,
we do not always provide much detail about construction algorithmsor devote much effort to comparing
and/or contrasting different structures. Furthermore, with a few exceptions, we do not describe other
nearest neighbor algorithmsin this section (however, see Section 5).

Thissectionisorganized asfollows. In Section 4.1 wediscusspropertiesof thedistancemetric useful
for search pruning. In Section 4.2 we describe the vp-tree [74] and other variants of metric trees that
employ ball partitioning. In Section 4.3 we present the gh-tree [66] and other variants of metric trees
that employ generalized hyperplane partitioning. In Section 4.4 we describe the M-tree [19], adynamic
and balanced metric tree variant, suitable for disk-based implementation. In Section 4.5 we introduce
the sa-tree [50]. Finaly, in Section 4.6 we describe AESA [67] and LAESA [49], methods that rely on
distance matrices.

4.1 Distance Metric and Search Pruning

As mentioned earlier, theindexed objects must reside in afinite metric space (S,d). This meansthat the
distance function d must satisfy the following three properties, where 0,,0,,03 € S
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1. d(Ol,Oz) = d(Oz,Ol) (symmetry)
2. d(01,02) > 0,d(01,02) = 0iff 0, = 0p (non-negativity)
3. d(01,03) < d(01,02)+ d(02,03) (triangle inequality)

Theindexing methods discussed in this section are often applicable even when thesethree propertiesare
relaxed. For example, it rarely mattersif d(01,02) = 0 for some pairsof distinct objectso; and o (inthis
case, d isoften termed a pseudo-metric). Furthermore, adequate performance can often be attained even
if the triangle inequality is occasionally violated’, but this |leads to approximate results (i.e., we cannot
guarantee that the nearest neighbors are obtained in strictly non-decreasing order of distance).

Of the distance metric properties, the triangle inequality is the key property for pruning the search
space when processing queries. However, in order to make use of the triangle inequality, we often find
ourselves applying the symmetry property. Furthermore, the non-negativity property allows discarding
negative valuesin formulas. Below, we enumerate anumber of resultsthat can be derived based on the
metric properties. Our goal isto provideammunition for usein later sectionswhen constructing distance
functions that lower-bound or upper-bound the distances between a query object and the objectsin a
subtreeof somesearch hierarchy (asdefined in Section 2.2). Thus, we providelower and upper boundson
the distanced(q, 0) between aquery object q and some object o, given someinformation about distances
between g and 0 and some other object(s). The reader may wish to skim over thissection onfirst reading
and refer back to it as needed.

Recall that S€ U, where U is some underlying set, usually infinite, and we assumethat (U, d) isalso
ametric space (i.e., that d a so satisfiesthe above propertieson U). For generality, we present our results
interms of (U, d), since aquery object is generally notin S. In thefirst lemma, we explore the situation
where we know the distances from an object p to both g and o (while the distance between g and o is
unknown).

Lemma 3 Given any three objectsq, p,o € U, we have

d(g, p) - d(p,0)| < d(qg,0) < d(q, p)+d(p,0). 4)

Thus, knowing d(q, p) and d( p, 0), we can bound the distance of d(qg,0) fromboth below and above.

Proof The upper bound is a direct consequence of the triangleinequality. For the lower bound, notice
that d(p,0) < d(p,q)+ d(g,0) and d(q, p) < d(q,0) 4 d(o, p) according to the triangle inequality. The
first inequality impliesd(p,0) — d(p,q) < d(qg,0), whilethe second impliesd(q, p) — d(o, p) < d(q,0).
Therefore, combining these inequalities and making use of symmetry, we obtain |d(q, p) — d(p,0)| <
d(q,0), asdesired. m

Figure 7aillustratesthe situation where the lower bound |d(qg, p) — d(p,0)| established in Lemma 3
is nearly attained. Clearly, in the figure, d(qg,0) is nearly as small as d(q, p) — d(p,0). The opposite
relationship (i.e., d(q,0) being nearly assmall asd(p,0) — d(q, p)) isobtained by exchanginggand oin
thefigure. Similarly, Figure 7billustratesthe situation where the upper bound d(q, p) + d( p,0) isnearly
attained.

In the next lemma, we assume that we know the distance between g and p, but that the distance be-
tween p and o is only known to be within some range. Thisisillustrated in Figure 7c, where we show
three different positions of the query object . The lower bounds on the distances d(q;,0) and d(qp,0)
are indicated with gray arrows, and the upper bound on d(d_,0) isindicated with agray broken arrow.

"Distance functionsfor DNA data that are based on edit distance are usually of this nature [63].
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Figure 7: lllustration of distance bounds. Given d(q,p) and d(p,0), a lower bound (a)
and an upper bound (b) can be established for d(g,0). (c) Given that i, < d(p,0) <ry,
we can establish lower and upper bounds on d(q,0). Three positions are shown for g,
demonstrating three cases that can arise.

Lemma4 Let o and p beobjectsin U such thatr,, < d(o,p) < ryi. Thedistanced(q,0) fromqg € U to
0 can be bounded as follows, given d(q, p):

max{d(q, p) — 'ni,Mo—d(q, p),0} < d(g,0) < d(q,p)+ Iy (5

Proof Again, we use the triangle inequality to prove these bounds. In particular, from the inequality
d(q, p) < d(g,0) +d(o, p) and the upper bound d(o, p) < rri, weobtaind(g, p) —d(g,0) < d(0, p) < rn,
whichimpliesthat d(q, p) — rri < d(q,0) (e.9., seeq; in Figure 7c). Similarly, we can combinethetrian-
gleinequality and the lower bound on d(o, p) to obtain r;, < d(o, p) < d(g,0) 4+ d(q, p), which implies
that rio— d(q, p) < d(qg,0) (e.g., seeqy in Figure 7c). Either or both of these lower bounds can be nega-
tive(e.g., for gz in Figure 7¢), whereas distance val ues are required to be non-negative. Thus, the overall
lower bound in Equation 5 is obtai ned by taking the maximum of zero and these two lower bounds. The
upper bound in Equation 5 is obtained by a straightforward application of the triangleinequality and the
upper bound on d(o, p), i.e, d(g,0) < d(q,p)+d(o,p) < d(q,p) + ry (€.9., seethe broken arrow from
g> through p to the outer boundary in Figure 7c). m

In some situations, the distance d(qg, p) in Lemma 4 may not be known exactly. The next lemma
establishes bounds on the distance from g to o in such circumstances:

Lemmab5 Let o, p, and q be objects in U for which d(o, p) is known to be in the range [r)o, ] and
d(q, p) isknown to bein therange [s, Svi]. The distanced(q,0) can be bounded as follows:

max{So — I'ni, "o — Shi,0} < d(g,0) < rpi 4 Sy (6)

Proof Substituting s, for the first instance of d(q, p) in Equation 5 can only reduce the lower bound.
Thus, we find that 5, — ry < d(qg,0). The same is true when substituting s,; for the second instance of
d(qg, p) in the equation, as this instance is subtractive, which shows that r, — sy < d(q,0). Similarly,
substituting s,; for the last instance of d(q, p) in the equation increases the upper bound, so we obtain
d(0,0) < i+ Sy W

Clearly, therolesof the two rangesin Lemmab are symmetric. For an intuitive understanding of the
lower bound, imagine two shellsaround p, one with radiusrange [r o, rni] (Where o isalowed to reside)
and the other with radiusrange [, Shi] (Whereqisallowed toreside). Asillustrated by the shaded arrow
in Figure 8a, the minimum distance between q and o is equal to the space between the shells, if any.
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Figure 8: (a) The lower bound on d(q,0) is illustrated for the case when d(p,0) is in the
range [o,ni] and d(p,q) is in the range [So,Sn]. (b) llustration of how the upper bound
on d(Q,0) can be attained when d(p,0) and d(p,q) are in these ranges.

Similarly, the upper bound can be understood by visuaizing shells around g and o, with p at the outer
edge of each shell, asillustrated in Figure 8b.

In some distance-based indexes, objects are partitioned based on relative closenessto two or more
objects. The following lemma provides aresult that we can use in such situations:

Lemma 6 Leto € U beanobject thatiscloser to p; thanto py, or equidistant fromboth (i.e., d(p1,0) <
d(p2,0)). Givend(q, p1) and d(q, p2), we can establish a lower bound on d(q,0):

Proof Fromthetriangleinequality, wehaved(q, p1) < d(qg,0)+d(p1,0), whichyieldsd(q, p;)—d(g,0) <
d( p1,0). When combined withd( p2,0) < d(q, p2) + d(q,0) (fromthetriangleinequality) and d( p;,0) <
d(pz,0), we obtain d(q, p1) — d(g,0) < d(q, pz) + d(q,0). Rearanging yields d(q, p1) — d(q, pz) <
2d(q,0), whichyieldsthefirst component of thelower boundin Equation 7, the second component being

furnished by non-negativity. m

Oneway to get some intuition about thisresult isto consider the situation shown in Figure 9awhere
g lieson theline between p; and p, in atwo-dimensional Euclidean space, closer to p,. If oiscloser to
p1, itisto theleft of the horizontal line midway between p; and p, which separates theregionsin which
objectsarecloser to p; orto pz. Thus, d(q,0) islower-bounded by thedistancefrom qtothedividingline,
which equals (d(q, p1) — d(q, p2))/2 for the particular position of g in thefigure. If we move g parallel
to thedividing line (i.e., up or down in Figure 9a), the distance from g to the lineis clearly unchanged.
However, thedifference between d(q, p;) and d(q, p) can be shown to decrease as bothincrease?, sothe
valueof (d(q, p1) —d(q, p2))/2will also decrease. In other words, we seethat (d(q, p1) —d(q, p2))/2is
exactly thedistancefrom g to thedividinglinein thefigure, while(d(q, p1) —d(q, p2))/2 decreasesasq
ismoved while keeping thedistancefrom g to thedividing lineconstant. Therefore, thevalue(d(q, p;) —
d(qg, p2))/2 isindeed alower bound on the distance from q to the dividing line, and thus also a lower

8Figure 9b depicts the relative distances for a query point g that is above q. From a2 = a2+ c? we obtain a2 — a2 =

(a—a)(a+a)=c?ora—a= G‘% In the same manner, we can show that B —b = %. Since q is closer to pp, we have

a>banda > B, and thereforea +a > B+ b. Thus, a —a= G‘% < % = B —b, implying that o — B < a— b, and thus
(d(d, p1) —d(d, p2))/2 < (d(q, p1) — d(a, p2))/2.
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bound on the distance between g and 0. Note that thisargument holdsfor al positionsof g that are closer
to p, than to py, astheinitia position of q can be anywhere on the line between p; and p,. Observethat
without additional information, an upper bound on d(g, 0) cannot be established, as 0 may be arbitrarily
far away from p, or ps.

o
’
pl. ______________ .q ------ ° P2
<> P1 q P2
(d(g,p1)-d(d,p2))/2 (b)

(@)

Figure 9: (a) Lower bound on d(q,0), illustrated in a two-dimensional Euclidean space
when q is on the line between p; and py, closer to p;, while 0 is closer to py. (b) The
lower bound can be shown to decrease when q is moved off the line (e.g., to d').

4.2 Ball Partitioning M ethods
421 Thevp-Tree

The vp-tree (Vantage Point Tree) [74] is an example of an indexing method that uses ball partitioning
(and thus is a variant of the metric tree [65, 66]). In this method, we pick a pivot p from S (termed a
vantage point in [74]), compute the median r of the distances of the other objectsto p, and then divide
the remaining objectsinto roughly equal-sized subsets S, and S, as follows:

S ={oeS\{p}|d(p,0)<r}
S ={oeS\{p}|d(p,0) >}

Thus, the abjectsin S; are inside the ball of radius r around p, while the objectsin S, are outside this
ball. Applyingthisrulerecursively leads to a binary tree, where a pivot object is stored in each internal
node, with the left and right subtrees corresponding to the subsets inside and outside the corresponding
ball, respectively. In the leaf nodes of the tree we would store one or more objects, depending on the
desired capacity. An example of such a partitionis shown in Figure 6a. Note that the ball regions play
arole somewhat similar to the bounding rectanglesin the R-tree In fact, we can define bounding values
for each subset S; and S,. In particular, for o € § we haved(p,0) € [ri o, i ni], for some bounding values
lijo and ripi. Given only theradiusr, the known bounds are [rq o, r1hi] = [0,r] and [r2 0,2 hi] = [, ]
(or, more accurately, [0,r — 8] and [r, M], respectively, where & < d(0,01) — d(0,02) and M > d(01,02)
for al 0,01,0, in S). For thetightest bounds possible, all four bounding values can be stored in the node
corresponding to p. However, thismay yield improved search performance, but perhaps at the price of
excessive storage cost. Below, we user|q and ry,; to denote bounding values of S, or S, for statements or
equationsthat apply to either subset.

The simplest method of picking pivotsisto simply select at random. Yianilos[74] arguesthat amore
careful selection procedure can yield better search performance (but at the price of a higher construction
cost). The method he proposes is to take a random sample from S, and choose the object among the
sample objectsthat has the best spread (defined in terms of the variance) of distances from a subset of
S aso chosen at random. For a data set drawn from a Euclidean space for which the data points are
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relatively uniformly spread over ahypercube c, thiswould tend to pick pointsnear cornersas pivots(the
observation that such pivots are preferable was first made by Shapiro [62]). Choosing such points as
pivots can be shown to minimizethe boundary of theball that isinsidec (e.g., thelength of the boundary
in Figure 10ais greater than that in Figure 10b), which Yianilos[74] argues increases search efficiency.
Some intuitiveinsight into the argument that the boundary is reduced as the pivot is moved farther from
the center of ¢ can be gained by considering that if we are allowed to pick points outside ¢ as pivots,
the resulting partitioning of the hypercube increasingly resembles a partitioning by a hyperplane (e.g.,
see Figure 10c). Notice that the areas of the two regionsinside ¢ formed by the partitioning tend to be
about the same when the points are uniformly distributed, and the length of the partitioning arc inside
c isinversely proportiona to the distance between the pivot point and the center of c (see Figure 10).
Observe dso that the length | of the partitioning arc decreases even more as the pivot is moved further
away from c (e.g., see Figure 10c).

O N AT

@) (b) (©

Figure 10: Depiction of partitions of a set of points in a two-dimensional Euclidean space,
assumed to be uniformly distributed in a cube ¢, for pivot points (a) in the center of c,
(b) in a corner of ¢, and (c) outside C.

In the vp-tree, the ball radius is always chosen as the median, so that the two subsets are roughly
equal in size. Another possibility would be to split at the mid-point between the distances of the objects
in S\ { p} that are closest and farthest from p, as proposed by Chéavez et al. [15] (and inspired by Burkhard
and Keller [11]). Thisyields a partition into equal-width “shells’ around p. Chévez et d. [15] argue
that splitting at the mid-point yields better partitions for data sets whose “inherent dimensionality” is
high, asthe objects outsidethe ball may residein athin“shell” when always splitting at the median[15].
However, the disadvantage of splitting at the mid-point is that the resulting treeis not balanced, asisthe
case when splitting at the median.

Clearly, search agorithms are fundamentally the same regardless of how the pivot and ball radius
are determined, since the basic structure is the same. First, let us examine how a range query would
proceed for a query object g and query radius € — that is, we wish to determine al objects o such that
d(qg,0) < &. Such arange query ismost easily implemented with adepth-first traversal of thetree. When
visiting anode n with pivot p and ball radiusr, we must decide whether to visit theleft and/or right child
of n. Lemma 4 enablesusto establishlower boundson the distancesfrom q to objectsin theleft and right
subtrees. If thequery radiusislessthanthelower boundfor asubtree, thereisno needto visit that subtree.
For example, in Figure 11athe left subtree (for the objectsinside the ball) need not be visited, whilein
Figure 11b, the left subtree must be visited. Formally, from Equation 5, in Lemma 4, with r;; = 0 and
rni = r, weknow that the distancefrom qto an objectin theleft subtreeof nisat least max{d(q, p) —r,0}.
Similarly, by applying the equation with rio = r and r,; = o, we know that the distance from q to an
object in the right subtree of nisat least max{r — d(q, p),0}. Thus, wevisit the left child if and only if
max{d(q, p) —r,0} < € and theright child if and only if max{r —d(q, p),0} < €.

We can also use a similar approach to design an incremental nearest neighbor agorithm for the vp-
tree, by specifying the search hierarchy according to the framework presented in Section 2.2. Being that
thevp-treeishierarchical, the search hierarchy essentially falls out of the existing hierarchical structure.
Thus, the elements of the search hierarchy correspond to the objects (type 0) and the nodesin the vp-tree
(type 1). Again, we observe that the ball regions for the vp-tree nodes play the same role as bounding
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Figure 11: During a range query with query radius €, the subtree corresponding to the
inside of the ball need not be visited in (a) while it must be visited in (b).

rectangles in the R-tree. The resulting search hierarchy for a small sample vp-tree is depicted in Fig-
ure 12. Note that elements of type 1 can produce elements of type 0 and 1.

p
p
01 0Oz ] 0>

(@) (b)

Figure 12: (a) An example vp-tree for three objects p, 05, and 0y, and (b) the search
hierarchy induced by the vp-tree.

We now define the distance functions d; for the distance between the query object q and elements
g of typet,t = 0,1. Since elements ey of type O represent objects, dg is simply equd to d. Asfor dy,
recall that the value of dy(q,e;) should be alower bound on the distance d(q,0) for any object o in the
sub-hierarchy rooted at ;. Theinformationwe have on hand to derive such alower boundisthevalue of
d(q, p) and the fact that d( p,0) isin therange [rio, 'ni], Where p is the pivot of the parent e; and [r|o, I'ni]
defines the shell around p containing the objectsin the subtreerooted at e, (i.e., [0,r] if e; isaleft child
and [r,o] if 1 isaright child, where r isthe ball radius). Thus, as we saw above for the range query,
we can make use of Lemma 4, which gives lower and upper bounds on d(q,0) based on exactly such
information. In particular, the definition of d; as obtained from the lemmais:

di(g,e;) = max{d(q,p)—rniro—d(a,p),0}.

This definition of d, is general in that it accounts for e; being either aleft child (in which caser; o = 0
and ry = r) or aright child (in which case rjo = r and r,; = »)°. Furthermore, for either case, it aso
accounts for g being either inside or outside the region for e (i.e., inside or outsidethe ball around p of
radius r). Since the lemma guarantees that di(q,e;1) < d(q,0) for any object o in the subtree rooted at

9As we pointed out before, tight distance bounds for each subtree could be stored in each vp-tree node instead of just the
median [74], thereby causing d; and d; to yield improved bounds. This can improve search performance, but at the cost of an
increase in the storage requirement (i.e., four distance valuesin each node instead of just one).
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e1, we are assured that the incremental nearest neighbor algorithm s correct when applied to the vp-tree
search hierarchy that we have defined (see Section 2.5).

The upper-bound distance function d; can aso be derived from theresultin Lemmad4 (i.e., by Equa
tion 5):

~

di(g,e;) = d(Q,p)+rhi,

where p and ry; are defined as above. Recall that upper-bound distance functions are used when per-
forming farthest-neighbor queries and when a minimum distance bound isimposed on the query results
(see Section 2.4). The correctness of such algorithm variants is guaranteed by the lemma, i.e., since
di(q.e) > d(q,0) for any object o in the subtree rooted at e; .

Given the search hierarchy defined above, incremental nearest neighbor search proceeds as described
in Section 2.3. In particular, when the element obtained from the queue represents an object (i.e., is of
type0), wereport it asthe next nearest neighbor. Otherwise, theelement isof type 1, representing anode
n. If nisanonleaf nodewith pivot p and ball radiusr, we compute d(q, p) and insert p into the priority
queue as an element of type 0. Furthermore, theleft and right children of n are inserted into the priority
gueue as elements of type 1 using the distance function defined above. If nisaleaf node, we perform
the same action as for pivots of nonleaf hodes for the object(s) in the node.

In Section 2.5, we mentioned that theincremental nearest neighbor algorithmis correct evenif some
elements produce elements whose distance to the query object is smaller, provided that the correctness
criterion with respect to the data objectsis not violated. Such situations arise frequently in the vp-tree.
In the example shown in Figure 13, the distance of n, from qisd(q, p1) — r1, wherer; istheball radius
for p;, whilethe distances of both theleft child and right child of n, arelessthan this(d(q, p2) — ro and
0, respectively). However, this does not violate correctness, since the objectsin the subtree rooted at ny
are still no closer to g than d(q, p;) — r1, even though thelower bounds based on the pivot p, and itsball
radiusr, are smaller. In other words, the objectsin theleft subtree of n, must be somewherein the white
regioninsidetheball for p, (denoted S; inthefigure) and not in the darkly shaded region, and the objects
in the right subtree must be in the lightly shaded region (denoted S,) and not outsidethe ball for p;.

).

Figure 13: An example of pivots p; and py for two nodes Ny and Ny, respectively, in a
vp-tree, where Ny is the left child of n;. The regions for the left and right child of ny are
denoted S, and S, respectively, in the figure.

422 ThevpPP-Tree

When the vp-tree is constructed, we must compute the distances of an object o from each of the pivots
on the path from the root to the leaf containing 0. This information is useful, as it can often be used
during search to either prune o from the search or include it in the search result without computing its
distance. Based on thisinsight, Yianilos[74] proposed a version of the vp-tree, termed the vps-tree,
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where we store, for each object (whether it functions as a pivot or is stored in aleaf node), its distance
from all ancestral pivots (i.e., those higher in the tree on the path from the root). In the related vps-
tree, the leaf nodes can store more than one object, thus serving as “buckets’. To see how we make
use of the distances to ancestral pivots, consider an object o, one of itsancestral pivots p, and the query
object g. Given d(qg,p) and d(p,0), Lemma 3 alows us to bound the distance between g and o, i.e,
|d(q, p) —d(p,0)| <d(qg,0) <d(q,p)+d(p,0). Thus, when performing arange query with radiuse, we
can safely discard o if |d(q, p) —d(p,0)| > € or directly includeit in theresult if d(q, p) + d(p,0) < €.

In order to take full advantage of al ancestral pivots, we define two functions dio(g,0) and dyi(g,0)
that provide upper and lower bounds on d(q, o), respectively, for any object o:

dio(g,0) max{|d(q, pi) —d(pi.0)|}, and
di(g,0) = min{d(q,pi)+d(pi,0)},

where p1, p2,... are the ancestral pivots of 0. Observe that when evaluating these functions, no new
distance computations are needed, as d(q, pi) will have been computed earlier in the query evaluation
and d(pj,0) isstoredwith oinitsvp-tree node. Clearly, astraightforward application of Lemma 3yields
d|0(q70) < d(q,o) < dhi(q,O).

Thus, we can discard object o from the result of arange query if dio(g,0) > € and directly includeit
if dni(g,0) <e. Thisistrueevenif |d(qg,v) —d(v,0)| < € ord(q,v)+d(v,0) > &, respectively, for some
pivot object v.

Incidentally, there is an interesting connection between d, and a class of mapping methods termed
Lipschitz embeddings (see Section 3.1.3). In particular, the m ancestral pivots p, .. ., pm Of an object o
can beregarded as msingl eton sets, each of which correspondsto a coordinateaxis, forming the mapping
h: S— R™Mwhere h(o) isthe vector (d(p;,0));. If we now map g and o according to h, the L., distance
du(h(q),h(o)) between h(q) and h(0o) isequal to dis(q,0).

How do we make use of these bounds when performing incremental nearest neighbor search? In
particular, for determining some number k of neighbors, the algorithm should ideally be able to perform
fewer actual distance computations (i.e., based on d) when using the boundsthan when not using them.
The obvious choiceisto modify how objectsare treated when encountered in |eaf nodes. In other words,
if dni(g,0)islessthan or equd to the distancevalue of the element at thefront of the priority queue, o can
beimmediately reported asthe next nearest object without evaluating d(qg, 0). Unfortunately, thissimple
modification is unlikely to improve performance to any significant degree, in the sense of reducing the
number of distance computations. To obtain a better solution, we must establish a new search hierarchy
that makes use of do(q,0). In particular, in our new search hierarchy, type O represents objects, type 1
represents approximate objects, whiletype 2 represents vp-tree nodes. The distance functionsfor types
1 and 2 are asfollows:

di(g.e1) = di(g,0)and
max{d(, p) — ni,fo — d(q, p),0}.
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where o isthe object represented by e, pisapivot for the parent of e, and [r|o, I'+i] iS the corresponding
distance range for objectsin the subtree. Similarly, the upper-bound distance functions are defined as

~

di(g.e1) = dhi(g,0)and

do(q, &) d(g, p) + -
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given the same definitionsof o, p, and ry;. Observethat eementse, of type 2 must carry aong theances-
tral pivot distances d(qg, pi) to enable computing do(,0) and dy;(q,0) for elements of type 1. The cor-
rectness of thissearch hierarchy isguaranteed by theresultsin Section4.1. In particular, we have already
shown that dy(q, e;) < d(q,0) < di(q, e;) followsfrom Lemma3 and that dx(q, &) < d(q,0) < dy(q, &)
followsfrom Lemma 4, where o is a descendant of e; or ey, respectively.

Incremental nearest nei ghbor search using thissearch hierarchy proceeds asfollows(see Section 2.3).
Initially, we simply insert the root of the vp-tree as an element of type 2. Subsequently, if the element
obtained from the priority queueis of type 0, wereport it as the next neighbor, asusual. If the dequeued
element is of type 1, we enqueue an element of type O for the corresponding object, thus computing
its actual distance (alternatively, if dAl(q,el) is smaller than or equa to the distance value for the new
element at the front of the priority queue, we can report the corresponding object immediately without
computing the actual distance). If the element isof type 2, it istreated similarly to what was done earlier
for the vp-tree, except that elements of type 1 are generated for the data objectsin leaf nodes.

The search hierarchy outlined above enables pruning some objects appearing in leaf nodes without
computing their distance. In particular, it prunes objects o such that dio(q,0) > dip(q, Ojast) Where 0jag
isthe last object retrieved in incremental nearest neighbor search — that is, the element of type 1 corre-
sponding to o would remain on the priority queue without being processed).

A drawback of the search hierarchy isthat such pruning is not possiblefor pivotsin nonleaf nodes,
since when processing such a node, we immediately compute d(q, p) for the pivot p. However, if each
nonleaf node only containsthe ball radiusr (and not tight distance ranges [ryo, r'yi] for each subtree), the
distance according to d, from g of one of thetwo elementsis aways zero. In particular, supposethat e,
is a search hierarchy element corresponding to a vp-tree nonleaf node n with pivot p, and let €, and €
be the elements corresponding to the two children of n. Without the distance range information, either
d2(q,€,) or dy(q,€;) will always be zero, depending on whether d(q, p) is smaller than or larger than
r, the ball radius of n (i.e., whether qisinside or outsidethe ball centered at p). Thus, one of the child
elements of e, should be processed next, and we cannot avoid computing the exact value of d(q, p) to
determine which one and to processit (since al ancestral pivot distances are needed).

If tight distance bounds are stored in each nonleaf node for each of the two subtrees (or, at least,
more information than merely the ball radius), then it isin some cases possible to prune nonleaf nodes
from the search without computing the distance from q of the corresponding pivot object. In particular,
supposethat n is anonleaf node with pivot p and that [rq 6,1 1] and [r0,r2,ni] are the distance bounds
for the two subtrees. Based on dio(q, p) and dyi(q, p), we can derive the lower bound max{di(q, p) —
r1hi,"110 — dni(Q, p),0} on the distance between ¢ and any object in the left subtree (i.e., for S;), and the
analogousonefor theright subtree. Hence, if the minimum of dio(q, p) and thelower boundsfor the two
subtreesis greater than zero, it may be possibleto prune n without computing thedistanced(q, p). Based
on this observation, we can augment the search hierarchy above with elements e; of type 3 denoting
“approximate’ nonleaf nodes, with distance function

dio(d, )
d3(g,e3) = min¢ max{dio(q, P) — rLhi, 1,10 — dni(d, p),0} ¢,
max{dio(a, P) — r2,ni, 20 — dni(Q, p), 0}

where p isthe pivot in the node represented by e; and [r1jo,r1,ni] and [r2,0,12ni] are the corresponding
distance boundsfor the subtrees. Thus, when processing an element e, of type 2 representing a nonl eaf
node n, we evaluate ds(q, e3) where e3 represents n. If ds(q,e3) > Dt where Dy is the distance of the
element at the front of the priority queue, then we enqueue e;. Otherwise, we cannot avoid computing
d(qg, p) and must process e, in the manner described earlier (i.e., producing elements for the pivot and
the two children).
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423 Themvp-Tree

A potential criticism of vp-tree and related metric tree variantsisthat thefan-out islow (i.e., just 2). As
pointed out by Yianilos[74], the vp-tree can gain higher fan-out by splitting Sinto m subsets of roughly
equal sizeinstead of just two, based on m+ 1 bounding valuesry, . ...rm (dternatively, wecanletro = 0
and ry, = o0). In particular, Sispartitionedinto S;,S,...,Sywhere§ = {o € S\ {p} | ri_1 < d(p,0) <
ri}. Observethat objectsin the subsets lie on spherica “shells’ around p. Applying this partitioning
process recursively yields an m-ary tree. It is easy to adapt the search hierarchy defined above to this
variant. In particular, the various distance functions defined above for search hierarchy el ements that
represent vp-tree nodesstill apply, provided that we set ri, and ry,; to the proper values—that is, rjg = rj_1
and ry,; = r; for the child corresponding to § (unlesstighter bounds are maintai ned).

Another variant of vp-trees that achieves a higher fan-out, termed the mvp-tree, was suggested by
Bozkaya and Ozsoyoglu [7, 8]. Each node in the mvp-treeis essentially equivalent to the result of col-
lapsing the nodes at several levelsof avp-tree. Thereisonecrucia difference between the mvp-tree and
theresult of such collapsing: only one pivot isused for each level inside an mvp-tree node (although the
number of different ball radiusva uesisunchanged). Thus, inan mvp-treethat correspondsto collapsing
avp-tree over every two levels, two pivots are used in each mvp-tree node with three ball radius values.
An example of the top-leve partitioning for such an mvp-treeis shown in Figure 14.

The motivation for the mvp-tree is that fewer distance computations are needed for pivots during
search since there are fewer of them (e.g., for an mvp-tree node with two pivots, three pivots would be
needed in the corresponding vp-tree). Observe that some subsets are partitioned using pivotsthat are not
members of the sets, which doesnot occur inthevp-tree (e.g., p, isused to partition the subset insidethe
ball around p, in Figure 144). Bozkaya and Ozsoyoglu [7, 8] suggest using multiple partitionsfor each
pivot, as discussed above. Hence, with k pivots per node and m partitions per pivot, the fan-out of the
nonleaf nodesismK. Furthermore, they propose storing, for each dataobject in aleaf node, the distances
to some maximum number n of ancestral pivots (by setting a maximum n on the number of ancestral
pivots, the physical size of all nodes can befixed). Thisisanalogousto the use of ancestral pivotsin the
vp®-tree, as described above, except that this distance information is only maintained in leaf nodes in
the mvp-tree. Another minor departure from the vp-tree that enables additional pruning to take placeis
that each leaf node in the mvp-tree also contains k pivots (whereas pivots are not used in leaf nodesin
the vp-tree). In addition, the distances between these pivots and the data objects are stored in the node
(aversion of the mvp-tree in which pivotsare not used in leavesisalso considered in [8]). Thus, theleaf
node pivots essentialy function like the ancestral pivots.

Clearly, a search hierarchy similar to that for the vp-tree can be defined for the mvp-tree, with the
addition of approximate object elements aswas donefor the vp®-tree (these are generated for leaf nodes
based on distances to ancestral pivots). The question is whether to treat the k pivots in each mvp-tree
node separately. In other words, should we design the search hierarchy so that each mvp-tree nodeis
represented by a single type of element, or should we introduce k types for each node, one of which
represents the node itself, while the others represent partial decompositionsbased on some of the pivots
inthe node? For the second alternative, mfirst-pivot partial node elements are generated from each node
element based on thefirst pivot, m second-pivot partial node el ements are generated from each first-pivot
partial node based on the second pivot, etc. Choosingthissecond aternativewould only make senseif we
could sometimes prune al m partial node elements without computing the actual distance to the second
pivot of the corresponding mvp-tree node. Unfortunately, because of theway the mvp-treeisdefined, this
isnot the case, since at least one of the m partial node el ements generated for anode n must be processed
before the next nearest neighbor can be reported. Similar reasoning applies here as that for pruning of
nonleaf nodes in Section 4.2.2. In particular, if only ball radii are stored for partitions (i.e., not distance
ranges for each partition), the distance value for one of the two partitions based on the first pivot will
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Figure 14: (a) Possible top-level partitionings of a set of objects (depicted as two-dimen-
sional points) in an mvp-tree where two pivots are used in each node, and (b) a depiction
of the corresponding mvp-tree node. The second pivot, Py, partitions the inside of the

ball for p; into subsets S, and S, and the outside of the ball into subsets S5 and S.

always be zero. Augmenting mvp-tree nonleaf nodes with tighter bounds for the distance valuesin the
two partitions of thefirst pivot might make it worthwhile to use partial node elements, but thisis at the
cost of more storage.

424 Other Methods Related to Ball Partitioning

A number of additional proposals of search structures that employ some form of ball partitioning have
been made. Below, we summarize some of these ball partitioning methods. Unlessotherwisementioned,
incremental nearest neighbor search can be performed in these structures using search hierarchies that
are very similar to those described in Sections 4.2.1-4.2.3.

Thevp-tree, one of the most common instancesof ball partitioning, isactually aspecia case of what
Knuth terms a post-office tree whose proposal he attributes to Bruce McNutt in 1972 [40, p. 563]. The
difference isthat each nodein the post-officetree isavp-tree node ( p, r) with the addition of atolerance
0 which is associated with the radius r of the ball centered at p. In particular, given avalue of o, once
pivot p and radiusr have been chosen, the remaining objects are subdivided into two subsets S, and S,
asfollows:

S ={oeS\{p}|d(p,0) <r+3}
S ={oeS\{p}|d(p,0)>r -3}

Thustheobjectsin S; areinsidetheball of radiusr + &, whilethe objectsin S, are outsideaball of radius
r — . Of course, some objectsliebothin §; and S, — that is al objects o where |d(0, p) —r| < 510,
Among the earliest published work on distance-based indexing wasthat of Burkhard and Keller [11].
One of the three structures they proposed employs ball partitioning. However, the distance function
was assumed to be discrete, so that only a few different distance values are possible, say m. At the top
level, some distinguished object p € Sis chosen, and the remaining objectsare partitionedinto m subsets

10Theideaof aloose partition so that the sonsof anode are not disjoint is also used in the os-tree [44, 45], KD2-tree [54, 55],
spatial k-d tree [53], and hybrid tree [12, 13].
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S1,S,. .., Sy based on distance value. Applyingthisprocessrecursively yieldsan m-ary tree. Clearly, p
has the same role as a pivot in the vp-tree, and the result of the partitioning process is analogousto that
of an m-ary vp-tree (see Section 4.2.3). In fact, as pointed out by Chéavez et a. [15], a natural adapta-
tion of Burkhard and Keller* stechniqueto continuousdistance functionsisto choose the partition values
ro,r1,--.,rmsuchthat theobjectsare partitioned into mequiwidth shellsaround p. In other words, rg and
Im ae chosen as the minimum and maximum distances, respectively, between p and objectsin S\ {p},
andri = L(rm—ro)+rofori=1,...,m-1.

Baeza-Yates et d. [3] proposed a variant of Burkhard and Keller’s approach that they termed the
fixed-queriestree. Inthisvariant, all nodes at the same level in the tree use the same pivot, and the pivot
objects also appear as data objectsin leaf nodes of thetree!* (unlikethe vp-tree or Burkhard and Keller’s
approach). Therationalefor using just one pivot per level isthe same asinthemvp-tree— that is, so that
fewer distance computations are needed during search, since only one distance computation is needed
for visiting all nodesat agivenlevel (asisthe case when the search backtracks). Thedrawback isthat the
quality of the partitioning may suffer asaresult of using fewer pivots. Fixed-height variants of thisidea
were a so proposed, where al |eaf nodes are at the same level. Thus, some internal nodes have only one
child node (in cases where the node woul d otherwise have been aleaf node), and leaf nodes may contain
arbitrary numbers of objects. Furthermore, each object has the same number of ancestral pivots, and thus
requires the same number of distance computations when constructing the tree. This insight led to the
proposal of thefixed query array[14], whichisessentially a compact representation of the distancesin a
fixed-height fixed-queriestreein the form of an array of bit strings. In the fixed query array, movements
in the equivalent fixed-height fixed-queries tree are simulated with binary search.

Yianilos[73] proposed a variant of vp-trees termed the excluded middle vantage point forest that is
intended for radius-limited nearest neighbor search, i.e., where the nearest neighbor is restricted to be
within someradiusr« of the query object. Thismethod is based on theinsight that most of the complex-
ity of performing search in methods based on binary partitioning, such as the vp-tree, is due to query
objects that lie close to the partition values, thereby causing both partitionsto be processed. For exam-
ple, in the vp-tree, these are objects g for which d(q, p) is close to r, the partitioning value for a pivot
p. The proposed solution isto exclude all data objects whose distancesfrom a pivot are within r of the
partitionvalue (i.e., theball radius). Thisprocessisappliedto al pivotsinthetree and anew treeisbuilt
recursively for the set of all excluded objects. Thusthefinal resultisaforest of trees. Since the width of
al exclusionregionsis at least 2r+, nearest neighbor search limited to a search region of radiusrx can
be performed with no backtracking, but thisis at the price of having to search all the treesin the forest.
Thefact that no backtracking isneeded all ows determining aworst-case bound on the search cost, based
on the heights of thetreesinthe forest. Unfortunately, the method appears to provide good performance
only for very small values of r« [73], which isof limited valuein most similarity search applications.

4.3 Generalized Hyperplane Partitioning M ethods
431 TheGH-Tree

UhImann [66] defined a metric tree using generalized hyperplane partitioning, which has been termed
agh-tree by later authors|9, 8, 27]. Instead of picking just one object for partitioning as in the vp-tree,
this method picks two pivots p; and p; (e.g., the objects farthest from each other) and splits the set of
remaining objects based on the closest pivot (see Figure 6b):

S = {0€S\{py,p2} | d(p1,0) < d(p2,0)}, and

1\When performing incremental nearest neighbor search with structures where pivot objects also appear in leaf nodes, care
must be taken that such objects are only inserted once into the priority queue (either by inserting objects only as they are en-
countered in leaf nodes, or by somehow detecting the fact that an object has been inserted earlier).
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S = {oeS\{p1,p2} |d(p2,0) < d(p1,0)}.

In other words, the abjectsin S, are closer to p, than to p, (or equidistant from both), and the objects
in S, are closer to p, than to p;. Thisruleis applied recursively, resulting in a binary tree where the
left child of anonleaf node correspondsto $; and theright to S,. Thisrule can be restated as stipulating
that S; containsall objects o such that d(p;,0) — d(p2,0) < 0. Clearly, thetwo subsets S, and S, can be
very different in size. Uhlmann [66] actually suggested partitioning based on a median value m, so that
d(p1,0) —d(p2,0) < mappliesto roughly half the objectsin S. For simplicity, we assume below that m
isfixed a O; the discussionis easily generaized to other values.

Theterm “generalized hyperplane partitioning” is derived from the fact that if the objects are points
in an n-dimensional Euclidean space, the partitioning is equivalent to partitioning based on an (n— 1)--
dimensional hyperplane like that used in a k-d tree (in a k-d tree, however, the partitioning planes are
axis-digned). This hyperplaneisthe set of al pointso that satisfy d( p;,0) = d(p,,0). Consider how to
compute alower bound on the distance from a query abject g to an object in one of the partitions, say,
that for S;. If gqisin the partition (i.e., is closer to p;), the lower bound is clearly zero. Otherwise, the
lower bound is equal to the distance from g to the partitioning hyperplane, which is easy to computein
Euclidean spaces. For arbitrary metric spaces, however, we cannot form a direct representation of the
“generalized hyperplane” that dividesthe two partitions, since we assume that the interobject distances
are the only availableinformation.

Fortunately, even given the limited information available in the gh-tree, Lemma 6 shows that it is
possibleto derive alower bound on the distance from ¢ to some object in a partition? (though an upper
bound cannot be determined, sinceobjectscan bearbitrarily far from p, and p,). Inparticular, for arange
guery with query radiuse, theleft subtreefor apivot p must bevisitedif and only if w <eand

theright onemust bevisited if and only if w < e. Similarly, we can define a search hierarchy
for the gh-tree, with the distance of an element of type 1, representing a node, defined as follows:

Mzd(q,pl) ,0t, otherwise.

max { 4@p-d@re) ol - if ¢ isaleft child,
max

dl(qv el) = {

432 GNAT

GNAT [9] (Geometric Near-neighbor Access Tree) is a generalization of the gh-tree, where more than
two pivots (termed split pointsin [9]) may be chosen to partition the data set at each node. In particular,
given a set of pivots P = {py,...,pm}, we split Sinto Sy, ..., Sy based on which of the objectsin P
isthe closest. In other words, for any object o € S\ P, o isamember of § if d(p;,0) < d(pj,0) for al
j=1,....m. Incaseof ties, i isthelowest index among the onesthat participatein thetie. Thus, applying
such a partitioning process recursively yieldsan m-ary tree. Brin [9] left the value of m as a parameter,
and also suggested a way to adaptively choose a different number of pivotsat each node, based on the
cardindlities of the partition sets. The method Brin [9] describesfor choosing the pivot objectsis based
on a philosophy similar to that of Yianilos[74] for the vp-tree (and a so suggested by others[8, 62]). In
particular, initially, randomly pick 3m candidate pivot objectsfrom S. Next, pick thefirst pivot object at
random from the candidates, pick as the second the candidate farthest away from thefirst one, pick as
the third the candidate farthest away from thefirst two, etc.

In additionto pivotsand child pointers, thenodesin GNAT al so storeinformation about the ranges of
distances between the pivots and objectsin the subtrees, which enables more pruning during search. In

12The bound in the lemma is clearly much weaker than would be obtained in a Euclidean space by using the hyperplane
directly.

31



particular, for each pair of pivots p; and p; in anoden, we store therange [rl(c',"), rE,'i")] of d(pi,0) over all
objectsoe SjU{p;} (i.e. 1y = Minges up,y {d(P,0)} andryy” = maxoes u(p, ) {d(P1,0)}). Although
not mentioned by Brin [9], it may also be advantageousto storetherange [rl(c‘,"), r\I )] for d(p;, 0) over all
mobjectso € Sj, bringingthetotal number of rangesto n¥ (astherearem- (m— 1) + mrangesaltogether).
Figure 15 illustrates the distance bounds for two pivots p; and pj, where the dots clustered around p;
depict the objectsin S;.

Figure 15: Depiction of the bounds for two pivots p; and pj in a GNAT. For the sam-
ple query object g with query radius € shown in the figure, pj and its subset would be

eliminated from the search since d(q,p;) — € > rE]'i’J).

If the objects are pointsin an n-dimensional Euclidean space, the objectsin § are exactly the objects
in S\ P that fall into the Voronoi cell with p; as a site. For Euclidean spaces, it is relatively straight-
forward to directly represent the Voronoi cells (although this becomes increasingly impractical as the
dimensionality grows), and thus compute alower bound on the distance from a query point to the points
inside a given cdll (i.e., based on the geometry of the cell). Unfortunately, for arbitrary metric spaces,
computing a lower bound in thisway is not feasible since, as we saw for the gh-tree, we do not have a
direct representation of the “generaized Voronoi cells’ formed by the pivots (termed Dirichlet domains
in[9]). Clearly, we could simply apply Lemma 6, as we did for the gh-tree, which would yield the lower
bound (d(q, pi) —d(q, pj))/20ond(qg,0) for an objectoin S (i.e., oiscloser to p; thanto p;), where p; is
the object in P closest to q (since this choice of p; maximizes the lower bound). However, as shown be-

low, tighter bounds can be obtained by using the distance ranges [rl(c';‘), rﬂi")] (based on Lemma 4), thus
achieving better search performance. We can think of the distance bounds as effectively constraining
the“shape” of the region represented by the child nodes so as to approximate the corresponding VVoronoi
cells. For example, in Euclidean spaces, the distance bounds represent spherical shells around the piv-
ots, and the Voronoi cell for p; is approximated by the intersection of the shells for all the pivots p;.
Of course, two approximate Voronoi cell regions may intersect each other, unlike actual Voronoi cells
(which at most share a boundary).

Therange query agorithm for GNAT described by Brin [9], for aquery object g and query radiuse,
proceeds in a depth-first manner. When processing a node n, the distances between g and the pivotsare
computed one by one, gradually eliminating subtrees when possible. The children of n are visited only
after computing the distances of all pivotsthat could not be eliminated using the distances of pivotsthat
were considered earlier. In particular, the processisinitiated with the set P consisting of all pivotsfor n.
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At each step, we remove one of the abjects p; € P whose distance from g has not been computed, and
computed(q, pi). If d(q, pi) <&, weadd pI tothequery result. Next, for al p; € P, weremove p; from P
if d(g,pi) — &> rE" D ord(q, pi)+€ < rlo ) (or, equivalently, if max{d(g, p.)—r( D rl(c')‘) d(g,p)} > €,
based on Lemma 4). Figure 15 depicts two sample query objects ¢, and d, and associated query radii
g1 and &, respectively, both of which would cause p; to be removed from P sinced(qy, pi) — €1 > rE]'i’”

and d(qp, pi) + &2 < rl(c';‘). After the distances from ¢ for al the pivotsin P have been computed (or P
becomes empty), the children of n that correspond to the remaining pivotsin P are searched recursively.
Notice that apivot p; may be discarded from P before its distance from g is computed.

A naivedefinition of asearch hierarchy for incremental nearest neighbor search isobtained by using
only two types of elements, for objectsand nodes, and deriving thelower-bound distance function based
on all the distanceranges. In other words, for anoden’ corresponding to pivot p; inits parent n, we can
derive the following lower bound (based on Lemmas 4 and 6) on the distance d(q,0), where o isin the
subtreerooted a n' (i.e., 0 € §j):

d > Mj —d 5 Mi
max {d(q,p)— ('iJ) (i.0) —d(q, pi), (9,pj)—d(q p'),O}.
ie{l,...,m} 2

Clearly, evaluating thislower bound requires computing the distances between g and al the pivotsin n.
Thisisamgjor drawback, asit meansthat range search on thissearch hierarchy would generally compute
more distances than the range query algorithm described above, since the latter is sometimes able to
discard pivots from consideration without computing their distances from q. The challenge we facein
defining amore effective search hierarchy isthat with incremental nearest neighbor search, wehaveno €
to base the pruning on. In particular, regardless of k, the number of nearest neighbors obtained, our goal
is to perform no more distance computations than the range query algorithm would with € = d(q, ox),
where o is the k" nearest neighbor.

To approach thisgoal, the search hierarchy must essentially embody gradual computation of thedis-
tances between g and the pivotsin anode. We proposeto do thisin the following way. Elements of type
0 and 1 represent objectsand GNAT nodes, as usual, but elements of type 2 represent partially processed
GNAT nodes. For each element e, of type 2 representing a node n, we maintaininformation about which
pivotsand child nodes have aready been enqueued, aswell asbounds on the distancesbetween g and the
remaining pivotsand child nodes (i.e., the objectsin the subtreesrooted at the child nodes). In particular,
if the child node ' corresponding to a pivot p; has not yet been enqueued, we define

d(qv pj) — d(qv pl)

Oho(@Tj) = ma{a(a. p)— 1y rig” (@ p) > 0}, and
(0. Tj) = min{d(ap)+ri"},

where P’ isthe set of pivots of nwhose distances from g have been computed, S; isthe set of objectsin
the subtreerooted at ', and Tj = Sj if p; € P' or T; = S; U {p; }, otherwise. Thevaluesof d(q, Tj) and
dni(q, T;) are computed incrementally as each new pivot is added to P’ and itsdistance from g computed.
Given these definitions, the distances for e, are defined as

d(0.8) = min{dio(q,Tj)}, and
J

d2(q7e2) = [H?é{dhl(qv-rj)}v

where Ris the set of sets T; for which the child node corresponding to pivot p; has not been enqueued.
Similarly, the distancesfor an element e; of type 1 for anoden’ are defined in terms of the current values
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of dio(q, Tj) and dni(q, T;) when e; was created, where p; isthe corresponding pivot inn, the parent of n'.
The correctness of incremental nearest neighbor search using this scheme should be clear (by Lemmas 4
and 6).

When performing incremental nearest neighbor search using thishierarchy, it is easy to seewhat ac-
tionsto take when processing elements of type O or 1. In particular, for an element of type 0 we simply
report the corresponding object as the next nearest neighbor. For an element e; of type 1 correspond-
ing to a node n, we effectively generate a new element e, of type 2 for the node, where d(q, T;) and
dni(q, T;) for each pivot p; areinitialized to 0 and oo, respectively (thus, since dx(q, &) = 0, &, will get
processed next). It islessclear which of two actionsto perform when processing an element e, of type2,
representing a partially processed node n. Thetwo possibleactionsare: 1) compute the distance from q
toanew pivot p; of n (thereby generating an element of type O for p; and updating dio(q, Tj) and dyi(q, Tj)
based ond(q, pi) for each T € R), or 2) generate an element of type 1 for the child corresponding to pivot
pi of n (thereby removing T from R). For both actions, dx(q,€,) > da(q,e;) (to see why, observe that
action 1 may increase some dio( g, Tj) for Tj € Rasit isbased on a maximum and p; has been added to
P, whileaction 2 removes T; from R, so the minimum over di(q, Tj) can only increase), where €, repre-
sents the el ement that resultsfrom performing the action on e,. Clearly, if thedistancesfrom q of all the
pivots of n have been computed, we can perform action 2 repeatedly until we have exhausted R, thereby
generating elements of type 1 for al remaining children of n. However, if thisis the only instance in
which we chose action 2 over action 1, we are not much better off than we were with the naive search
hierarchy definition, since the only instance in which we will not compute the distances between g and
all the pivots of n before reporting the next nearest neighbor o isif o happensto be one of the pivots of
n.

A simple heuristic that overcomes this drawback is one where we choose the action based on the set
T; € Rwiththe lowest value of diy(q, Tj). In particular, we choose action 1if d(q, p;) has not been com-
puted, where p; isthe pivot that correspondsto Tj, and action 2 otherwise. Letting oy be the K" nearest
neighbor, consider anode n that is visited by the GNAT range query algorithmusing € = d(q, o). The
range query a gorithmavoids computing the distances of pivots p; whenever dio(q, Tj) > d(q, 0x) before
p; is picked. The same is true in incremental nearest neighbor search based on the heuristic outlined
above, sinced(q, p;) isonly computed if dio(q, T;) < dio(q, Ti) for any other pivot p; whose correspond-
ing child has not yet been enqueued — that is, if dio(qg, Tj) > d(q,0x), then d(q,0x) > dio(q, Ti). Un-
fortunately, incremental nearest neighbor search may visit a child node n' of n, say that corresponding
to pivot p;, that would not be visited by the range query agorithm, since n’ would only be visited by
the range query a gorithm after having computed the distances between g and al pivotsin n that cannot
be eliminated. Thus, we cannot quite attain our goal of always achieving the same number of distance
computations as the range query algorithm. However, in practice, the range query algorithm cannot be
used directly for nearest neighbor queries, since the value of d(q, o) would not be known a priori. For
nearest neighbor search, we cannot expect to complete the pruning of all pivotsin anode before visiting
the children, so some heuristic must be used to determine when to visit children.

4.3.3 Other Methods Related to Generalized Hyper plane Partitioning

A structure very similar to the gh-tree, termed the monotonous (sic) bisector tree (abbreviated below as
mb-tree), was proposed by Noltemeier et al. [52] (and used by Bugnionet al. [10]). Theintended applica-
tion wasto point datausing Minkowski metrics (and an extension, the mb* -tree, was defined for complex
objects, such as lines and polygons), but the mb-tree is generally applicable to arbitrary metrics. In the
mb-tree, one of the two pivotsin each nonleaf node n, except for the root, is inherited from its parent
node (i.e., of the two pivotsin the parent of n, the one that is closer to each object in the subtree rooted
a n). Sincethisleadsto fewer pivot objects, it can be expected to reduce the number of distance compu-
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tations during search (provided the distances of pivot objects are propagated downward during search),
at the possible cost of worse partitioning. Furthermore, the radius of the ball around the pivots(i.e., the
maximum distance to objectsin the corresponding subtree) is also stored, which enables more pruning.
The TLAESA method of Mico et al. [47] aso uses an mb-tree-like search structure in conjunction with
adistance matrix to provide lower bounds on the distance from q to the pivot objects during search (see
Section 4.6.3 for more details).

The gh-tree and GNAT (aswell asthe M-tree, described in Section 4.4) can be considered to be spe-
cial casesof agenera classof hierarchical clustering methods, as described by Burkhard and Keller [11]
and Fukunaga and Narendra [28]. Using the description given by Burkhard and Keller [11], a set S of
objectsis clustered into msubsets S, S, . . ., Sy using some criterion. Then a pivot object p; is chosen
for each § and the radius r; = maxocs {d(pi,0)} is computed®3. This processis applied recursively to
each S, possibly with a different number m of clusters each time. Observe that for performing search
(e.g., range search), alower bound on the distances from a query abject q to al objectsin § can be de-
rived based on p; and r; according to Lemma 4, as was done for the vp-treein Section 4.2.1 (i.e., letting
o = 0 and ry; = r;). Besides the above genera formulation, Burkhard and Keller also described a spe-
cific method of clustering, where each cluster isa clique, which they define to be a set of objects R such
that the greatest distance between any two objectsin R is no more than k4. The clique property was
found to reduce the number of distance computationsand allow more pruning during search [11], at the
price of high preprocessing cost (for determining the cliques).

Fukunaga and Narendra [28] outlined a hierarchical clustering approach similar to that of Burkhard
and Keller [11], with the additional property that the distancesfrom a pivot object are stored for al data
objectsin theleaf nodes, allowing for greater pruning®. However, some aspects of their process of con-
structing the search structure depend on properties of vector spaces. In particular, Fukunagaand Naren-
dra assume that each pivot is chosen as the centroid of the cluster (i.e., the point obtained by averaging
the coordinate values of the pointsin the cluster), and the clustering method used in their experiments
assumes vector data(in contrast to just making use of theinterobject distancevalues). Nevertheless, their
nearest neighbor algorithmisvalid for general clustering methods (see Section 5.2).

44 TheM-Tree

The distance-based indexing methods described in Sections 4.2 and 4.3 are either static, unbalanced, or
both. Hence they are unsuitable for dynamic situationsinvolving large amounts of data, where a disk--
based structureisneeded. The M-tree [19] is a distance-based indexing method designed to address this
deficiency. Its design goa wasto combineadynamic, balanced index structure similar to the R-tree (see
Section 2.1) with the capabilities of static distance-based indexes.

In the M-tree, asin the R-tree, all the objects being indexed are referenced in the leaf nodes!®, while
an entry in anonleaf node stores a pointer to anode at the next lower level along with summary informa-
tion about the objectsin the subtree being pointed at. Recall that in an R-tree, the summary information
consisted of minimum bounding rectanglesfor all the objectsin the subtree. For arbitrary metric spaces,
we cannot explicitly form the “regions’ that enclose a set of objectsin the same manner. Instead, in the
M-tree, “balls” around pivot objects (termed routing objectsin [19]) serve the samerole as the minimum
bounding rectanglesin the R-tree. Clearly, the pivotsin the M-tree have afunction similar to that of the

I3GNAT [9] maintains more comprehensive distance information in each node.

141f we consider the objectsto be nodesin a graph, with edges between objects whose distance is no more than k, a graph-
theoretic cliquein this graph correspondsto Burkhard and Keller’s definition of aclique.

15This ideawas later adopted and extended in the vp®-tree and mvp-tree; see Sections 4.2.2 and 4.2.3.

18The objects can either be stored directly in the leaf nodes, or externally to the M-tree, with object |Ds stored in the leaf
nodes.
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pivotsin GNAT (see Section 4.3). However, unlike GNAT, all objectsin Sare stored in the leaf nodes of
the M-tree, so an object may be referenced multipletimesin the tree (oncein aleaf node, and as a pivot
in one or more nonleaf nodes). For an object o in the subtree of a node n, the pivot p of that subtreeis
not always the one closest to o among dl the pivotsin n (i.e., we may have d(p,0) > d(p’,0) for some
other pivot p’ inn). In addition to this summary information, the entriesin M-tree nodes a so contain
distance values that can aid in pruning during search, asis donein the vp®-tree (see Section 4.2.2).

More precisely, for a nonleaf node n, the entries are (p,r,D, T), where p isapivot, r is the corre-
sponding covering radius, D is a distance value (defined below), and T is areference to a child node of
n. For all objects o in the subtree rooted at T, we have d(p,0) < r. For each non-root node, let parent
object denote its associated pivot, i.e., the pivot in the entry pointing to it in its parent. The distance
value stored in D isthedistance d(p, p') between p and the parent object p’ of n. Aswe shall see, these
parent distances alow more pruning during search than would otherwise be possible. Similarly, for a
leaf node n, the entries consist of (0,D), where o is a data object and D is the distance between o and
the parent object of n. Clearly, the root has no parent, so D = oo for all the entriesin the root. Observe
that the covering radius for a nonleaf entry is not necessarily the minimum radius for the objectsin the
corresponding subtree (except when the M-tree is bulkloaded [18]).

Being adynamic structure, the M-tree can be built gradually as new dataarrives[19]. Theinsertion
procedure first “routes” a new data object to aleaf node n, for each nonleaf node on the path, picking a
child node that “best matches’ the data object, based on heuristics. For example, a heuristic might first
look for a pivot object whose “ball” includes the data abject, and pick the one closest to the data object
if thereis more than one such pivot. Theinsertioninto n may cause overflow, causing n to be split and
a new pivot to be selected. Thus, overflow may cascade up to the root, and the tree actually growsin
a bottom-up fashion. Ciaccia et a. [19] considered a number of heuristics for choosing the child node
to route an object into and for splitting overflowing nodes. Bulk-loading strategies [18] have also been
developed for use when an M-tree must be built for an existing set of data objects. An example of root
node partitioning in an M-tree for a set of objectsis shown in Figure 16, where we have three pivot
objects, p1, P2, and ps. Noticethat the regions of some of the three subtrees overlap. Thismay giverise
to a situation where an object can be inserted into more than one subtree, such as the object marked o,
which can be inserted into the subtree of either p; or ps.

S

Figure 16: Possible top-level partitionings of a set of objects (depicted as two-dimensional
points) in an M-tree. Objects that fall into more than one “ball”, like O, can go into any
of the corresponding subtrees.
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Traina et a. [64] speed up the M-tree node insertion and node splitting algorithms while also im-
proving the storage utilization. Thisis achieved, in part, by applying a post-processing step (termed the
Sim-down algorithm) that attemptsto reduce the overlap among node regions. They use theterm Sim-
tree to describe their method. An empirical study showed that these modifications led to areduction in
the number of disk accesses [64].

Range queriesfor query object q and query radius € can be performed on the M-tree with a straight-
forward depth-first traversal, initiated at the root. Let n be anode that isbeing visited, and let p’ beits
parent pivot, i.e., p’ isthe pivot for the entry in n's parent that pointsto n. In order to exploit the parent
distance D stored in the entries of n (i.e., to avoid as much as possible the computation of the distances
from g to the pivots p stored in the entries of n), the value of d(q, p') must be propagated downward in
the depth-first traversal asnisvisited (sincetheroot has no parent, weused(q, p') = o when processing
theroot, and assumethat c — oo evaluatesto 0). Assumethat nisanonleaf node. We consider each entry
(p,r,D,T) inturn. There are two cases:

1. If |d(q,p’) —D| —r > ¢, thenthe subtree pointed at by T need not betraversed and thustheentry is
pruned. Thiscriterion is based on the fact that |d(q, p') — D| —r isalower bound on the distance
of any object in the subtree pointed at by T. Thus, if the lower bound is greater than €, then no
object in this subtree can be in the range. The lower bound can be established by making use of
Lemmas 3 and 5. Lemma 3 yields a lower bound from q to any of the pivots (e.g., p) in node
n. Inthiscase, p and p’' play the roles of o and p, respectively, in the Lemma which stipulates
that |d(q,p’) — d(p’,p)| = |d(g,p’) — D| < d(q, p). The upper bound on the distance from q to
any of the pivots (e.g., p) innodenis «. The distance from pivot p to any of the objectsin the
corresponding subtree T lies between 0 and r. We now apply Lemma 5 to obtain alower bound
on the distance from ¢ to any object o in the subtree pointed at by T — that is, rg =0, ry = r,
So = |d(q, p') — DI, and s = o —yielding |d(q, p') - D| —r < d(q,0).

2. Otherwise, [d(q, p') — D| —r < €. In thiscase, we can no longer avoid computing d(q, p). How-
ever, having computed d(q, p), we can still avoid visiting the node pointed at by T if the lower
bound on the distancefrom g to any object oin T isgreater thane. Thisisthecaseif d(q,p)—r > €
and isadirect result of applying Lemma 4 noting that the distance from p to o lies between 0 and
r.

Leaf nodes are processed in asimilar way: For each entry (0,D) in n with parent pivot p’, we first check
if |d(qg, p') — D| < € (sincewe know from Lemma 3 that |d(q, p') —d(p’,0)| = |d(qg, p') — D| < d(q,0), S0
if €< |d(q,p’) — D| < d(q,0), we can immediately discard o without computing its distance), and only
for such entries compute d(q, 0) and check whether d(q,0) < €. Observethat once again we seethat the
parent distances sometimes allow us to prune node entries from the search based on the query radius €,
without computing the actual distances of the corresponding objects.

Finding nearest neighbors is more complicated than range search. For k-nearest neighbor search,
Ciacciaet al. [19] propose using the distance of the farthest candidate k™ nearest neighbor in place of €
in the pruning conditions!’. Thistechnique s discussed further in Section 5.2, while below we describe
the more general incremental approach where the number of desired neighborsis not known in advance.
In particular, for incremental nearest neighbor search, not knowing the number of desired neighborsin
advance means that the search radius is unbounded and thus the pruning condition used by Ciaccia et
al. [19] isinapplicable. To overcomethisdilemma, weintroducing two new element typescorresponding
to approximate objects and approximate nodes to the search hierarchy. These new element types serve
the same role as bounding rectangles in the case of an R-tree. Thusthey provide a simple way to order

Thisis astandard approach for extending a nearest neighbor algorithm to a k-nearest neighbor algorithm. For example, it
was adopted by Seidl and Kriegel [60], as described in Section 5.1.
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the subsequent processing of elements of both a leaf and nonleaf node without having to compute the
actual distances of these elements from the query object. Aswe will seein Section 5.2, thismethod can
also be applied to obtain a more efficient solution to the k-nearest neighbor problem than the algorithm
of Ciacciaet a. [19].

The search hierarchy for the M-tree is defined in a manner similar to that for the vp®-tree in Sec-
tion 4.2.2. In particular, we define four types of elements. Type O represents objects, type 1 represents
approximate objects, type 2 represents nodes, and type 3 represents approximate nodes. Elementsof type
1 and 3 are generated as aresult of processing leaf nodes and nonleaf nodes, respectively. In particular,
when processing aleaf (nonleaf) noden (i.e., whenit reachesthe front of the priority queue as an element
of type 2), an dlement of type 1 (3) is generated from each of the entriesin n. An element of typeOis
generated as a result of processing an element of type 1, and, similarly, each element of type 2 derives
from an element of type 3. Thedistancefunctionsfor el ementsof type 1 through 3 are defined asfollows:

di(g,e)) = max{|d(q,p')-DJ,0}, (8
dz(q,ez) = max{d(q, p) it 0}7 and
ds(g,e3) = max{|d(q,p’)—D|-r,0}

where p' isthe parent object and D the corresponding distance for the node entry from which e; and e3
were generated, and where p and r are the pivot and covering radius for the node corresponding to e,
and e3. Using the same definitions, the upper-bound distance functionsfor types 1 through 3 are

~

di(g,e1) = d(qg,p)+D,

~

dx(0q,€2) = d(qg,p)+r, and

~

d3(g.e3) = d(g.p)+D+r.

To support distance computationsfor descendants, we must associate certain information with each ele-
ment. In particular, an element of type 1 must includetheidentity of the corresponding object, an element
of type 2 must include a pointer to the corresponding node n and the distance d(q, p'), where p' isthe
parent object of n, and an element of type 3 must include p, r, and T, where (p,r,D, T) is the nonleaf
node entry that gaverisetoit. Notethat a depth-first range search on this search hierarchy is equivalent
to the range query algorithm described above.

The correctness of incremental nearest nei ghbor search with these definitions can be shown by apply-
ing theresultsin Section 4.1. In particular, for an element e; and the corresponding object o, dy (g, e;) =
d(q. ') — D = |d(q, p)) — d(p,0)| < d(q.0) < d(q, p') +d(p,0) = |d(q, p') + D| = di(g,ey) follows
from Lemma 3. For an element e, and an object o in its subtree, we have dy(q,e,) = max{d(q, p) —
r,0} < d(q,0) < d(q,p) + r = dy(q,e) from Lemma 4. Finaly, for an element e; and an object o
in the subtree, ds(q,e3) = max{|d(q. p)) — D| — .0} = max{|d(q, p') — d(p. p)| - .0} < d(g.0) <
d(a,p')+d(p.p)+r = |d(g,p') + D] +r = ds(q, e3) follows from the above lemmas and Lemma 5.

Observethat when di(q,e;) and ds(q, e3) are computed for elements e; and e, respectively, thedis-
tance information that they are based on isaready available, so no additional computation of actual dis-
tances ishecessary. In particular, D isadistance value computed during the construction of the M-tree,
and d(q, p') was computed earlier in the processing of the query and stored in €,, the node element from
which e; or e3 isgenerated (i.e., p’ isthe parent object of the node correspondingto ). Thus, assuming
that incremental nearest neighbor search isterminated after object o, has been reported, any element of
type 1 that still remains on the priority queue represents an object that we were able to prune without
computing its actua distancefrom g. A similar statement appliesto elements of type 3.
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45 ThesA-Tree

The Voronoi diagram isawidely used method for nearest neighbor search in point data. For each “site”
p, its Voronoi cell identifies the area closer to p than to any other site. Thus, given a query point q,
nearest neighbor search simply involvesidentifying the Voronoi cell that containsg. Another, somewhat
indirect, way of constructing asearch structurefor nearest neighbor search based on the Voronoi diagram
isto build a graph termed a Delaunay graph, defined by Navarro [50] to be a graph where each object
is a node and two nodes have an edge between them if their Voronoi cells have a common boundary*8.
In other words, the Delaunay graph is simply an explicit representation of neighbor relations that are
implicitly represented in the Voronoi diagram. Search for the nearest neighbor of a query point g then
startswith an arbitrary object, and proceeds to a neighboring object closer to g aslong asthisis possible.
Once we reach an object 0 where the objectsin its neighbor set N(0) (i.e., the objects connected to o by
an edge) are dl farther away from g, we know that o isthe nearest neighbor of g. The reason this search
process works on the Delaunay graph of a set of pointsis that the Delaunay graph has the property that
if qiscloser to apoint p than to any of the neighbors of p in the Delaunay graph, then p is the object
in Sclosest to g. The same search process can be used on any graph that satisfies this Voronoi property.
In fact, for an arbitrary metric space (U,d), a Delaunay graph for aset SC U isaminima graph that
satisfiesthe VVoronoi property (i.e., removing any edge would cause violation of the property). Thus, any
graph that satisfies the Voronoi property must include a Delaunay graph as a subgraph. Note that the
Delaunay graph is not necessarily unique as there can be several such minimal graphs (possibly even
with adifferent number of edges).

TheVoronoi diagram serves astheinspirationfor the sa-tree [50], adistance-based indexing method.
In Section 4.3 we defined two other methods, the gh-tree and GNAT, that are al so based on Voronoi cell-
like partitioning. However, these structures are based on hierarchical partitioning, where at each level,
the space is partitioned into two or more Voronoi cell-like regions. In contrast, the sa-tree attempts to
approximate the structure of the Delaunay graph; hence its name, which is an abbreviation for Spatial
Approximation Tree. Aswe saw in Section 4.3.2, Voronoi cells (or, perhaps more accurately, Dirichlet
domains [9]) for objects cannot be constructed explicitly (i.e., their boundaries specified) if only inter-
object distances are available. Moreover, it ispossibleto show [50] that without more information about
the structure of the underlying space U, the set of interobject distances for a finite metric space (S, d),
SC U, does not uniquely determine the Delaunay graph for Sbased on d. In other words, two setsSC U
and S C U’ with identical interobject distances (i.e., (S,d) and (S,d’) are isometric), possibly drawn
from different underlying spaces U and U’, may have different Delaunay graphs'®. Hence, given only
theinterobject distancesfor aset S, the only way to ensure that the search structureincludesall the edges
in the Delaunay graph isto use the complete graph, i.e., the graph containing an edge between all pairs
of nodes. However, such agraph isuselessfor searching with, as deciding on what edgeto traverse from
theinitia object requires computing the distances from the query object to all the remaining objectsin
S(i.e, itisasexpensive, O(N), as brute-force search). Theideabehind the sa-treeisto approximate the

18Navarro [50] actually uses the term “Voronoi graph”, but “Delaunay graph” is a more appropriate term as the concept is
closely related to the concept of Delaunay triangulations, except that the edgesin the Delaunay graph merely indicate that the
Voronoi regions have a common boundary and do not have an associated geometric shape.

19For example, supposethat U = U’ = {a,b,c,x}, d(a,b) = d(a,c) = d(b,c) = 2 and d'(a,b) = d'(a,c) = d'(b,c) = 2.
Furthermore, assumethat d(a,x) = 1, d(b,x) = 2, and d(c,x) = 3whiled’(a,x) = 3, d'(b,x) = 2, andd’(c,x) = 1. If S=S =
{a,b,c}, the distance matrices for the two sets are the same. The graph with edges (a,b) and (a,c) (i.e., N(a) = {b,c} and
N(b) = N(c) = {a}) satisfiesthe Voronoi property for (S d), sincethe nearest neighbor of any query object drawn from U can
bearrived at starting at any objectin Shy only transitioning to neighborsthat are closer to or at the samedistance from thequery
object. However, thisis not the casefor (S,d’), sincestarting at b with g = x, b’sonly neighbor a is farther away from x than b
is, so we cannot transition to the nearest neighbor c of x. Even though the graph with edges(a, b) and (b, ¢) (i.e., N(b) = {a,c}
and N(a) = N(c) = {b}) does satisfy the Voronoi property for both (S d) and (Sd'), its existence doesnot invalidate the above
observations.
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proper Delaunay graph with a tree structure that retains enough edges to be useful for guiding search,
but not so many that an excessive number of distance computationsare required when deciding on what
nodeto visit next.

The sartree is defined as follows for afinite metric space (S d) (see the example below to clarify
some of the questionsthat may arise). An arbitrary object a is chosen as the root node of the tree (since
each object isassociated with exactly one node, we use the terms object and nodeinterchangeably in this
discussion). Next, the smallest possible set of neighbors N(a) isidentified, such that x isin N(a) iff for
alye N(a)— {x}, d(x,a) < d(x,y). Intuitively, for alegal neighbor set N(a) (i.e., not necessarily the
smallest such set), each object in N(a) is closer to a than to the other objectsin N(a), and all the objects
in S\ N(a) are closer to one of the objectsin N(a) than to a. The objectsin N(a) then become children of
a. Theremaining objectsin Sare associated with the closest child of a (i.e., the closest object in N(a)),
and the subtrees are defined recursively in the same way for each child of a. The distance to the farthest
object in a subtree can al so be stored in each node, i.e., for a thisis maxyesd(a,b). Figure 17b showsa
sample sa-tree for the two-dimensional pointsa—w givenin Figure 17a, with a chosen astheroot. In this
example, N(a) = {b,c,d,e}. Notethat h isnotin N(a) ash iscloser tob than to a.
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Figure 17: (a) A set of points in a two-dimensional Euclidean space, and (b) its corre-
sponding sa-tree constructed using the algorithm of [50] when a is chosen as the root.

Thefact that the neighbor set N(a) isused inits definition (i.e., in asense, the definitionis circular)
makes constructing a minimal set N(a) expensive. In fact, Navarro [50] argues that its construction is
an NP-complete problem. Thus, Navarro [50] resorts to a heuristic for identifying the set of neighbors.
This heuristic considersthe objectsin S\ {a} in the order of their distance from a, and adds an object o
to N(a) if o iscloser to a than to the existing objectsin N(a). In fact, the sa-tree in Figure 17b has been
constructed using his heuristic with a chosen as the root. An example of a situation where the heuristic
would not find the minimal set of neighborsisshownin Figure 18, where approximate di stances between
four two-dimensional points a through d are labeled. The minimum neighbor set of a in this case is
N(a) = {d} (and N(d) = {b, c}) whereas use of the heuristic would lead to N(a) = {b,c} (and N(b) =
{d}). Although the heuristic does not necessarily find the minimal neighbor set, itis deterministicin the
sense that for a given set of distance values, the same neighbor set is found (except for possibletiesin
distance values). Thus, using the heuristic, the structure of the sa-tree is uniquely determined once the
root has been chosen. However, different choices of the root lead to different tree structures.

Using the sa-treg, it is easy to perform exact match queries (i.e., to search for an object in S) using
the same procedure as in the Delaunay graph as described above. Of course, thisis not very useful, as
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Figure 18: An example of four points a, b, ¢, d where the sa-tree construction algorithm
does not find the minimal neighbor set N(a).

the query object is typically not in Sin most actual queries. Nearest neighbor and range search can be
performed inthe sa-treefor arbitrary query objectsq by using the observationin Lemma 6. In particular,
if aistheobject correspondingtoaroot node, let cbesomeobjectin {a} UN(a). Lettingb beanarbitrary
object in N(a) and o be an object in the subtree associated with b (i.e., rooted at b), we know that o is
closer to b than to ¢ (or equidistant, e.g., if c = b). Thus, we can apply Lemma 6 to yield thelower bound
(d(g,b)—d(g,c))/2ond(qg,0) —thatis, oisat adistanceof at least (d(qg,b)—d(q,c))/2from g. Since
0 does not depend on ¢, we can select ¢ in such away that the lower bound on d(q,0) is maximized,
which occurs when d(g, c) is as small as possible— that is, cisthe object in {a} UN(a) that is closest
to q.

When performing range search with query radius €, we can use the lower bound on the distances
derived above to prune the search. In particular, when at node a, wefirst find the object c € {a} UN(a)
such that d(q,c) is minimized. Next, the search traversal visits each child b € N(a), except those for
which (d(q,b) — d(qg,c))/2 > € (or, equivalently, d(qg,b) > d(qg,c) + 2¢, as used in [50]), sincein this
case we know that d(q,0) > € for any object o in the subtree associated with b. Unlike exact match
search, the above search process may require backtracking and the pursuit of several pathsin the tree.
Incidentally, we have identified a slight optimization over the search strategy presented in [50] (which
is equivalent to what we described above). In particular, instead of basing the selection of ¢ on the set
{a} UN(a) (i.e, ondistancesfrom g), we can usethe larger set Uycaa) ({8} UN(@)), where A(a) isthe
set of ancestors of a (with the understanding that a is an ancestor of itself). Thisstrategy makesit more
likely that ciscloseto g (since alarger set isused to select it), thusproviding alarger valuefor the lower
bound (d(qg,b) —d(qg,c))/2on d(q,0). Below, we prove the correctness of this approach.

The nearest neighbor search a gorithmfor the sa-tree proposed in [50] isavariant of therange search
algorithm described above, and is based on a depth-first branch-and-bound strategy. Initialy, € is set to
oo, but is gradually reduced as objects are found at smaller distancesto q than . The algorithm proceeds
in adepth-first fashion and visitschild nodesin order of increasing distance from g so as to increase the
chance of quickly finding the nearest neighbor or at least reducing €. Unfortunately, such aheuristic often
chooses the wrong subtree to descend.

In order to dleviatethesedrawbacks, we proposeto adapt our incremental nearest neighbor algorithm
from Section 2 (Figure 3) to the sa-tree, thus replacing depth-first traversal of the tree with best-first
traversal. For this, we must define the search hierarchy and the distance functionsfor each element type
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in the search hierarchy. Naturaly, the objects and the nodes of the sa-tree become el ements of the search
hierarchy, of types0and 1, respectively. Observe that each element of type 1 in the search hierarchy has
one child element of type O (i.e., the object corresponding to the sa-tree node) and zero or more child
elements of type 1. The distancefunction dy on the object elementsis simply the distancefunctiond on
the objects. The distancefunction d;(q,e; ) is defined as

ch(cyer) = maf AED GO g

(qv b) - dmax(b)ao}a

where b € N(a) isthe object that correspondsto ey, cisthe object inUyeaa {{8} UN(@)} that isclos-
est to g, and dmax(b) is the greatest distance from b to an object in its subtree. Notice that here we use
the optimization mentioned above, as well as theinformation about maximum distancesin subtrees. For
the purpose of defining dl(q, e1), only the maximum distancesin subtrees are applicable, sincetheinfor-
mation about distances of neighbors does not provide an upper bound on distances. In other words, we
obtain

di(d,e1) = d(0, b) + dmax(b)-

To permit computing the distancesof descendants, an element e; of type 1 must not only carry apointer to
the correspondingnodea, but alsothedistancevalued(q, c'), wherec' istheobjectin A(a) UlUyeaay 1 {N(&) }
that is closest to g. When processing an element e; corresponding to the node for object a, we evaluate
d(q,b)foreachb € N(a), and thenset D to theminimum of thesedistancevalues(i.e., minpena){d(d, b)})
and of d(q,c') (asstorediney). Clearly, D isnow equal tod(q,c), wherecistheobjectinUyepa {{&} U
N(a')} that isclosest to . Thus, by substituting D for d(q,c) in the formula, we can evaluate d;(q, €} )
for each €] corresponding to b € N(a) with no additional distance computations. In other words, when
processing e, only |N(a)| distance computations are necessary.

To prove the correctness of our approach, we must show that d;(q,e;) < do(q,ep) for any ancestor
e, of the element ey in the search hierarchy (see Section 2.5). Since di(q,e;) is the maximum of two
quantities, we must show that neither islarger than do(q, ). Thefirst step isthe following lemma:

Lemma7 Ifaisanodeinan sa-treeand b’ isan object in the subtreerooted at b, whereb € N(a), then
b’ iscloser to b than to any of its ancestorsor their siblings—that is,

d(b,c) > d(b,b),vce |J {{a}UN(@)}.

aeAa)

Proof Wefirst provethelemmafor c € {a} UN(a). Assumethat d(b',c) < d(b/,b) for somec e {a} U
N(a). Therearetwo cases: 1) ¢ = a, and 2) c € N(a). Thefirst case, d(b',a) < d(b',b), contradictsthe
assumption that b’ is adescendant of b. In particular, sinced(b’,b) < d(b',y) for al siblingsy of b (or
else b’ would reside in the subtree of y), we have d(b',a) < d(b',y) for al y € N(a). However, by the
definition of aneighbor set, thisimpliesthat b’ should bein N(a). In the second case, d(b',c) < d(b',b)
for ¢ € N(a), ¢ cannot be equd to b, so it must be a sibling of b. However, this also contradicts the
assumption that b’ isa descendant of b, since b’ should be in the subtree of the sibling that it is closest to
(whichitisnot, sinced(b’,c) < d(b',b)). Thusin both cases we have a contradiction, and the statement
holdsfor c € {a} UN(a).

The above reasoning can now be extended by inductionto thegeneral casewhere ¢ € Uy eaayi{a’} U
N(&')}. In particular, we showed abovethat b’ is closer to b than to a or to the siblings of b (or equidis-
tant). Applying this principleto a and its parent & shows that d(b’,c) > d(b',a), wherec =& orc ¢
N(&'). Thus, sinced(b’,a) > d(b',b), we dso haved(b’,c) > d(b',b) for this case, or more generally,
force {{a'} UN(&)} whered isaor itsparent. It should be clear that this |oose induction argument
applies al the way up to the root of the tree, thereby proving the lemma. m
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Based on the above lemma and on Lemma 6, we conclude that (d(q,b) — d(q,c))/2 < d(q,b’) for
any object b’ inthesubtreerooted at b. Theother lower bound, d(q, b) — dmax(b) < d(q,b’), followsfrom
Lemma 4 (as does the upper bound d(q,b") < d(q,b) + dmax(b)). Thus, we have shown that d;(q,e;) <
do( 0, &) alwaysholds and, therefore, that the above hierarchy guarantees correctness.

Recall from Section 2.5 that the correctness of the incremental nearest neighbor algorithm implies
that it is optimal with respect to the search hierarchy. In other words, it visits the same search hierar-
chy elements when computing k neighbors as atop-down range query using the distance between g and
the k™ neighbor. Since the distance functions we defined on the search hierarchy are equivaent to the
conditions used in the range query agorithm presented in [50], this shows that the incremental nearest
neighbor algorithm achieves the same performance in terms of distance computations (on the data ob-
jects themselves). On the other hand, a depth-first nearest neighbor algorithm such as that proposed by
Navarro [50] depends on a heuristic to bound the search, which cannot guarantee optimality.

4.6 Distance Matrix Methods
46.1 AESA

The distance-based index methods that we have considered so far impose a hierarchy on the set of ob-
jectsthat guidesthe order of distance computationsduring query evaluation. AESA (Approximatingand
Eliminating Search Algorithm) [67, 68] %° takes another approach. During preprocessing, all O(N?) inter-
object distances are computed for the N objectsin Sand stored in a matrix. At query time, the distance
matrix is used to provide lower bounds on distances to objects whose distances have not yet been com-
puted, based on object distances already computed. The processis initiated by computing the distance
from the query object to an arbitrary data object, allowing establishingtheinitial lower-bound distances
of the remaining data objects. The a gorithm usestheselower boundsto guidethe order in which objects
are chosento havetheir distancesfrom thequery object g computed and to eliminate objectsfrom consid-
eration (hopefully without computing their actual distances from q). In other words, AESA treats all N
data objects as pivot objectswhen performing search. Although designed for finding nearest neighbors,
AESA can a'so be used with almost no modification to perform range searching.

According to experiments presented in [67], nearest neighbors can be obtained with AESA using
remarkably few distance computations. In particular, AESA was observed to require at least an order
of magnitude fewer distance computations than competing methods and was argued to have constant-
time behavior with respect to the size of the data set [67]. These benefits are obtained at the expense
of quadratic space complexity, quadratic time preprocessing cost, and linear time and storage overhead
during search. Thus, although promising, the method is practical only for relatively small data sets, of at
most afew thousand objects. For example, for 10,000 data objects, the distance matrix occupies about
400 MB, assuming 4 bytes per distance value. Nevertheless, if distances are expensive to evaluate and
we can afford the large preprocessing cost, the search performance is hard to beat with other methods.

Of course, one could ask if it isreally worthwhile to perform N - (N — 1)/2 distance computations
between the obj ects, when by using bruteforce we can alwaysfind thenearest object to qusing N distance
computations. The payoff occurswhen we can be surethat the set of objectsisstatic and that therewill be
many queries (more than N, assuming that preprocessing time and query time are of equal importance),
and that most of these queries will be nearest neighbor queries for low numbers of neighbors or range
queries with small query radii (otherwise, AESA will tend to require O(N) distance computations, like
thebrute-force approach). The complexity arguments madeinfavor of AESA must also bear in mind that
the constant-time claim refers to the number of distance computations, while the distance matrix hasto

20The difference between [67] and [68] lies in the presentation of the algorithm and in the order in which the objects are
chosen whose distance from the query object is computed — that is, in the “ approximating” step (see footnote 23 below).
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be accessed many times for each query (Q(N) for each nearest neighbor query??), although the distance
computations are usualy many orders of magnitude more complex than the operation of accessing the
distance matrix.

Thekey to AESA [67] is the property described in Lemma 3: for any objects o and p in the data set
Sand any query object q € U, the following inequality holds:

d(g, p) - d(p,0)| < d(q,0).

Thus, if & C Sisthe set of objects whose distances from ¢ have been computed, the greatest known
lower bound dj,(q,0) on d(g,0) for any object o € S\ & is

dio(9,0) = f&aé{ld(q, p)—d(p,0)[} (9)

The agorithm uses this lower bound to eliminate objects 0 in S\ & whose lower-bound distances are
greater than the distance of the nearest neighbor candidate oy, i.e., dix(g,0) > d(q, o) (for range search
with query radius €, the eimination criterion is dio(g,0) > €)?2. Hence, it maintains the set S, C Sof
objects whose di stances have not been computed and that have not been eliminated based on their lower-
bound distances. At each step of the algorithm, the next object p € S, whose distanceisto be computed
is chosen as the one whose lower-bound distance dio(q, p) is smallest (initialy, an arbitrary object is
chosen). Next, the agorithm computes d(qg, p) (which, we point out, may be very expensive), updates
the nearest neighbor candidate oy, if necessary (in the case of range searching, we instead add p to the
result setif d(q, p) < €), and then eliminatesobjectsfrom S, that cannot be the nearest neighbor (or within
the range for range searching) as described above. The agorithmisterminated once S, becomes empty
— thatis, oncethegreatest known lower-bound distance d,( g, 0) for each object 0 € S\ & isgreater than
d(q,0n) (or € in thecase of range search). Observethat the lower-bound distance, dy(q,0), for an object
0 € S, need not be computed from scratch (i.e, for all p € &) each time the agorithm usesit. Rather,
the algorithm stores the current lower-bound distance for each object o € S,, and incrementally updates
dio(0,0) in each iteration as a new distance valueis computed. Storing and maintaining thisinformation
accounts for the linear space and time overhead of the algorithm (besides the quadratic space and time
for constructing and storing the distance matrix).

The rationale for picking the object p to process next based on the smallest lower bound dj, is that,
hopefully, such achoice ensuresthat pisrelatively closeto g. Aspointed out by Vidal [68], the closer p
isto q, the greater is the tendency for |d(p,0) — d(q, p)| to be large, which means that the lower bound
dio( g, 0) islarger and hencethe potential for pruningincreases. Of course, other strategiesfor pickingthe
next object are also possible?. Some possiblestrategiesinclude picking the object at random, choosing
the object with the greatest value of dio(q, p), or even basing the choice on the upper bound dy(q, p),
described below. Wang and Shasha[70] explored severa different choices which are described briefly
in Section 4.6.3.

AESA is easily extended to a k-nearest neighbor agorithm by maintaining alist of the k candidate
nearest neighbors seen so far, and by using the largest distance among the k candidates for the elimi-
nation step. There are a number of ways to implement incremental nearest neighbor search within the

2170 see why the number of accessesis at least proportional to N (i.e., Q(N)), observethat even if thefirst object picked as
the candidate nearest neighbor turns out to be the actual nearest neighbor, the distances between that object and all the other
objects must be accessed to establish that this is indeed the case.

221t dio(q,0) > d(q,0n) is satisfied, we know that d(g,0) > d(g,0n) since dio(g,0) < d(q,0); similarly, dio(q,0) > &€ means
that d(g,0) > €.

23 |n the original formulation of AESA [67], the selection criterion was actually based on picking the object p € S, that
minimizes the value of S5 {|d(q,s) — d(s, p)|} rather than that of do(q, p) = Maxses, {|d(a,s) —d(s, p)|}, which Vidal [68]
later claimed was a better “ approximation”. One possible rationale for the claimed improvement is that the former minimizes
the average lower bound while the latter minimizes the maximum of the lower bounds, which yields atighter lower bound.
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AESA framework. Below, we identify three approaches; most other approaches are variants of these
three. Conceptually, al three algorithmsmaintain two sets, & and S, of dataobjects, whereS=S.U S,
whose distances from the query object have been computed and have not been computed, respectively.
At agiven stage in an algorithm, k of the objectsin S have already been reported as neighbors, while
the unreported object with the smallest distancein & is a candidate for being the k4 1% neighbor. Each
object 0 in S, has an associated lower-bound distance, do(g,0). If the distance of the k + 1% candidate
neighbor in & is smaller than the minimum lower-bound distance in S, the k + 1 neighbor has been
identified and can be reported. Otherwise, the algorithm takes some action on some or al of the objects
in S,. The agorithmsdiffer in the way they represent S, which has implicationsfor the accuracy of the
lower-bound distance dj,(q,0), i.€., the number of objectsin S that have been used to update do(g,0)
using Equation 9. The effect isthat the cost of updating lower-bound distances for a given number of
neighbors varies among the algorithms. Note that the algorithms cannot eliminate any of the objectsin
Sy asisdonein AESA, since we do not know how many neighborswill eventually be requested. How-
ever, by eliminating objectsfrom S, in AESA, the cost of future updating of lower-bound distancesis
reduced. A similar effect can be achieved for incremental nearest neighbor search by using suitablerep-
resentations of S,.

Thesimplestincremental nearest neighbor algorithm based on AESA isonethat extendsthe k-nearest
neighbor agorithm in a straightforward manner. The set §, is maintained as a whole, with the lower-
bound distances of the objectsin S, based on al the objectsin &. Following the framework for INN
search laid down in Section 2.2, the search hierarchy consistsof objects (type O, representing unreported
objects in &) and sets of objects (type 1, representing S,). The distance function dg is based on d, as
before, but the distance function di(q, e;), where e; represents §, C S, is defined as the smallest lower-
bound distance among the objectsin §,, i.e.,

ch(0.e1) = Min{dio(d.0)}.

The correctness criterion (see Section 2.5), di(q,e;) < do(Q, &), is clearly satisfied for this scheme,
where ey represents object o, e; represents subset §,, and 0’ € §,, since

di(q.e) = gneig{dlo(q,O)} < dio(9,0) < d(q,0') = do(q,0).

An upper-bound distance function for el ements of type 1 can be derived in the same way:

~

di(q.er) = I;)T;aa)f{dhi(qvo)}v

where dri(g, 0) = Mines, {d(q, p) +d(p,0)}.

Theincremental nearest neighbor a gorithm (Figure 3) using this search hierarchy works asfollows.
Initially, we insert S on the priority queue, with the lower-bound distances of al o € Sset to 0. If the
element on the priority queue with the smallest distance val ueisan object, wereport it asthe next nearest
neighbor. Otherwise, if it isan element e, representing the set S, we choose the object 0 € §, with the
smallest lower-bound distance, djo( g, 0) (tiesare broken arbitrarily). Next, wecomputed(q,0) and insert
o on the priority queue. Finally, the lower-bound distances of the remaining objectsin §, are updated,
and we insert an element €, representing S, \ {0} on the priority queue with akey of di(q,€)) (i.e, the
minimum among the updated |ower-bound distances). Thus, the search hierarchy forms alopsided tree
where each nonleaf node (representing a set of objects) has two children, one of which is a leaf node
(representing an object).

The search hierarchy for incremental nearest neighbor search that we have described leads to the
same number of distance computations for finding the k nearest neighbors as would the original AESA
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algorithm. The problem is that no “elimination” is performed by the incremental algorithm. In other
words, each timeanew distance computationis performed (i.e., when processing the set of objects S\ &,
where & is the set of objects whose distances have been computed) we must update the lower bound
distance dip(q,0) for | S\ .| objects, where §. = S U {0’} and 0o’ was the object whose distance was just
computed. In contrast, AESA needs only to update the lower-bound distancefor |S\ §.\ S/, where &
is the set of objectsthat have been eliminated in previous steps. Hence, the incrementa a gorithm may
have a much higher overhead.

To achieve more elimination, we can put the burden on the priority queue of theincremental nearest
neighbor algorithm. In particular, instead of |etting elements of type 1 represent setsof objects, weusethe
obj ects themselves, using the lower-bound distance as the distance function d;. The algorithm initially
picks an arbitrary object o, computes the distance d(q, 0) and uses it to establish alower-bound distance
for the remaining objects. The object o isinserted on the priority queue with its actual distance, while
the remaining objects are inserted on the priority queue with their lower-bound distances. Each time a
lower-bound object o is processed by theal gorithm, we refineitslower-bound distance dio( g, 0) based on
aready computed distances (for objectsin &) until dio(q,0) > di(q, &) for the element & on the priority
queue with the smallest distance (in which case we insert o back on the priority queue with its updated
lower-bound distance), or compute d(q,0) if the distances of all the objectsin S have been used. The
result is that the search hierarchy has a fan-out of |§ at the root, while the remaining elements of the
search hierarchy have only one child or are leaves.

Since each element of type 1 in the search hierarchy represents a single object, rather than the set
S, = S\ &, this approach minimizes the overhead in terms of the number of times d(q, 0) is updated
for each object. Infact, the updating overhead islower with thisapproach than with AESA, but the price
that must be paid isthat more priority queue operationsare performed. A reasonable compromise results
from a blend of the two extreme approaches, where S, is broken up into subsets of different sizes, and
the lower-bound distances of the abjects in each subset have been updated different numbers of times
(based on different numbers of elements of &). Asin thefirst approach, search hierarchy elements of
type 1 represent sets of objects. However, we alow such elements to have severa children; in other
words, we partition the set of objects into several subsets, based on the lower-bound distances of the
objects. Asin the second approach, when processing an element representing aset S, of objects, a new
distance computationis performed only if the distances of all the objectsin S have already been applied
to update the lower-bound distances of the objectsin §,. If the objectsin & have not all been applied, we
update the lower-bound distances using dl the objectsin &, or until the minimum lower-bound distance
for the objectsin §, exceeds the distance of the element at the front of the queue (i.e,, S, is no longer
the smallest element on the priority queue). In our implementation, we found that partitioning into two
subsets each time | ed to the best performance, i.e., the best balance between the cost of updating lower-
bound distances, the cost of priority queue operations, and the cost of managing the subsets. Furthermore,
it turned out to be better to quickly partitioninto two subsets of random size (asis donein the Quicksort
algorithm) rather than to spend time partitioning the sets into two equal parts.

It isinteresting to make an analogy between the search hierarchy resulting from our last approach
and the hierarchical indexing methods described in Section 4.2. The search hierarchy superficialy re-
sembles avariant of the vp-tree structure, where the same pivot is used for all partitionsat agiven level
(asinthefixed-queriestreethat we briefly discussedin Section4.2.4). Thecrucial difference betweenthe
search hierarchy and such fixed-pivot metric tree structuresis that the choice of pivots (i.e., the order in
which the objects are chosen for &) and the partition keysin the search hierarchy (i.e., the lower-bound
distances) are highly dependent on the query object g.

Based on our experience, each of the three approachesto INN search outlined above performs well
for thesizes of datasetsfor which AESA ispractical. For asmall number of neighbors, thelast approach
tendsto be superior, with the second being next best and thefirst being worst, whereasfor alarge number
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of neighbors(when many distance computationsmust be performed in any case), thefirst approach even-
tually becomes best. It must be admitted that the overhead of the algorithmsis higher than that of AESA
for computing agiven number of neighbors (but the number of distance computationsisthe same). How-
ever, in situationswhere the number of neighborsis unknown in advance and distance computationsare
expensive, using the INN agorithmsis superior to using k-NN AESA, sincein the latter case, the num-
ber of neighborsmust be guessed at. In particular, the INN a gorithms perform the minimum numbers of
distance computationsfor the number of neighborsthat are eventually requested, whereas using ak-NN
algorithm usually resultsin computing too many neighbors and thusin too many distance computations
(or worse, too few neighbors are computed and the a gorithm must be re-applied).

4.6.2 LAESA

Recall that AESA isimpractical for al but the smallest data sets due to the large preprocessing and stor-
age costs. LAESA (Linear AESA) [48, 49] alleviates this drawback by choosing a fixed number M of
pivots (termed base prototypes by Mico et d. [48, 49]), whose distances from al other objects are com-
puted. Thus, for N data objects, the distance matrix contains N - M entries rather than O(N?) for AESA
(or more precisely N(N — 1)/2 entries assuming that only the lower triangular portion of the matrix is
stored). An algorithm for choosing the M pivotsis presented by Micd et d. [49]. Essentidly, thisago-
rithm attempts to choose the pivots such that they are maximally separated, i.e., as far away from each
other as possible (a similar procedure was suggested by Brin [9] for GNAT; see Section 4.3.2).

The LAESA search strategy is very similar to that of AESA, except that some complications arise
from the fact that not all objectsin Sserve as pivot objectsin LAESA (and the distance matrix does not
contain the distances between non-pivot objects). In particular, as before, let S, C She the set of objects
whose distances from g have been computed and let S, C S\ & be the set of objects whose distances
from q have yet to be computed and that have not been eliminated. The distances between the query
object g and the pivot abjectsin & are used to compute alower bound on the distances of objectsin S,
from ¢, and these lower bounds allow eiminating objects from §, based on the distance from q of the
current candidate nearest neighbor oy, (or € in the case of range search). The difference here isthat non-
pivot objectsin & do not hel p intightening thelower-bound distances of the objectsin §,, asthe distance
matrix stores only the distances from the non-pivot objects to the pivot objects and not to the remaining
objects. Thus, Mico et a. [49] suggest treating the pivot objectsin §, differently than non-pivot objects
when

1. selectingthe next objectin S, to haveits distancefrom g computed (since computing the distances
of pivot objects early will help in tightening distance bounds), and

2. eliminating objectsfrom S, (since eliminating pivot objects that may later help in tightening the
distance boundsis undesirable).

A number of possible policies can be established for this purpose. The policies explored by Mico et
a. [49] are simple, and call for

1. selecting a pivot object in S, over any non-pivot object, and

2. eliminating pivot objects from S, only after a certain fraction f of the pivot objects have been
selected into & (f can range from O to 100%; note that if f = 100%, pivotsare never eliminated
from §)).

Aswith AESA, severd possible strategies can be pursued for INN search within the framework of
LAESA. Since LAESA is practical for much larger data sets than AESA, the first two approaches that
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we presented for AESA aretoo inefficient. In particular, too much overhead in terms of updating lower-
bound distances results from the approach that maintains S, = S\ & as awhole and updates the lower-
bound distances for al elementsin S, each time the distance of a pivot object is computed. Similarly,
entering each element in §, separately into the priority queue results in excessive priority gqueue cost
(as the priority queue will initially hold N elements). Thus, we are |eft with the approach that partitions
S, into subsets of varying sizes. Unfortunately, using this strategy makes it difficult to apply arbitrary
selection policies, since the resulting a gorithm processes only one of the existing subsetsof S, at atime
(the one containing the element having the minimum lower-bound distance do(q,0)). In particular, if
the subset being processed does not contain the object that the selection policy would call for (e.g., the
pivot with the smallest lower bound distance in the policy mentioned above), we must either settle for
an inferior choice of an object whose distanceisto be computed next, or we must inspect more than one
subset on the priority queue to find a better choice, potentially at a high cost. To overcome this problem,
we partition S, into the sets S} of pivot objects and S} of non-pivot objects, and represent subsets of each
of these sets on two separate priority queues, Q, and Qy, respectively. Thus, any selection policy that is
devised for LAESA nearest neighbor search can be applied to decide from which priority queue, Q, or
Qp, to take the next element to process. Priority queue Qy, is also used for unreported objectsin &.

Fitting the above strategy into the INN search framework of Section 2.2, the search hierarchy ele-
ments are objectsin & (type0), subsetsof S} (type 1), and subsetsof S (type2). Asin Section 4.6.1, the
distance dp is the same as the distance function d for the corresponding objects. The distance functions
di(g,e1) and dy(q,e;) are defined in terms of the lower-bound distances of the objectsin T, the set of
objects corresponding to e; or &, i.e., minyet dix(g,0). We can imagine that the search hierarchy has
aroot, representing the data set Sitself, having two child elements of types 1 and 2, respectively. The
two subtrees of the root represent the non-pivot objects and pivots, respectively, and each hasa structure
similar to that of the last search hierarchy described in Section 4.6.1. Of course, the INN search strat-
egy described above departs from the framework in that it uses two priority queues, Q, containing only
elements of type 2 and Q, containing elements of types 0 and 1. Usually, the algorithm processes the
element in either priority queue having the smallest distance, but the selection policy may interfere with
this, asdescribed below. Asaways, processing an element of type 0 involvesoutputting the correspond-
ing object asthe next nearest neighbor. For an element of type 1 or 2, representing aset of objects T, the
action dependson whether all pivotsin & have aready been used to update thelower-bound distances of
theobjectsin T. If not, we updatethe lower-bound distancesbased on al the unused pivotsin &;, or until
the minimum lower-bound distance among the objectsin T exceeds the smallest distance of the elements
in either priority queue?®. Finally, T is partitioned into several subsets based on lower-bound distance
(e.g., by random bipartitioning, as suggested in Section 4.6.1), and the resulting subsets are inserted into
the proper priority queue. Otherwise, if al the pivotsin & have aready been applied on the abjectsin
T, the action is somewhat different for elements of type 1 and 2 (i.e., according to whether T is a set of
non-pivot objects or of pivots). For e ements of type 1, we compute the distances of the objectsin T by
updating lower-bound distances, until thelower-bound distance of the next object islarger than or equal
to the smallest distance of an element in either Q, or Qp. For elements of type 2, we compute the dis-
tance of the pivot in T having the minimum lower-bound distance, update the lower-bound distances of
the remaining objectsin T, and partition T as described above.

Let e, and g, bethe elementsin Q4 and Qy, respectively, having the smallest distances. Asmentioned
above, we usually process the element having the smaller distance of the two. However, if element g, is
of type 1 (as opposed to type 0) di(g,€s) < dy(q,&,), and al pivotsin S have been used to update the
lower-bound distancesin the corresponding set, then the choi ce between processing e, or &, isleft to the

241f T is large, we may want to update the lower-bound distances only once, even if the minimum lower-bound distanceis
still too low.
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selection policy. For example, using the policy presented in [49], we would always process &, in such a
case.
Theincremental nearest neighbor search strategy described above performs the same number of dis-
tance computations for a given number of neighbors as the LAESA nearest neighbor search strategy,
when the same sel ection policy isused (for deciding between computing the distance of apivot or anon-
pivot object). Inparticular, if g isan element of type 1 or 2 that correspondsto T C S, and g, corresponds
toobject o € T, then

di(a,&) < dig(9,0) < d(q.0) = do(0, &),

where do(g,0) isany lower-bound distancefor o. Thus, theresulting algorithmis correct with respect to
the search hierarchy, as establishedin Section 2.5, if the selection policy istaken into account. Moreover,
besides the exceptions due to the selection policy, we only compute distances of objects whose lower-
bound distances are lower than the distances of all elements remaining on the two priority queues.

A somewhat simpler INN search strategy is obtained by computing the distances of all pivotsin the
initialization phase of the search. In other words, & initially containsall the pivotsinS and §, = S\ &
containsonly non-pivot abjects. Thus, in this case, only one priority queue is heeded, and the search hi-
erarchy containsobjectsin & (type0) and subsetsof S, (type1). The actionsperformed when processing
elements of type 1 are the same as described above. The disadvantage of such a strategy isthat the dis-
tances of all the pivots must be computed, whereas thisis not always the casein LAESA, depending on
the selection and pivot elimination policy. However, for some policies[49], the distances of all the piv-
otsmust usually be computed. Furthermore, precomputing the distancesof all the pivotsallows ordering
them by distance. In [67], the author argued that basing lower-bound distances on objects close to the
guery object was more effective. Thus, using the pivotsin order of distance when updating lower-bound
distances should lead to more effective search.

4.6.3 Other Distance Matrix Methods

Shapiro [62] described a nearest neighbor algorithm (which is also applicable to range searching) that
is closdly related to LAESA, which also usesan N - M distance matrix based on M pivot objects. The
order in which the data objects are processed in the search isbased on their positionsinalist (01,0o,...)
sorted by distancefrom thefirst pivot object p;. Thus, the searchisinitiated at the object whose distance
from p; ismost similar tod(q, p;), where g isthe query object — that is, the element at the position j for
which|d(q, p1) —d(p1,0j)| isminimized (thisvalueisalower boundond(q, 0;), asshownin Lemma3).
The goa isto eliminate object o; from consideration as soon as possible, thereby hopefully avoiding the
need to computeitsdistancefrom g. Therefore, when object o; is processed during the search, we check
whether the pruning condition |d(q, pk) — d( pk, 0i)| > d(q,0n) issatisfied for each pivot object py, py, ...
in turn until o; can be eliminated; otherwise, we compute d(q, 0;) (and possibly update o,). The search
continuesaternatinginthetwo directions—thatis, fori= j+1,j—1,j+2,j— 2, ..., stoppingineither
direction when the pruning condition |d(q, p1) — d(p1,0i)| > d(q,0n) issatisfied, where o, isthe current
candidate nearest neighbor?®.
Observe that Shapiro’s algorithm is|ess sophisticated than LAESA in two ways:

1. theorder usedin the search isbased on positionin the sorted list ordered by distancefrom p;, and
2. only thefirst pivot p, affects the order in which the data objects are processed.

In contrast, LAESA uses the lower-bound distances as determined by all pivot objects that have been
applied so far to guide the search (i.e., to choose the pivot to use next and to decide when to compute the

25Recal| that range search can be performed by basing the pruning condition on ¢ instead of d(q,0on).
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actual distances of data objects). In other words, rather than applying al pivotsfor each object inturn as
done by Shapiro, LAESA applies each pivot in turn for all objects (the difference can be characterized
roughly in terms of processing the pivot-object distance matrix in row-major or column-major order).

Wang and Shasha[70] described a search method based on distancematricesthat issimilar to AESA.
However, they allow for thecasewhere only some of the distanceshave been precomputed, asin LAESA.
In contrast to LAESA, no assumptions are made about the pairs of objectsfor which the distanceis pre-
computed (so that no distinction is made between pivot and non-pivot objects). In other words, we are
given aset of inter-object distancesfor arbitrary pairs of objectsin S. Search isfacilitated by the use of
two matrices D, and Dy, (called ADM and MIN in [70]), constructed on the basis of the precomputed
distances, where Dy, li, j] < d(0;,0j) < Dyi[i, j], given some enumeration 0,0, .. ., 0y Of the objectsin
S8, In other words, all entriesin Dy, and Dy, are initialized to zero and o, respectively, except that the
entrieson their diagonal sare set to zero, and if d(o;, 0 ) has been precomputed, then Dyoli, j] and Dy[i, j]
are both set to d(0;,0;).

A dynamic programming algorithm is described by Wang and Shasha[70] that utilizesa generalized
version of thetriangleinequality?’ to derive values for the entries of Dy, and Dy,; whose distance values
are missing, in such a way that they provide as tight a bound as possible, based on the precomputed
distancesthat are available. In particular, the generalized triangleinequality property was used by Wang
and Shasha to derive rules for updating Dyo|i, j| and Dy,[i, j] based on the values of other entriesin D,
and Dy,; (some of these rules use entriesin D) to update entriesin Dy, and others do the opposite). At
search time, the matrices D), and Dy, are augmented so that the query object q is treated as if it were
object oy 1. Inparticular, Dig[i,N+ 1] and Dy,i[i, N+ 1] areinitialized to 0 and oo, respectively. Observe
that the values of Dyo[i, N+ 1] and Dy[i, N+ 1] correspond to our definitions of do(q,0;) and dyi(q, 0;),
respectively, in Section 4.6.1.

The nearest neighbor a gorithm presented by Wang and Shasha[70] followsthe same genera outline
as AESA. Thusany object o; satisfying Dio[i, N+ 1] > d(q, 0,) can be pruned from the search, where oy,
isthe current candidate nearest neighbor. The difference hereisthat when d(q, o) iscomputed for some
candidate object o, their method attempts to update Dy, [i, j] and Dy, j] (by applying their generalized
triangle inequality property) for all pairs of objects 0;,0; € Swhose actual distances are not available
(i.e., either precomputed or computed during the search), thereby possibly yielding a tighter bound on
d(0;,0j). In contrast, in AESA, only the values of dj(q,0;) and dyi(q,0;) are updated for al objects
0; € S corresponding to Dyo[i,N+ 1] and Dy,[i, N+ 1], respectively.

Since updating the entire matrices D), and Dy, can be expensiveif donefor all pairs at each stage of
the algorithm, Wang and Shasha[70] describe two alternatives, one of whichisamost equivalent to the
updating policy used in AESA (thedifferenceisthatin AESA, upper-bound distancesare not maintained,
whereas such upper bounds can be used to update the values of dj,(q, 0) in the same way asis done for
Dio[N + 1,i] in the method of Wang and Shasha [70]). Wang and Shasha [70] identify four heuristics
for picking the next candidate object during search. The next object o; for which to compute d(q,0;) is
chosen as the object in S, (as defined in Section 4.6.1) having

1. theleast lower bound Dyo[i, N+ 1],

2. the greatest lower bound Do[i, N+ 1],
3. theleast upper bound Dy,[i,N+ 1], or
4. the greatest upper bound Dy[i,N + 1].

26N ote that the matrices are symmetric and that their diagonalsare zero. Thus, only the lower triangular part of each matrix
is actually maintained.

2For example, based on d(01,04) > d(01,03) — d(03,04) and d(04,03) > d(0y,0,) — d(0y,03) We can conclude that
d(01,04) > d(04,0) — d(02,03) — d(03,04).
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According to their experiments, the best choice is the object with the least lower-bound distance esti-
mate (i.e, item 1), which isthe same asused in AESA. Thus, essentially the same search hierarchies can
be used to implement incremental nearest neighbor search in this setting as those we outlined in Sec-
tion 4.6.1.

Mico et a. [47] proposed a hybrid distance-based indexing method termed TLAESA that makes use
of bothadistancematrix and hierarchical clustering, thereby combining aspectsof LAESA [49] (see Sec-
tion 4.6.2) and the mb-tree [52] (see Section 4.3.3). The hierarchical search structure used by TLAESA
applies the same variation on the gh-tree asis used in the mb-tree: two pivots are used in each node for
splitting the subset associated with the node (based on which pivot is closer), where one of the pivots
in each nonroot node isinherited from its parent. The search agorithm proposed by Mico et a. usesa
partia distance matrix asin LAESA, thusintroducing a second set of pivots (termed ‘ base prototypes
by Mico et d. [47]). Initialy, the algorithm computes the distances between g and al distance matrix
pivots. Next, when traversing the tree structure, TLAESA uses the distance matrix pivots to compute
lower bounds on the distances of the tree pivots from q, rather than computing their actual distances
from g. In other words, if py, po,..., pm are the distance matrix pivots and p is a tree pivot, a lower
bound do(q, p) ond(q, p) is obtained by applying Lemma 4 to all the distance matrix pivots. Therefore,

dio(q, p) < d(g, p) where
dio(9. p) = max{|d(q, pi) —d(pi, p)[}-

Now, if r is the ball radius corresponding to the tree pivot p, dio(q, p) — r is the lower bound on the
distances between q and all the objects in the subtree rooted at the child node corresponding to p (via
Lemma 5, setting rio = O, rni =1, Sp = dlo(q, p), and sy = ). The actual distances of data objects
(other than distance matrix pivots) are then computed only when reaching leaf nodes of the tree.

Severd other variants of AESA and LAESA have been developed (e.g., [57, 69]). For example, Ra
masubramanian and Paliwal [57] presented a variant of AESA that istailored to vector spaces, alowing
them to reduce the preprocessing cost and space complexity to O(nN), where n is the dimensionality of
the vector space (thus, there are significant savings compared to O(N?) since n < N). This algorithm
appears to be quiterelated to LAESA.

Although both AESA and LAESA usually lead to a low number of distance computations when
searching, they do have an overhead of O(N) in terms of computations other than distance. Vilar [69]
presents a technique (termed Reduced Overhead AESA, or ROAESA for short), applicableto both AESA
and LAESA, that reducesthis overhead cost by using aheuristic to limit the set of objectswhose |ower-
bound distances d|, are updated at each step of the algorithm. In particular, rather than updating d,, for
al objectsin §; (to usethe notationin Section 4.6.1), ROAESA partitions S, into two subsetswhich are
termed alive (S,) and not alive (&), and only updatesthe d,, valuesof the objectsin S;. ROAESA starts
by picking an object 0, whose distance from g is computed, and 0, isentered into &.. Next, it computes
do for al objectsin §, = S\ & onthebasisof 01, and makes the object 04 in S, with thelowest di, value
adive—thatis, initialy, Sy = {02} and § = S\ {0a}.

In the main loop that constitutesthe search, the object in S, with the smallest di, valueis picked as
the next object whose distance is computed and the dj, values of the abjectsin S, are updated. Then, in
an inner loop, the objectsin & are considered in order of their d,, value (i.e., which was based on the
initial object 0,), and made dive (i.e., moved from S t0 S,) if their di valueislower than the minimum
of dn and d,, where dy, isthe distance of the current candidate nearest neighbor and dj is the minimum
dio of an object in S, (notethat d, may change in each iteration of the inner loop)?®. Notethat ROAESA

28v/ijlar [69] employs a performance improvement technique, in which all of the objectsin Sare sorted in the preprocessing
step of AESA/LAESA on the basis of their distance from 0;. It can be shown that this meansthat all alive objectslie in con-
secutive locations in the sorted array, so that the next object to become alive will be one of the objectsjust beyond the region
of alive objects.
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has no effect for range searching asin this case dy, is replaced by € and now S, isthe set of all elements
of S, that have not been eliminated by virtue of their d,o values being greater than €.

Interestingly, someof the search hierarchiesthat we devisedfor AESA and LAESA (see Sections4.6.1
and 4.6.2) arerelated to Vilar’ stechnique, asthey a so aim at reducing the amount of updatingin asome-
what anal ogous, but more powerful, manner. In particular, in some of the search hierarchiesthat we pro-
posed, S, ispartitioned into any number of subsetsrather thanjust two (i.e., thealive and not alive objects
in ROAESA), where adifferent number of objectsin & are used to define d,, for each subset.

5 Comparison to Existing Nearest Neighbor Algorithms

In Sections 3 and 4 we outlined how to perform incremental nearest neighbor search for a database of
complex objects using different representations. k-nearest neighbor algorithms have aready been pro-
posed for most of these representations (some of which are limited to k = 1). However, in all cases, the
performance of our incremental nearest neighbor algorithmisat least as good as (and often considerably
better than) these existing methods when determining the same number of neighbors, as measured by
the number of distance computations. Thisisadirect consequenceof Lemma2 in Section 2.5, since we
designed the search hierarchy for each representation in such away that the algorithm would be correct
(in the case of amapping-based approach, the mapping must be contractive). Furthermore, the search hi-
erarchies were constructed so that the number of distance computations (using d) performed by asingle
iteration of theloop in Figure 3isno larger than would be performed by any existing k-nearest neighbor
algorithm in the equivalent situation.

The primary advantage of an incremental nearest neighbor algorithm over ak-nearest neighbor algo-
rithm for the same representation is revealed in circumstances when the number of neighborsdesired is
unknown in advance. In that case, when using ak-nearest neighbor agorithm, we must guessthe value
of k. If kistoo small, the algorithm must be reapplied with alarger value; if kistoo large, the algorithm
wastes effort computing neighborsthat are not needed. In either case, wasted effort results. Moreover,
even when the number of neighborsisknownin advance, with an incremental al gorithmwe can show the
user the first few neighbors before all k neighbors have been found, whereas with a k-nearest neighbor
algorithm, we must wait until completion of the search. Thisisimportant for interactive query interfaces
when the distance function d is very expensive to compute. For example, in [41], it was reported that it
took an average of almost 13 seconds to compute the morphological distance function.

The price that must be paid for the advantages of the incremental algorithm is that the overhead of
the algorithm may be higher than that of non-incremental agorithms for the same representation. For
the most part, the additional overhead is due to priority queue operations. However, with an efficient
priority queue implementation, the cost of manipulating the priority queue should not be a very signifi-
cant factor in the execution cost of the algorithm, since computing distances using the distance function
d is generaly much more expensivethan priority queue operations. Thisis especialy trueif parts of the
representation reside on disk and must be accessed at query time (e.g., if we use an R-tree in the case of
a mapping-based approach or an M-tree in the case of distance-based indexing). Furthermore, the ad-
ditional overhead is often offset (completely or partialy) by better pruning achieved by the incremental
algorithm, and by not needing to maintain data structuresin the corresponding k-nearest neighbor algo-
rithm that are replaced by the priority queue.

Severa agorithmsproposed for nearest neighbor search inthe spatial domain apply abest-first search
strategy, likethe incremental nearest neighbor a gorithms proposed by us[35, 36] and Henrich [32]. An
early k-nearest neighbor algorithm is known as Elias's algorithm (e.g., [58]) which partitions the data
based on a grid and then proceeds to search the grid cell containing the query point g and its immediate
neighboring grid cellsin the order of their distance from g. Lower bounds on the distance from a grid
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cell to g are used to eliminate most of the grid cellsfrom consideration once a candidate set of k nearest
neighbors has been found. A version of this algorithm was proposed for the VA-file [72] which deals
with high-dimensional data. Another early agorithm due to Friedman, Baskett, and Shustek [26] is an
example of a mapping-based approach which employs dimensionality reduction. It sorts the data on the
basisof just one coordinate (i.e., feature) f, and then processesthe objectsinthe order of their f-distance
from g until k objects have been found. The fact that the mapping is contractive enables this method to
eliminate objectsfrom consideration once aset of k candidates has been found. The approximate nearest
neighbor algorithm of Aryaet al. [2] also applies best-first traversal.

In this section, we briefly describe several nearest neighbor and k-nearest neighbor a gorithms that
have been proposed for similarity search, and compare them with our incremental nearest neighbor al-
gorithm (Section 2) as used with the search hierarchies described in Sections 3 and 4. In particular, Sec-
tion 5.1 reviews existing nearest neighbor algorithmsfor the mapping-based approach while Section 5.2
reviews existing nearest neighbor algorithmsfor distance-based indexes.

5.1 Existing Nearest Neighbor Algorithmsfor the M apping-Based Approach

Two filter-and-refine k-nearest nei ghbor algorithmshave been proposed for the mapping-based approach.
Both require that the mapping F be contractive (see Section 3.2) for the results to be correct, i.e., that
6(F(01), F(Oz)) < d(Ol,Oz) foral o,,00 € S

The agorithm dueto Korn et al. [41] first performs a k-nearest neighbor query on the spatia index
that represents F(S), using F(q) asaquery object and distance function & (see Section 3.2), resultingina
set R’ of k candidate nearest neighborsof q. Next, thea gorithm computes the actual distances (based on
d) of al the objectsin R and determinesthe distance of the object farthest from g, € = maxycr:{d(q,0)}.
A range query isthen performed on F(S) withaquery radiusof €, resultingin acandidateset R. Finaly,
the set R of the k nearest neighbors of q isdetermined by computing the distances of all objectsin R and
retaining the k objectsthat are closest to q.

The correctness of thisagorithm can be shown asfollows. By the contractiveness of F and the def-
inition of €, we know that & F(q),F(0)) < d(g,0) <eforal o C R’. Thus, sinceR isthesetof al oin
Sfor which 8(F(q),F(0)) < &, wehave R C R. Therefore, since R’ containsk objects, R’ contains at
least k objects, and thus the k nearest neighbors of g must bein R. Thedrawback of the algorithmisthat
£ may overestimate the distance of the k' nearest neighbor of g by a considerable margin, as shown by
Seidl and Kriegel [60], so R may be significantly larger than necessary. Furthermore, the fact that two
queries areissued to the spatial index that represents F(S) (i.e., the k-nearest neighbor query yielding R’
and the range query yielding R') means that some duplication of effort isinevitable.

Seidl and Kriegel [60] proposed an improved algorithm that is partially based on incremental near-
est neighbor search. In particular, the algorithm performs an incremental nearest neighbor query on the
spatial index storing F(S), using F(q) as the query object and a distance measure & (see Section 3.2).
As the algorithm obtains the neighbors one by one, it computes the actual distance of each object us-
ing d, and insertsthe abjectsinto alist L of the candidate nearest neighbors of g (termed the candidate
list). If thisinsertion causes L to contain more than k objects, the object farthest from g (based on d)
isdiscarded. Clearly, if al the objectsin Swere inserted into the candidate list L in thisway, L would
eventually contain the actual k nearest neighbors. However, since the mapped objects are obtained from
theincremental nearest neighbor query in order of thevaluesof &(F(q),F (o)), thealgorithm can usually
be terminated long before inserting all the objectsinto L. In particular, once & F(q),F(0)) > Dy for the
object o just obtained from the incremental nearest neighbor query, where Dy is the distance of the cur-
rent k™ candidate nearest neighbor, contractiveness of F guaranteesthat d(q,0') > 8(F(q),F(0')) > D
for al objects o' that have not yet been retrieved. Thus, when this condition arises, the candidate list L
containsthe actual k nearest neighbors of g and the search can be halted.
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Our incrementa nearest neighbor algorithm, described in Section 3.3, is clearly closely related to
the k-nearest neighbor algorithm of Seidl and Kriegel. However, our agorithm takes the incremental
approach astep further by integrating the candidatelist L into the priority queue used by the incremental
nearest neighbor algorithmfor the spatial index. In other words, when our al gorithm encountersan object
o (i.e,, when F(0) reaches thefront of the priority queue), instead of inserting o into a separate candidate
list, o isinserted into the priority queue, using the actual distance d(q,0) asakey. In thisway, we ob-
tain an overall incremental process, whereas the agorithm of Seidl and Kriegel is a k-nearest neighbor
algorithm, requiring the number of desired neighborsto be known in advance.

For obtaining any fixed number k of neighbors (using our algorithm, the process is simply termi-
nated once k objects have been output), thetwo al gorithmshave very similar performance characteristics.
In particular, let o, be the k" nearest neighbor of ¢. Both our incremental agorithm and the k-nearest
neighbor algorithm compute the distances only for objects o such that &(F(q),F(0)) < d(qg,0x). How-
ever, our algorithm has a slight edge in that it sometimes performs fewer spatia index node accesses
and & distance computationsthan Seidl and Kriegel’s k-nearest neighbor a gorithm. To seethis, observe
that Seidl and Kriegel’s algorithm terminates only after retrieving the first mapped object F(o;) such
that &(F(q),F(or)) > d(q,ox). Therefore, that algorithm must access spatia index nodes at a distance
from F(q) of up to &(F(q),F(0or)) > d(q,0k). In contrast, our integrated incremental nearest neighbor
agorithm only accesses nodes with distances from F(q) of up to d(q,0x) (since o is the last element
obtained from the priority queue). Observethat using Seidl and Kriegel’salgorithm resultsin accessing
more nodes only if the next non-object element after o, to be retrieved from the priority queue in our
incremental algorithm represents a node in the spatial index. Thisisarelatively rare situation, so the
two algorithmswill usually access exactly the same number of nodes.

5.2 Existing Nearest Neighbor Algorithmsfor Distance-Based | ndexes

Most existing k-nearest neighbor agorithms for distance-based indexes use a depth-first branch and
bound strategy (e.g., [34]). A few agorithms employ best-first search, much like our incremental near-
est neighbor algorithm, but the full power of best-first search is not always exploited. We have shown
that the search hierarchies that we proposed for distance matrix methodsin Section 4.6 compute exactly
the same numbers of distances to find the same numbers of neighbors as k-nearest neighbor algorithms
(which can be viewed as applying a depth-first branch and bound strategy without any backtracking)2°.

Fukunaga and Narendra [28] presented one of the earliest nearest neighbor agorithmsfor distance-
based indexes. Actually, as mentionedin Section 4.3.3, the search structurethat they useispartly specific
to vector data, but their search algorithmis generally applicableto any index based on hierarchical clus-
tering. In fact, they make some of the same observationsthat we made in Section 4.1, albeit in a some-
what different form. A generalized version of Fukunagaand Narendra salgorithmfor an arbitrary search
hierarchy, as defined in Section 2.2, is as follows. The elements in the hierarchy are visited in a depth-
first traversal, starting at theroot, whilemaintaining alist L of the current candidate k nearest neighbors.
Let Dy be shorthand for the distance between g and the farthest object in L (i.e., Dy = maxqe L {d(q,0)}),
or oo if L containsfewer than k objects. Observethat Dy is monotonically hon-increasing over the course
of the search traversal, and eventually reaches the distance of the k™ nearest neighbor of g. If the element
& being visited represents an object o (i.e., t = 0), then o isinserted into L, causing the removal of the
object in L farthest from q if this causes L to contain k + 1 objects (of course, the object removed may

291n order to seethis, consider AESA [67] as described in Section 4.6.1, and represent its execution logic by a binary tree. In
particular, thefirst pivot that is picked becomesthe root of the tree, while all objects eliminated from the search are associated
with the left subtree, and the rest of the objects are associated with the right subtree. Recursively applying the same procedure
to the set associated with the right subtreeyields abinary tree. In essence, using AESA is analogousto performing a depth-first
search on this tree, with no backtracking, as one of the subtrees at each node always correspondsto eliminated objects.
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be o itself). When visiting an element &, t > 1, we construct an activelist A(g ) of child elementsof &,
ordered by distance from g as determined by the appropriate distance function d for each child element
ey of typet’. Next, the elementsin A(e ) are visited recursively in order, until all have been visited or
until reaching an element e € A(&) such that dy (g, &) > Dy°, at which time the traversal backtracks
to the parent of &, or terminatesif g istheroot. Observethat L getsupdated in therecursive visitsto the
children of g as objects are encountered.

Variantsof thisgeneral depth-first k-nearest neighbor al gorithm have been presented for thevp-tree[ 74,
17], thesa-tree[50], and anumber of other structures. However, such depth-first algorithmsmay achieve
much less pruning of the search space and thereby perform substantially worse, as measured by the num-
ber of visited search hierarchy elements, than algorithmsthat apply best-first search on the same search
hierarchy, asis done by our incrementa agorithm. To see why, note that a depth-first algorithm must
make local decisions about visiting e ements, choosing among the children of asingle element (theele-
ments in A(& ) that have not yet been visited) based on the current value of Dy. In contrast, a best-first
algorithm makes global decisions about what elements to visit. The global list maintained by the best-
first algorithm essentially correspondsto the union of the unvisited portionsof theactivelistsA(& ) inthe
depth-first agorithm for al elements @ on the path from the root to the currently visited element. Thus,
while the best-first approach visits an element g only if d(q,&) < d(q,0x) where oy is the k! nearest
neighbor (since the elements are visited in order of distance; see Section 2.5), the depth-first approach
may visit an element e with d(qg, &) > d(q,0k), since Dy may be much larger than d(q, o) for much
of the duration of the search, especialy early on. Noticethat these observationsare also true for variants
of the depth-first algorithmsthat attempt to improve performance by introducing aggressive pruning (ef-
fectively by reducing Dy), such as was described for the vp-tree by Chiueh [17]3. While such strategies
can narrow the performance gap relativeto abest-first algorithm, they cannot visit any fewer elementsin
the search hierarchy than a best-first a gorithm without risking missing some of the k nearest neighbors
of g. In fact, when such an aggressive algorithm detects that too much pruning has taken place (which
may well be a common occurrence), the search hierarchy must be traversed again, this time with less
aggressive pruning. Hence, the average performance gain of aggressive pruning may be modest.

Ciacciaet a. [19] proposed ak-nearest neighbor a gorithmfor the M-tree that appliesbest-first traver-
sal, and thusis somewhat similar to our incremental nearest neighbor algorithm as presented in Figure 3.
We might think that it could be transformed into an incremental algorithm without any significant al-
gorithmic changes, but this is not the case, because the agorithm has a certain depth-first-like aspect
to it in the way it locally prunes a candidate list, and thus does not take full advantage of the best-first
traversal. In particular, the k-nearest neighbor algorithm of Ciacciaet a. usesthe priority queue (which
serves to guide the search) only for the nodesin the M-tree. In contrast, the search hierarchy for incre-
mental nearest search in the M-tree that we proposed in Section 4.4 consists of four types of elements,
all of which are handled by the priority queue. Besides node elements, there are object elements, aswell
as two other types that provide approximate distances of nodes and objects. Instead of placing the ob-
jects on the priority queue, the k-nearest neighbor algorithm of Ciacciaet a. placesthem onalist L of
the k candidate nearest neighbors of g, as is done in the depth-first algorithms described above. Thus
the condition for terminating the search in their algorithmis d,(q,e,) > Dy,%? where e, represents the

30This stopping condition ensures that all objects at the distance of the k™ nearest neighbor are reported. If only k objects
are to be reported, then the halting condition should be dy(q, &) > Dy.

31Chiueh [17] suggested using an estimate of the lower bound of the nearest neighbor in each subtree to bound the search
in that subtree, thus yielding an algorithm that performs “bounded” nearest neighbor search of each subtree (in the reported
experiments, a simpler strategy was employed that made use of an estimate of the smallest lower bound over all nodes). Of
course, if the lower bound estimate is too low, it may be necessary to reapply the algorithm with a higher estimate.

32This condition means that the algorithm will report exactly k neighobrs regardless of how many objects are at the same
distance from q as the k" nearest neighbor. If it is desired to report all of the objectsthat are at the same distance from ¢ as the
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node that was most recently retrieved from the priority queue, d; is as defined in Equation 8, and Dy is
the distance of the farthest object from qin L (or « if |L| < K). Thisis analogousto placing the objects
on the priority queue and terminating the search once the k" object has been retrieved from the priority
gueue (the primary difference isthat in the candidate list approach, at most k objects are remembered at
any given time, whereas the priority queue can contain any humber of objectsin our approach). How-
ever, the algorithm of Ciacciaet a. aso uses Dy to locally prune entries as it processes hodes obtained
from the priority queue. Thislocal pruning takes the place of the approximate hode and object elements
used in our approach, as mentioned above. In particular, using our notation and the distance functionsin
Equation 8, when processing anode n, an entry is pruned if d;(q,e;) > Dy or d3(q,e3) > Dy, depending
on whether nis aleaf or a nonleaf node, respectively. As we saw above in the case of the depth-first
branch and bound algorithms, such local pruning inevitably leads to more distance computationsthan a
comprehensive best-first solution like ours, since Dy may convergeslowly toitsfina value(i.e., d(q, k)
where oy isthe k" nearest neighbor of q).

As an example of how use of the agorithm of Ciacciaet a. resultsin more distance computations
than our incremental algorithm, supposethat Dy = 6 for the current candidate k™" nearest neighbor. More-
over, supposethat weare currently processing aleaf node n with two objectsa and b, and that the* parent”
object of nis p. Therefore, we know d(q, p) (since it was computed when n was inserted into the pri-
ority queue), and we know d(p,a) and d(p,b) (since they are stored in the entries of M-tree node n).
Furthermore, we know that |d(q, p) — d(p,a)| and |d(q, p) — d(p,b)| are lower bounds on d(qg,a) and
d(q,b), respectively. Let usassumethat |d(q, p) —d(p,a)| =5, |d(g, p) —d(p,b)| = 3,d(qg,a) = 7, and
d(qg,b) = 4. Wefirst examine the execution of our incremental algorithm. It inserts the “approximate”
versionsof aand b in the priority queue, and uses thelower bound distance values 5 and 3, respectively.
Assume that the next element that is removed from the priority queue is the “approximate” b, which
would lead to computing d(q,b) and inserting b on the priority queue. Next, the algorithm removes b
from the queue, which is the next neighbor. If the search is now terminated, then the computation of
d(q,a) has been avoided.

To see why our incremental algorithm is better in thisexample, we point out that at the time the | eaf
node n was processed, the algorithm of Ciacciaet al. would compute both d(qg,a) and d(q,b), sincetheir
lower bounds are both smaller than Dy, = 6. In essence, Ciacciaet al.’s use of the lower-bound distances
islocd (asthey are used to make an immediate decision about whether to compute the actua distance),
whereas our incremental nearest neighbor a gorithm makes a global use of them (by putting them on the
priority queue, and only computing the actual distance once they are removed from the queue). In other
words, our incremental algorithm defers the computation of the distances viathe use of the approximate
objects and nodes. Nevertheless, both our incremental agorithm and the algorithm of Ciacciaet a. ex-
plore the same number of M-tree nodes, as in both agorithms these nodes are only explored once they
reach the head of the priority queue, which happensin the same way in the two agorithms. However,
use of the approximate node for n does result in deferring the computation of d(q, p) and replacing it
by a quantity that involves|d(q, p') — D| which has already been computed before processing n. Thusa
distance computation has al so been possibly avoided.

6 Performance Evaluation

In this section, we report some preliminary results from an empirical study of the performance of our
incremental nearest neighbor agorithm when applied to similarity search using both a mapping-based
approach and distance-based indexing. We also compare the performance of the incremental nearest
neighbor algorithm with that of existing k-nearest neighbor algorithms,

k! nearest neighbor, then the condiditon for terminating the search is modified to be dy(q,ep) > Dy.
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6.1 Experimental Environment

In the experiments, we used the R*-tree to test the multistep algorithms of Section 3. The R*-tree imple-
mentation was based on the freely distributed GiST indexing framework [31]. For experiments with the
M-tree, we used the GiST-based implementation that is made available by itsinventors[19]. To build
the M-trees used in the experiments, we used their bulk-loading algorithm [20]. The source code was
written in C++ and was built with the GNU C++ compiler with maximum optimization (-O3). We ran
the experiments on a Sun Ultra 1, which israted at 6.17 SPECint95 and 11.80 SPECfp95. In one of the
graphs, we report execution times of a set of queries, but in the others we report the execution cost in
terms of the number of distance computations or node I/0s.

For the mapping-based approach, we stored the feature vectors (the mapped objects) directly in the
leaf nodes of the R*-tree, while the actua object data were stored in a simple table in an externd file
(termed an object table). In the M-tree, we aso employed an object table, and stored pointersinto this
tablein thetree itself (for both routing and data objects). Thus, unlike the experiments reported in [19]
where the datais stored directly in the tree, the M-trees used in our experiments had the same maximum
fan-out regardless of dimension. In both cases, we used node sizes of 4K, which led to a maximum fan-
out of about 25 for the R*-tree assuming 10D feature vectors, and about 100 for the M-tree. While it
may sometimes be i nefficient to store the objects outsidethe M-tree, thus usualy requiring disk accesses
for distance computations (unless the objects are aready in the buffers), this does not affect the number
of distance calculations and node 1/0Os for queries. However, different values of maximum fan-out can
potentially affect both, as they lead to adifferent tree structure. Nevertheless, although we do not show
this, we found that reducing the fan-out of the M-tree down to 25 usually did littleto reduce the number
of distance calculationsfor queries, whileit increased the number of node I/Os (as would be expected).

We used three types of datain our experiments: color histograms, tumor images, and synthetic data.

¢ The color histogramswere taken from an image database [60], and are of dimensions64, 112, and
256. The 64D and 256D sets contained about 12000 items while the 112D set contained about
8000. For the mapping-based approach, we used the Karhunen-Loéve Transform (KLT) to ex-
tract the 10 most significant coordinates for storage in an R*-tree. As a distance metric, we used
Euclidean distance. The KLT method can be shown to result in feature vectors whose Euclidean
distances |ower-bound the Euclidean distances of the original vectors (see Section 3.1.2).

¢ The tumor image data came from Korn et al. [41]; we used a set of 5000 images for our exper-
iments. As mentioned in Section 3, the morphologica distance measure defined in [41] is very
expensive to evaluate. In [41] each distance computation is reported to take about 13 seconds.
Using full compiler optimization, some algorithm optimizationsand a faster machine, we got the
time down to an average of about 1/3 of asecond. Thisisstill alongtimefor alarge database, and
in particular much longer than a node 1/0, so this application represents an interesting extreme
case. Thefeature vectors (stored in the R*-trees) derived from the images are 11-dimensiona and
the distance metric used is L.

¢ The synthetic data sets contained multidimensional points that formed 10 normally-distributed
clusters[19]. They were generated for dimensionsranging from 20 to 100, and contained 10,000
points each. As before, we used the Euclidean distance metric. Again, we extracted the 10 most
significant coordinatesto storein the R*-tree for the mapping-based approach.

6.2 Benéfit of Incremental Aspect

In this section we show experiments demonstrating the benefit of the incremental nature of our algo-
rithms. As mentioned in Section 1, two important situations where incremental nearest neighbor algo-
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rithms prove useful are 1) to allow quick display of thefirst resultsto the user ininteractive applications,
and 2) when the number of desired neighborsis unknown in advance, e.g., when processing a complex
guery where the “nearest” condition is only one of the conditions. In the first situation, the user may
for example want to view the 10 most similar images. Using a k-nearest neighbor agorithm, we would
have to wait until the entire search has been completed, whereas with an incremental nearest neighbor
algorithm we can quickly display the closest image before the next closest image has been determined.
In the second situation, it isawkward to use a k-nearest neighbor algorithm since we do not know an ap-
propriate k, so we must guess. Too high a guess causes extraneous processing, whereas too low a guess
may force usto re-invoke the algorithm. One way to proceed isto first set k to alow number, say 5, and
then multiply by 2 each time we must re-invoke the algorithm (e.g., if the 6" neighbor is requested).

Figures 19 and 20 show the numbers of distance computationsand node I/Osfor queries on the 64D
histogram data set using the mapping-based approach. The figures show the cost of finding from 1 to
20 of the nearest neighborsfor the multistep incremental nearest neighbor algorithm (using the R*-tree),
and the cost of finding the 10 and 20 nearest neighbors using the multistep k-nearest neighbor algorithm,
as well as the cost of using it when the number of desired neighborsis unknown, using an initial value
of k = 5, and multiplying by 2 each time. Figures 21 and 22 show the same information for the M-
tree algorithms. The figures dramatically show the advantage of using the incremental nearest neighbor
algorithms over the k-nearest neighbor agorithms, especially as regards the number of distance compu-
tations. For the mapping-based approach, the INN algorithm reports the first neighbor using only 17%
of the number of distance computations needed to find the first 10 neighbors using the k-NN algorithm,
and 11% for thefirst 20.
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Figure 19: Number of distance computa- Figure 20: Number of node 1/Os for 64D
tions for 64D histogram data and a varying histogram data and a varying number of
number of neighbors using an R*-tree index neighbors using an R*-tree index (mapping-
(mapping-based approach). based approach).

If the cost of distance computationsismuch higher than that of nodel/Os, theimportance of reducing
the number of distance computations increases. This is the case for the tumor shape data. Figure 23
reports the execution times for queries on a tumor shape database consisting of 5000 images using both
approaches, the mapping based approach using the R*-tree (R) and the M-tree (M). It showsthe cost of
finding from 1 to 10 neighbors using the incremental nearest neighbor algorithmsand the cost of finding
the 10 nearest neighbors using the k-nearest neighbor algorithms. While this graph does not show as
great an advantage of the incremental approach as some of the previous graphs, the advantage is till
substantial. In both cases, the incremental nearest neighbor algorithm reports the first nearest neighbor
in about 65% of the time it takes to find the 10 nearest neighbors. Interestingly, for this data set, the
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R*-tree based method is up to 50% faster than using the M-tree.
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6.3 Comparison of Mapping-based Approach and Distance-Based | ndexing

If we compare Figures 19 and 21 we can see that the R*-tree based method performed many fewer dis-
tance computationsthan the M-tree based method. In the experiment reported in these figures, the num-
ber of dimensions of the mapped objects stored in the R*-tree is 10. An interesting question is what
happens when we vary the number of dimensions of the mapped objects. Clearly, the lower the number
of dimensions, the poorer an approximation of the objects we get in the mapped objects. In Figure 24
we show theresults of varying the dimensionality of the mapped objectsin the R*-tree for the 112D his-
togram data, for two different numbers of neighbors(1 and 10). We also show, for comparison, the result
for the same queriesinthe M-tree. Aswe might have expected, the number of distance computationsde-
creases with increasing number of dimensions. At eight dimensions, the R*-tree method isal ready better
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than the M-tree. For the 64D and 256D histogram data, we found that the cut-off point was four dimen-
sions.

6.4 k-nearest Neighbor Queries

In Section 5.1, we showed that when applied to the mapping-based approach, our incremental nearest
neighbor algorithm performs exactly as many distance computations as the k-nearest neighbor algorithm
of Seidl and Kriegel [60], and sometimes fewer node 1/Os, but never more. Similarly, we showed in
Section 5.2 that when applied to the M-tree, our algorithm performs exactly as many node 1/0s as the
M-tree k-nearest neighbor algorithm of Ciacciaet d. [19], and usually fewer distance computations, but
never more.
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computations for 10-NN queries imple- tions for 10-NN queries on synthetic data
mented with the INN and k-NN methods in sets of varying dimension.

different datasets using an M-tree index.

Figure 25 showsthe relative numbers of distance computations performed by the INN and k-NN al-
gorithmsfor the M-tree when computing 10-NN querieson thethree histogram datasetsand on thetumor
shape dataset. In most cases, the k-NN a gorithm performed roughly 15-20% more distance computa-
tions, but for the 112D histogram set, it performed almost 85% more. Thenumber of nodel/Osperformed
by the multistep INN algorithm isusually at most 1-2% less than that of the multistep k-NN agorithm,
so we do not show a graph for that case.

Figures 26 and 27 show the numbers of distance computationsand node I/Os for 10-NN queries on
synthetic data sets of 10000 vectors of dimension 20 through 100. In the figures, we show the results
of the INN and k-NN a gorithms together when they are identical or very similar. The performance of
both approaches does not appear to depend much on the dimensionality of the data. Thisis perhaps not
surprising given that the data sets are constructed with the same parameters (i.e., using 10 clusters of
vectors and the same distribution around each cluster). However, the number of distance computations
for the mapping-based approach is significantly lower for 20 and 30 dimensions. Thisis becausein this
case, the 10 dimensional feature vectors stored in the R*-tree evidently retain more of the information
than for higher dimensions, thus effecting better filtering.

7 Concluding Remarks

We have introduced a general framework for performing incremental nearest neighbor search, and have
applied it to two classes of similarity search methods, mapping-based approaches and distance-based
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indexes. Similarity search involvesfinding objectsin adataset SC U that are similar to a query object
g € U, based on some distance measure d. Our agorithm reports the result objects one by onein order
of similarity, with aslittle effort as possible expended to produce each new result object. The agorithm
was shown to be correct for all the indexing methods that we applied it to, given a suitable definition
of a “search hierarchy” on which the algorithm operates. In the case of incrementa nearest neighbor
search, correctness means that the objects are reported in order of increasing (or, more accurately, non-
decreasing) distance from the query object. However, we discussed methods that aim to improve the
performance of the algorithm, by relaxing the correctness criterion, implying that the objects may be
reported somewhat out of order. For many applications, such approximate behavior is acceptabl e, within
limits, and usersarewillingto trade off accuracy for speed. In additionto discussing such an approximate
version of thealgorithm, we al so described how the algorithm can exploit limits (upper and lower) onthe
distances of the desired objects and limitson the cardinality of the result, thus incorporating features of
range search and k-nearest neighbor search. Furthermore, we showed how the algorithm can be varied
to produce the objectsin order of decreasing distance, so that the farthest neighbor is reported first.

We showed that our incremental nearest neighbor algorithm is optimal with respect to the search
hierarchy that it is applied to, in that as small a portion of the search hierarchy isvisited as possible, for
any number of neighbors. In particular, for obtaining k neighbors of aquery object g, the portion of the
search hierarchy visited isthe same as would be visited by arange query with query object q and radius
equal to the distance of the k™ neighbor of g. When applied to similarity search structures, thismeansin
practicethat it performs thefewest possibledistance computations (on the objectsin Susing the distance
measure d), and if the underlying indexing structureis disk-resident, the fewest possible /O operations.
Of course, this form of optimality does not imply that the algorithm will perform the least amount of
work in some absolute sense; the actual performance depends on the underlying indexing structure and
the definition of the search hierarchy.

During our discussion, we surveyed a number of different mapping methods and distance-based in-
dexing methods. We a so di scussed exi sting nearest nei ghbor and k-nearest neighbor a gorithmsfor these
methods, and showed that, in most cases, these al gorithmsachi eveless pruning of the search hierarchy for
any fixed number of neighbors (but never more, of course). Furthermore, our algorithm has the distinct
advantage of being incremental, which givesit much better performance for distance browsing queries,
wherein we browse through a database based on distance and may terminate the browsing at any time—
that is, the number of desired objectsis unknown in advance. An experimental study confirms our rea
soning, showing considerable improvement over the k-nearest neighbor algorithms in areas where the
incremental nature of the algorithm can be exploited. Another benefit of our algorithmin the setting of
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interactive query interfaces, even in cases where the number of desired neighborsisfixed in advance, is
that thefirst few neighbors can be reported to the user as soon as the algorithm determines them. Our
experiments also confirmed that the first neighbors often can be determined much sooner than, say, the
20" neighbor. Admittedly, in some cases, the cost of determining only the first neighbor may be very
high. In particular, let C(m) be the cost of determining m neighbors, and let k be the desired number of
neighbors. The benefit of the incremental a gorithm depends on the value of C(k)/C(1): if thisvalueis
large, we get the first neighbor much more quickly than the k" neighbor. Unfortunately, the greater the
inherent dimensionality of the data set S, the smaller C(k)/C(1) tends to be.

Our experiments al so provide a comparison between the two approaches to similarity search. Under
the parameters that we used, the mapping-based approach always performed fewer distance computa-
tions compared to using the distance-based index, but the mapping-based approach led to more node 1/O
operations. This appears to suggest that the mapping-based approach is preferable in situations where
the distancefunction that measures the similarity of two objectsis expensiveto compute. Naturally, this
depends on the quality of the filtering that the mapped objects provide during query execution. Never-
theless, we found that a remarkably small number of dimensions for the mapped objects was adequate
for the data setsthat we used. In fact, the query execution time when using the mapping-based approach
was never higher than that for distance-based indexing (given a suitable dimensionality of the mapped
object).

An important future task in thisarea isto develop cost models for our algorithm in various settings.
Such cost model s necessarily depend on the particul ar indexing structure being employed, but some gen-
era assumptions can possibly be formulated that apply reasonably well to a large class of structures.
There are threeimportant parametersto such acost model. First, the expected number k of desired neigh-
bors of the query object g. Second, the expected distancer of the ki nearest neighbor of q. Third, the
expected cost C of performing arange query with query radiusr. Clearly, the measureC of the cost of the
range query must include the number of distance computationson S, sincethey aretypically expensive,
but for a disk-resident indexing structure, we must also take into account the number of 1/0 operations.
Therelative weight of these two factors clearly depends on therelative cost of distance computationsvs.
I/0 operations. Some headway has been made in recent years in devel oping cost models for proximity
queries, e.g., for high-dimensional vector spaces [4] and for M-trees [20]. Based on some simplifying
assumptions, thiswork focuses on estimating ther parameter based on k and/or the C parameter based on
r. However, the assumptionsdo not apply to al similarity search methods, so more remains to be done.
In situations where the number of desired neighborsis not precisely known in advance, it will also be
necessary to estimate k. A reasonable approach might be to take a “trailing average” of the number of
reguested neighborsin some of the recent queries.

Other futurework includesperforming more experimentsusing other mapping methodsand distance-
based indexeson morevaried datasets. Thus, wewould aim at providing an empirical basisfor choosing
the appropriate method (e.g., whether to use a mapping-based approach or a distance-based index) for a
given application using our algorithm.
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