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An overview is presented of object-based and image-based representations of objects by
their interiors. The representations are distinguished by the manner in which they can
be used to answer two fundamental queries in database applications: (1) Feature query:
given an object, determine its constituent cells (i.e., their locations in space). (2)
Location query: given a cell (i.e., a location in space), determine the identity of the
object (or objects) of which it is a member as well as the remaining constituent cells of
the object (or objects). Regardless of the representation that is used, the generation of
responses to the feature and location queries is facilitated by building an index (i.e., the
result of a sort) either on the objects or on their locations in space, and implementing it
using an access structure that correlates the objects with the locations. Assuming the
presence of an access structure, implicit (i.e., image-based) representations are
described that are good for finding the objects associated with a particular location or
cell (i.e., the location query), while requiring that all cells be examined when
determining the locations associated with a particular object (i.e., the feature query). In
contrast, explicit (i.e., object-based) representations are good for the feature query,
while requiring that all objects be examined when trying to respond to the location
query. The goal is to be able to answer both types of queries with one representation
and without possibly having to examine every cell. Representations are presented that
achieve this goal by imposing containment hierarchies on either space (i.e., the cells in
the space in which the objects are found), or objects. In the former case, space is
aggregated into successively larger-sized chunks (i.e., blocks), while in the latter, objects
are aggregated into successively larger groups (in terms of the number of objects that
they contain). The former is applicable to image-based interior-based representations of
which the space pyramid is an example. The latter is applicable to object-based
interior-based representations of which the R-tree is an example. The actual mechanics
of many of these representations are demonstrated in the VASCO JAVA applets found
at http://www.cs.umd.edu/~hjs/quadtree/index.html.
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1. INTRODUCTION

The representation of spatial objects and
their environment is an important issue in
building and maintaining databases (e.g.,
Samet [1995]) to support applications
in computer graphics, game program-
ming, computer vision, image processing,
robotics, pattern recognition, computa-
tional geometry, and geographic informa-
tion systems (GIS). In this survey, our
goal is to introduce practitioners and re-
searchers in these areas to these repre-
sentations. Bearing these goals in mind,
whenever there are several ways of ex-
plaining a concept we use the terminology
and notation that is common to these fields
rather than that which is more commonly
used in spatial databases (e.g., Rigaux
et al. [2001] and Shekhar and Chawla
[2003]). Thus the survey is not necessar-
ily aimed at database researchers (as is
for example [Di Pasquale et al. 2003]) al-
though we hope that they will also find
it useful. Please note also that we are
focussing on the representation of spa-
tial objects which means that the objects
have extent (e.g., Arman and Aggarwal
[1993], Samet [1990a, 1990b], Suetens
et al. [1992]) rather than being merely
points. The representation of multidimen-
sional points has been much studied in
the database literature (e.g., Böhm et al.
[2001], Gaede [1995], and Samet [1990b]).

We assume that the objects are
connected1 although their environment
need not be. The objects and their en-
vironment are usually decomposed into
collections of more primitive elements

1Intuitively, this means that a d -dimensional object
cannot be decomposed into disjoint subobjects so that
the subobjects are not adjacent in a (d − 1)-dimen-
sional sense.

(termed cells) each of which has a location
in space, a size, and a shape. These ele-
ments can either be subobjects of varying
shape (e.g., a table consists of a flat top
in the form of a rectangle and four legs in
the form of rods whose lengths dominate
their cross-sectional areas), or can have
a uniform shape. The former yields an
object-based decomposition while the
latter yields an image-based or cell-based
decomposition. Another way of charac-
terizing these two decompositions is that
the former decomposes the objects while
the latter decomposes the environment in
which the objects lie. This distinction is
commonly used to characterize algorithms
in computer graphics (e.g., Foley et al.
[1990]).

Each of the decompositions has its ad-
vantages and disadvantages. They depend
primarily on the nature of the queries that
are posed to the database. The most gen-
eral queries ask where, what, who, why,
and how. The ones that are relevant to our
application are where and what. They are
stated more formally as follows:

(1) Feature query: Given an object, deter-
mine its constituent cells (i.e., their lo-
cations in space).

(2) Location query: Given a cell (i.e., a lo-
cation in space), determine the identity
of the object (or objects) of which it is a
member as well as the remaining con-
stituent cells of the object (or objects).

Not surprisingly, the queries can be clas-
sified using the same terminology that we
used in the characterization of the decom-
position. In particular, we can either try to
find the cells (i.e., their locations in space)
occupied by an object or find the objects
that overlap a cell (i.e., a location in space).
If objects are associated with cells so that

ACM Computing Surveys, Vol. 36, No. 2, June 2004.



Object-Based and Image-Based Object Representations 161

a cell contains the identity of the relevant
object (or objects), then the feature query
is analogous to retrieval by contents while
the location query is analogous to retrieval
by location.

The feature and location queries are
the basis of two more general classes of
queries. In particular, the feature query
is a member of a broader class of queries
described collectively as being feature-
based (also object-based), while the loca-
tion query is a member of a broader class
of queries described collectively as being
location-based (also image-based or cell-
based). The location query is also com-
monly referred to as a point query in
databases (e.g., Knuth [1998]), the point
location problem in computational ge-
ometry (e.g., de Berg et al. [1997] and
Preparata and Shamos [1985]), and a
“pick” operation in computer graphics
(e.g., Foley et al. [1990]) which is actually
used to find the nearest object to a given lo-
cation. The class of location-based queries
include the numerous variants of the win-
dow query which retrieves the objects that
cover an arbitrary region (often rectangu-
lar). All of these queries are used in sev-
eral applications including geographic in-
formation systems (e.g., Aref and Samet
[1990] and Samet and Aref [1995]) and
spatial data mining (e.g., Wang et al.
[1997]). It is important to note that the
only reason that we discuss these par-
ticular queries is that they are the mo-
tivation for the different representations
that we present. Of course, there are many
other possible queries such as a more gen-
eralized formulation of neighbor finding,
Boolean set operations, spatial joins, etc.
However, their discussion is beyond the
scope of this survey.

The most common representation of
the objects and their environment is as
a collection of cells of uniform size and
shape (termed pixels and voxels in two
and three dimensions, respectively) all
of whose boundaries (with dimensional-
ity one less than that of the cells) are of
unit size. Such a representation is used
in many applications in image process-
ing, computer graphics, remote sensing,
and geographic information systems (GIS)

Fig. 1. Example collection of
three objects and the cells that
they occupy.

where it is known as a raster representa-
tion. In fact, it forms the basis of the map
algebra system of Tomlin [1990] which has
been implemented in a number of GIS sys-
tems (e.g., ARC/INFO). Since the cells are
uniform, there exists a way of referring to
their locations in space relative to a fixed
reference point (e.g., the origin of the coor-
dinate system). An example of a location of
a cell in space is a set of coordinate values
that enable us to find it in the d -dimen-
sional space of the environment in which
it lies. Note that the concept of the loca-
tion of a cell in space is quite different from
that of the address of a cell, which is the
physical location (e.g., in memory, on disk,
etc.), if any, where some of the information
associated with the cell is stored. This dis-
tinction between the location in space of a
cell and the address of a cell is important
and we shall make use of it often.

In most applications, the boundaries
(i.e., edges and faces in two and three
dimensions, respectively) of the cells are
parallel to the coordinate axes. In our dis-
cussion, we assume that the cells com-
prising a particular object are contigu-
ous (i.e., adjacent), and that a different
unique value is associated with each dis-
tinct object, thereby enabling us to distin-
guish between the objects. Depending on
the underlying representation, this value
may be stored with the cells. For example,
Figure 1 contains three two-dimensional
objects A, B, and C and their correspond-
ing cells. Note that in this example there
exist two hyperplanes that will separate
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the objects; however, this is not crucial to
our discussion. We also observe that, al-
though not the case in this example, ob-
jects are allowed to overlap which means
that a cell may be associated with more
than one object. Here we assume, without
loss of generality, that the volume of the
overlap must be an integer multiple of the
volume of a cell (i.e., pixels, voxels, etc.).

The shape of an object o can be rep-
resented either by the interiors of the
cells comprising o, or by the subset of
the boundaries of those cells comprising
o that are adjacent to the boundary of o.
In particular, interior-based methods rep-
resent an object o by using the locations in
space of the cells that comprise o, while
boundary-based methods represent o by
using the locations in space of the cells
that are adjacent to the boundary of o.
In general, interior-based representations
make it very easy to calculate properties of
an object such as its mass, and, depending
on the nature of the aggregation process,
to determine the value associated with any
point (i.e., location) in the space covered
by a cell in the object. On the other hand,
boundary-based representations make it
easy to obtain the boundary of an object.
The first boundary representation was the
chain code [Freeman 1974], which is a dig-
itized version of a vector representation.
Other more commonly used boundary rep-
resentations are those known collectively
as the boundary model (also referred to as
BRep) among which are included a num-
ber of variants of the winged-edge data
structure (e.g., Baumgart [1975], Guibas
and Stolfi [1985], Joy et al. [2003], and
Samet [1990b]), as well as representations
such as the BSP tree (denoting Binary
Space Partitioning) [Fuchs et al. 1980],
which is mentioned briefly in Section 3. In
this article, the focus is on interior-based
representations and thus further discus-
sion of these representations is beyond our
scope.

The simplest representation represents
the objects by use of collections of unit-size
cells. The collection can be represented ei-
ther explicitly or implicitly. The represen-
tation is explicit if the identities of all the
contiguous cells that form the object are

hardwired into the representation (char-
acterized as being object-based), while the
representation is implicit if we can only
determine the cells that make up the ob-
ject by examining the contiguous cells of a
given cell and determining if they are asso-
ciated with the same object (characterized
as being image-based).

These representations can be made
more compact by aggregating similar
elements (i.e., unit-size cells). These
elements are usually identically valued
contiguous cells, or even objects which,
ideally, are in proximity. The result is that
the cells that make up the object collection
no longer need to be of unit size and their
sizes can vary. The varying-sized cells are
termed blocks.

Regardless of the representation that is
used, the generation of responses to the
feature and location queries is facilitated
by building an index (i.e., the result of a
sort) either on the objects or on their lo-
cations in space, and implementing it us-
ing an access structure that correlates the
objects with the locations. Assuming the
presence of an access structure, the im-
plicit (i.e., image-based) representations
described in Sections 2 and 3 are good
for finding the objects associated with a
particular location or cell (i.e., the loca-
tion query), while requiring that all cells
be examined when determining the loca-
tions associated with a particular object
(i.e., the feature query). In contrast, the
explicit (i.e., object-based) representations
described in Sections 2 and 3 are good for
the feature query, while requiring that all
objects be examined when trying to re-
spond to the location query. Our goal is
to be able to answer both types of queries
with one representation and without pos-
sibly having to examine every cell. This is
the main focus of this article.

We achieve our goal by imposing con-
tainment hierarchies on the representa-
tions. The hierarchies differ depending on
whether the hierarchy is of space (i.e., the
cells in the space in which the objects are
found), or of objects. In the former case, we
aggregate space into successively larger-
sized chunks (i.e., blocks), while in the lat-
ter, we aggregate objects into successively
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larger groups (in terms of the number of
objects that they contain). The former is
applicable to implicit (i.e., image-based)
interior-based representations, while the
latter is applicable to explicit (i.e., object-
based) interior-based representations.

The basic idea is that in image-based
representations, we propagate objects up
the hierarchy, with the occupied space be-
ing implicit to the representation. Thus,
we retain the property that associated
with each cell is an identifier indicating
the object of which it is a part. In fact, it
is this information that is propagated up
the hierarchy so that each element in the
hierarchy contains the union of the objects
that appear in the elements immediately
below it.

On the other hand, in the object-based
representations, we propagate the space
occupied by the objects up the hierarchy,
with the identities of the objects being
implicit to the representation. Thus, we
retain the property that associated with
each object is a set of locations in space
corresponding to the cells that make up
the object. Actually, since this informa-
tion may be rather voluminous, it is of-
ten the case that an approximation of the
space occupied by the object is propagated
up the hierarchy rather than the collec-
tion of individual cells that are spanned
by the object. The approximation is usu-
ally the minimum bounding box for the
object that is customarily stored with the
explicit representation. Therefore, associ-
ated with each element in the hierarchy is
a bounding box corresponding to the union
of the bounding boxes associated with
the elements immediately below it. The
bounding box is quite general in the sense
that it can be used to approximate all types
of data rather than just objects with axis-
parallel boundaries as in this article.

The use of the bounding box approxima-
tion has the drawback that the bounding
boxes at a given level in the hierarchy are
not necessarily disjoint, which means that
responding to the location query may re-
quire all of the bounding boxes to be visited
as the space spanned by an object may be
included in several bounding boxes; how-
ever, the object is only associated with one

of the bounding boxes. This can be over-
come by decomposing the bounding boxes
so that disjointness holds. The drawback
of this solution is that an object may be
associated with more than one bounding
box, which may result in the object being
reported as satisfying a particular query
more than once. For example, suppose that
we want to retrieve all the objects that
overlap a particular region (i.e., a window
query) rather than a point as is done in the
location query.

It is very important to note that the
presence of the hierarchy does not mean
that the alternative query (i.e., the fea-
ture query in the case of a space hierar-
chy and the location query in the case of
an object hierarchy) can be answered im-
mediately. Instead, obtaining the answer
usually requires that the hierarchy be de-
scended. The effect is that the order of the
execution time needed to obtain the an-
swer is reduced from linear to logarithmic.
Of course, this is not always the case. For
example, the fact that we are using bound-
ing boxes for the space spanned by the ob-
jects rather than the exact space occupied
by them means that we do not always have
a complete answer when reaching the bot-
tom of the hierarchy. In particular, at this
point, we may have to resort to a more ex-
pensive point-in-polygon test [Foley et al.
1990].

It is worth repeating that the only rea-
son for imposing the hierarchy is to facili-
tate responding to the alternative query
(i.e., the feature query in the case of a
space hierarchy on the implicit represen-
tation, and the location query in the case of
an object hierarchy on the explicit repre-
sentation). Thus the base representation
of the hierarchy is still usually used to
answer the original query, because often,
when using the hierarchy, the inherently
logarithmic overhead incurred by the need
to descend the hierarchy may be too ex-
pensive (e.g., when using the implicit rep-
resentation with an array access struc-
ture to respond to the location query).
Of course, other considerations such as
space requirements may cause us to mod-
ify the base representation of the hierar-
chy, with the result that it will take longer
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to respond to the original query (e.g., the
use of a tree-like access structure with an
implicit representation). Nevertheless, as
a general rule, in the case of the space hier-
archy, we use the implicit representation
(which is the basis of this hierarchy) to an-
swer the location query, while in the case
of the object hierarchy, we use the explicit
representation (which is the basis of this
hierarchy) to answer the feature query.

The rest of this article is organized as
follows: Section 2 examines both image-
based and object-based representations
that consist of collections of unit-size cells,
while Section 3 reviews how these rep-
resentations are made more compact by
aggregating similar elements into blocks.
Sections 4 and 5 describe how to modify
the image-based and object-based repre-
sentations, respectively, to be hierarchical.
Section 6 briefly discusses some disjoint
object-based representations, while con-
cluding remarks are drawn in Section 7.
Note that all of the representations that
we discuss can be used in a dynamic
environment although some more eas-
ily in the sense that updates are less
costly to process as less of the rep-
resentation needs to be rebuilt in the
case of an update. The actual mechan-
ics of many of these representations are
demonstrated in the VASCO JAVA applets
found at http://www.cs.umd.edu/~hjs/
quadtree/index.html [Brabec et al. 2003].

In order to simplify matters, the repre-
sentations described in Sections 2 and 3
assume that the objects can be decom-
posed into cells whose boundaries are par-
allel to the coordinate axes. Moreover, it is
assumed that each unit-size cell or block is
contained entirely in one or more objects—
that is, a cell or block cannot be partially
contained in two objects. This means that
either each cell in a block belongs to the
same object or objects, or all of the cells in
the block do not belong to any of the ob-
jects. Of course, as we pointed out before,
more complex objects are possible (e.g., ar-
bitrary polyhedra as well as collections
of objects whose boundaries do not coin-
cide with the boundaries of the underly-
ing blocks) and also a cell or a block could
be allowed to overlap several objects with-

out being completely contained in them.
In this case, the hierarchical object-based
representations which are presented in
Section 5 are the most appropriate and the
discussion therein is applicable.

2. UNIT-SIZE CELLS

Interior-based representations aggregate
identically-valued cells by recording their
locations in space. When the aggregation
is explicit, the identities of the contigu-
ous cells that form the object are hard-
wired into the representation. An example
of an explicit aggregation is one that asso-
ciates a set with each object o that con-
tains the location in space of each cell that
comprises o. In this case, no identifying
information (e.g., the object identifier cor-
responding to o) is stored in the cells. Thus
there is no need to allocate storage for
the cells (i.e., no addresses are associated
with them). One possible implementation
of this set is a list. For example, consider
Figure 1 and assume that the origin (0,0)
is at the upper-left corner. Assume further
that this is also the location of the pixel
that abuts this corner. Therefore, the ex-
plicit representation of object B is the set of
locations {(5,1) (6,0) (6,1) (7,0) (7,1)}. It should
be clear that using the explicit represen-
tation, given an object o, it is easy to de-
termine the cells (i.e., locations in space)
that comprise it (the feature query).

Of course, even when using an explicit
representation, we must still be able to ac-
cess object o from a possibly large collec-
tion of objects, which may require an ad-
ditional data structure such as an index
on the objects (e.g., a table of object-value
pairs where value indicates the entry in
the explicit representation corresponding
to object). This index does not make use
of the spatial coverage of the objects and
thus may be implemented using conven-
tional searching techniques such as hash-
ing [Knuth 1998]. In this case, we will
need O(N ) additional space for the in-
dex, where N is the number of different
objects. We do not discuss such indexes
here.

The fact that no identifying informa-
tion as to the nature of the object is
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stored in the cell means that the explicit
representation is not suited for answer-
ing the inverse query of determining the
object associated with a particular cell
at location l in space (i.e., the location
query). Using the explicit representation,
the location query can be answered only
by checking for the presence of location
l in space in the various sets associated
with the different objects. This will be
time-consuming, as it may require that
we examine all cells in each set. In other
words, the explicit representation is pri-
marily suited to retrieval on the basis of
knowledge of the objects rather than of the
locations of the cells in space and this is
the rationale for characterizing it as being
object-based.

Note that since the explicit representa-
tion consists of sets, there is no partic-
ular order for the cells within each set
although an ordering could be imposed
based on spatial proximity of the loca-
tions of the cells in space, etc. For exam-
ple, the list representation of a set already
presupposes the existence of an ordering.
Such an ordering could be used to obtain
a small, but not insignificant, decrease in
the time (in an expected sense) needed to
answer the location query. In particular,
now whenever cell c is not associated with
object o, we will be able to cease search-
ing the list associated with o after having
inspected half of the cells associated with
o instead of all of them, which is the case
when no ordering exists.

An important shortcoming of the use of
the explicit representation, which has an
effect somewhat related to the absence of
an ordering, is the inability to distinguish
between occupied and unoccupied cells. In
particular, in order to detect that a cell c
is not occupied by any object we must ex-
amine the sets associated with each object,
which is quite time-consuming. Of course,
we could avoid this problem by forming an
additional set which contains all of the un-
occupied cells, and examine this set first
whenever processing the location query.
The drawback of such a solution is that
it slows down all instances of the location
query that involve cells that are occupied
by objects.

We can avoid examining every cell in
each object set, thereby speeding up the
location query in certain cases, by stor-
ing a simple approximation of the object
with each object set o. This approximation
should be of a nature that makes it easy to
check if it is impossible for a location l in
space to be in o. One such approximation
is a minimum bounding box whose sides
are parallel to the coordinate axes of the
space in which the object is embedded. For
example, for object B in Figure 1 such a box
is anchored at the lower-left corner of cell
(5,1) and the upper-right corner of cell (7,0).
The existence of a box b for object o means
that if b does not contain l , then o does not
contain l either, and we can proceed with
checking the other objects. This bound-
ing box is usually a part of the explicit
representation.

There are several ways of increasing the
quality of the approximation. For exam-
ple, the minimum bounding box may be
rotated by an arbitrary angle so that the
sides are still orthogonal while no longer
having to be parallel to the coordinate
axes and known as an OBB-tree denoting
oriented bounding box (e.g., Brinkhoff
et al. [1994], Gottschalk et al. [1996], and
Reddy and Rubin [1978]). These repre-
sentations adaptations of the strip tree
[Ballard 1981] and the Douglas–Peucker
generalization algorithm [Douglas 1990;
Douglas and Peucker 1973; Saalfeld 1987]
for curves in two dimensions. The number
of sides as well as the number of their
possible orientations may be expanded
so that it is arbitrary (e.g., a convex
hull [Brinkhoff et al. 1994]), or bounded
although greater than the dimensionality
of the underlying space (e.g., the P-tree
[Jagadish 1990b] and k-DOP [Klosowski
et al. 1998] where the number of pos-
sible orientations is bounded, and the
minimum bounding polybox [Brodsky
et al. 1995], which attempts to find the
optimal orientations). The most general
solution is the convex hull, which is often
approximated by a minimum bound-
ing polygon of a fixed number of sides
having either an arbitrary orientation
(e.g., the minimum bounding n-corner
[Dori and Ben-Bassat 1983; Schiwietz
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1993; Schiwietz and Kriegel 1993]) or a
fixed orientation usually parallel to the
coordinate axes (e.g., [Esperança and
Samet 1997]). Restricting the sides (i.e.,
faces in dimension higher than 2) of the
polyhedron to be parallel to the coordinate
axes (termed an axis-parallel polygon)
enables simpler point-in-object tests (e.g.,
the vertex representation [Esperanca and
Samet 1994; Esperança 1995; Esperança
and Samet 1997]). The minimum bound-
ing box may also be replaced by a circle,
sphere (e.g., Hubbard [1995, 1996],
Omohundro [1989], van Oosterom [1990],
van Oosterom and Claassen [1990], and
White and Jain [1996b]), ellipse, in-
tersection of the minimum bounding
box with the minimum bounding
sphere (e.g., Katayama and Satoh
[1997]), as well as other shapes (e.g.,
Brinkhoff et al. [1994]). Interestingly,
many of these solutions arose in ap-
plications in collision detection (e.g.,
Gottschalk et al. [1996] and Klosowski
et al. [1998]).

In the rest of this article, we restrict
our discussion to minimum bounding
boxes that are rectangles with sides par-
allel to the coordinate axes, although, of
course, the techniques we describe are
applicable to other more general bound-
ing objects. Nevertheless, in the interest
of brevity, we often use the term bound-
ing box even though the terms minimum
bounding box or minimum bounding ob-
ject would be more appropriate.

The location query can be answered
more directly if we allocate an address a
in storage for each cell c where an identi-
fier is stored that indicates the identity of
the object (or objects) of which c is a mem-
ber. Recall that such a representation is
said to be implicit as in order to deter-
mine the rest of the cells that comprise
the object associated with c (and thus com-
plete the response to the location query),
we must examine the identifiers stored
in the addresses associated with the con-
tiguous cells and then aggregate the cells
whose associated identifiers are the same.
However, in order to be able to use the im-
plicit representation, we must have a way
of finding the address a corresponding to

c, taking into account that there is possi-
bly a very large number of cells, and then
retrieving a.

Finding the right address requires an
additional data structure, termed an ac-
cess structure, such as an index on the
locations in space. An example of such
an index is a table of cell-address pairs
where address indicates the physical loca-
tion where the information about the ob-
ject associated with the location in space
corresponding to cell is stored. The table
is indexed by the location in space corre-
sponding to cell. The index is really an or-
dering and hence its range is usually the
integers (i.e., one-dimensional). When the
data is multidimensional (i.e., cells in d -
dimensional space where d > 0), it may
not be convenient to use the location in
space corresponding to the cell as an index
since its range spans data in several di-
mensions. Instead, we employ techniques
such as laying out the addresses corre-
sponding to the locations in space of the
cells in some particular order and then
making use of an access structure in the
form of a mapping function to enable the
quick association of addresses with the lo-
cations in space corresponding to the cells.
Retrieving the address is more complex in
the sense that it can be a simple memory
access or it may involve an access to sec-
ondary or tertiary storage if virtual mem-
ory is being used. In most of our discus-
sion, we assume that all data is in main
memory, although, as we will see, sev-
eral representations do not rely on this
assumption.

Such an access structure enables us to
obtain the contiguous cells (as we know
their locations in space) without having to
examine all of the cells. Therefore, we will
know the identities of the cells that com-
prise an object thereby enabling us to com-
plete the response to the location query
with an implicit representation. In other
words, the implicit representation lends it-
self to retrieval on the basis of knowledge
only of the cells rather than of the objects,
and this is the rationale for characteriz-
ing it as being image-based. In the rest of
this section, we discuss several such access
structures.
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Fig. 2. The result of applying several different space-ordering methods to
an 8×8 collection of cells whose first element is in the upper-left corner: (a)
row order, (b) row-prime order, (c) Morton order, (d) Peano–Hilbert order, (e)
Cantor-diagonal order, (f) spiral order, (g) Gray order, (h) double Gray order,
and (i) U order.

The existence of an access structure also
enables us to answer the feature query
with the implicit representation, although
this is quite inefficient. In particular, given
an object o, we must exhaustively exam-
ine every cell (i.e., location l in space) and
check if the address where the informa-
tion about the object associated with l is
stored contains o as its value. This will be
time-consuming, as it may require that we
examine all the cells.

There are many ways of laying out the
addresses corresponding to the locations
in space of the cells each having its own
mapping function. Some of the most im-
portant ones for a two-dimensional space
are illustrated in Figure 2 for an 8×8 por-

tion of the space and are described briefly
below. To repeat, in essence, what we are
doing is providing a mapping from the
d -dimensional space containing the loca-
tions of the cells to the one-dimensional
space of the range of index values (i.e.,
integers) which are used to access a ta-
ble whose entries contain the addresses
where information about the contents of
the cells is stored. The result is an order-
ing of the space, and the curves shown in
Figure 2 are termed space-filling curves
(e.g., Sagan [1994]). Choosing among the
space-filling curves illustrated in Figure 2
is not easy as each one has its advantages
and disadvantages. Below, we review a
few of their desirable properties, and show
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how some of the two-dimensional order-
ings satisfy them.

—The curve should pass through each lo-
cation in space once and only once.

—The mapping from the higher-dimen-
sional space to the integers should
be relatively simple and likewise for
the inverse mapping. This is the case
for all but the Peano-Hilbert order
(Figure 2(d)). For the Morton order
(Figure 2(c)), the mapping is obtained
by interleaving the binary representa-
tions of the coordinate values of the
location of the cell. The number as-
sociated with each cell is known as
its Morton number. The Gray order
(Figure 2(g)) is obtained by applying a
Gray code [Gray 1953] to the result of
bit interleaving, while the double Gray
order (Figure 2(h)) is obtained by apply-
ing a Gray code to the result of bit in-
terleaving the Gray code of the binary
representation of the coordinate values.
The U order (Figure 2(i)) is obtained in a
similar manner to the Z order except for
an intermediate application of d −1 ‘ex-
clusive OR’ (⊕) operations on the binary
representation of selected combinations
of the coordinate values prior to the ap-
plication of bit interleaving [Liu and
Schrack 1998; Schrack and Liu 1995].
Thus the difference in cost between the
Z order and the U order in d dimensions
is just the performance of additional
d−1 ‘exclusive OR’ operations. This is in
contrast with the Peano–Hilbert order
where the mapping and inverse map-
ping processes are considerably more
complex.

—The ordering should be stable. This
means that the relative ordering of
the individual locations is preserved
when the resolution is doubled (e.g.,
when the size of the two-dimensional
space in which the cells are embed-
ded grows from 8 × 8 to 16 × 16) or
halved assuming that the origin stays
the same. The Morton, U, Gray, and dou-
ble Gray orders are stable, while the row
(Figure 2(a)), row-prime (Figure 2(b)),
Cantor-diagonal (Figure 2(e)), and spi-
ral (Figure 2(f)) orders are not stable.

Fig. 3. Peano–Hilbert curves of resolution (a) 1,
(b) 2, and (c) 3.

The Peano–Hilbert order is also not sta-
ble as can be seen by its definition.
In particular, in two dimensions, the
Peano–Hilbert order of resolution i + 1
(i.e., a 2i × 2i image) is constructed by
taking the Peano–Hilbert curve of reso-
lution i and rotating the NW, NE, SE, and
SW quadrants by 90 degrees clockwise,
0 degrees, 0 degrees, and 90 degrees
counterclockwise, respectively. For ex-
ample, Figures 3(a), 3(b), and 3(c) give
the Peano–Hilbert curves of resolutions
1, 2, and 3, respectively.

—Two locations that are adjacent (i.e., in
the sense of a (d − 1)-dimensional adja-
cency also known as 4-adjacent) in space
are neighbors along the curve and vice
versa. In two dimensions, this means
that the locations share an edge or a
side. This is impossible to satisfy for
all locations at all space sizes. How-
ever, for the row-prime, Peano–Hilbert,
and spiral orders, every element is a 4-
adjacent neighbor of the previous ele-
ment in the sequence while this is not
the case for the other orders. This means
that the row-prime, Peano–Hilbert, and
spiral orders have a slightly higher de-
gree of locality than the other orders.

—The process of retrieving the neighbors
of a location in space should be simple.

—The order should be admissible. This
means that at each position in the or-
dering, at least one 4-adjacent neigh-
bor in each of the lateral directions (i.e.,
horizontal and vertical) must have al-
ready been encountered. This is useful
in several algorithms (e.g., connected
component labeling [Dillencourt et al.
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1992]2). The row and Morton orders
are admissible while the Peano–Hilbert,
U, Gray, and double Gray orders are
not admissible. The row-prime, Cantor-
diagonal, and spiral orders are admis-
sible only if we permit the direction of
the 4-adjacent neighbors to vary from
position to position along the curve. For
example, for the row-prime order, at po-
sitions on odd rows, the previously en-
countered 4-adjacent neighbors are the
western and northern neighbors, while
at positions on even rows, it is the east-
ern and northern neighbors.

The row order (Figure 2(a)) is of spe-
cial interest to us because its mapping
function is the one most frequently used
by the multidimensional array, which is
the most common access structure. The
Morton order [Morton 1966] has a long
history having been first mentioned by
Peano [1890], and has been used by many
researchers (e.g., Abel and Smith [1983],
Gargantini [1982], Orenstein and Merrett
[1984], and White [1982]). It is also known
as a Z order [Orenstein and Merrett 1984]
and as an N order [White 1982]. The
Peano–Hilbert order was first mentioned
soon afterwards by Hilbert [1891], and has
also been used by a number of researchers
(e.g., Faloutsos and Roseman [1989] and
Jagadish [1990a]).

Although conceptually very simple, the
U order introduced by Schrack and
Liu [Liu and Schrack 1998; Schrack and
Liu 1995] is relatively recent. It is a vari-
ant of the Morton order, while also resem-
bling the Peano–Hilbert order. The prim-
itive shape is a ‘U’ which is the same as
that of the Peano–Hilbert order. However,
unlike the Peano–Hilbert order, and like
the Morton order, the ordering is applied

2A region or object four-connected component, is a
maximal four-connected set of locations belonging to
the same object, where a set S of locations is said to
be four-connected if for any locations p, q in S there
exists a sequence of locations p = p0, p1, . . . , pn =
q in S, such that pi+1 is 4-adjacent (8-adjacent) to
pi , 0 ≤ i < n. The process of assigning the same
label to all 4-adjacent locations that belong to the
same object is called connected component labeling
(e.g., Park and Rosenfeld [1971] and Rosenfeld and
Pfaltz [1966]).

recursively with no rotation thereby en-
abling it to be stable. The U order has a
slight advantage over the Morton order
in that more of the locations that are ad-
jacent (i.e., in the sense of a (d − 1)-di-
mensional adjacency) along the curve are
also neighbors in space. This is directly re-
flected in the lower average distance be-
tween two successive positions in the or-
der (i.e., for a 216 × 216 image, it is 1.4387
for the U order while it is 2.0000, 1.6724,
and 1.5000 for the double Gray, Morton,
and Gray orders, respectively, and 1 for the
row-prime, Peano–Hilbert, and spiral or-
ders [Samet 2005]). However, the price of
this is that like the Peano–Hilbert order,
the U order is also not admissible. Nev-
ertheless, like the Morton order, the pro-
cess of retrieving the neighbors of a loca-
tion in space is simple when the space is
ordered according to the U order. Asano
et al. [1997] describe an order which has
the same properties as the Peano–Hilbert
order except that for any square region,
there are at most three breaks in the con-
tinuity of the curve in contrast to four
for the Peano–Hilbert order (i.e., at most
three out of four 4-adjacent subblocks of a
square block are not neighbors along the
curve in contrast with a possibility that all
four 4-adjacent subblocks are not neigh-
bors in the Peano–Hilbert order). This
property is useful for retrieval of square
like regions in the case of a range query
when the data is stored on disk in this or-
der as each break in the continuity can re-
sult in a disk seek operation.

The multidimensional array (having a
dimension equal to the dimensionality of
the space in which the objects and the
environment are embedded) is an access
structure which, given a cell c at a location
l in space, enables us to calculate the ad-
dress a containing the identifier of the ob-
ject associated with c. The array is only a
conceptual multidimensional structure (it
is not a multidimensional physical entity
in memory) in the sense that it is a map-
ping of the locations in space of the cells
into sequential addresses in memory. The
actual addresses are obtained by the ar-
ray access function (see e.g., Knuth [1997]
as well as the above discussion on space
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orderings) which is based on the extents
of the various dimensions (i.e., coordinate
axes). The array access function is usually
the mapping function for the row order
(Figure 2(a)). Thus, the array enables us
to implement the implicit representation
with no additional storage except for what
is needed for the array’s descriptor. The de-
scriptor contains the bounds and extents
of each of the dimensions which are used
to define the mapping function (i.e., they
determine the values of its coefficients) so
that the appropriate address can be calcu-
lated given the cell’s location in space.

The array is called a random access
structure because the address associated
with a location in space can be retrieved in
constant time independent of the number
of elements in the array and does not re-
quire any search. Note that we could store
the object identifier o in the array element
itself instead of allocating a separate ad-
dress a for o thereby saving some space.

The array is an implicit representation
because we have not explicitly aggregated
all the contiguous cells that comprise a
particular object. They can be obtained
given a particular cell c at a location l
in space belonging to object o by recur-
sively accessing the array elements cor-
responding to the locations in space that
are adjacent to l and checking if they
are associated with object o. This process
is known as depth-first connected compo-
nent labeling.

Interestingly, depth-first connected
component labeling could also be used
to answer the feature query efficiently
with an implicit representation if we add
a data structure such as an index on the
objects (e.g., a table of object-location pairs
where location is one of the locations in
space that comprise object). Thus given an
object o we use the index to find a location
in space that is part of o, and then proceed
with the depth-first connected component
labeling as before. This index does not
make use of the spatial coverage of the
objects and thus it can be implemented
using conventional searching techniques
such as hashing [Knuth 1998]. In this
case, we will need O(N ) additional space
for the index, where N is the number of

different objects. We do not discuss such
indexes here.

Of course, we could also answer the loca-
tion query with an explicit representation
by adding an index which associates ob-
jects with locations in space (i.e., having
the form location-objects). However, this
would require O(S) additional space for
the index, where S is the number of cells.
The O(S) bound assumes that only one
object is associated with each cell. If we
take into account that a cell could be as-
sociated with more than one object, then
the additional storage needed is O(NS), if
we assume N objects. Since the number
of cells S is usually much greater than the
number of objects N , the addition of an in-
dex to the explicit representation is not as
practical as extending the implicit repre-
sentation with an index of the form object-
location as described above. Thus, it would
appear that the implicit representation is
more useful from the point of view of flex-
ibility when taking storage requirements
in to account.

The implicit representation can be im-
plemented with access structures other
than the array. This is an important con-
sideration when many of the cells are not
in any of the objects (i.e., they are empty).
The problem is that using the array access
structure is wasteful of storage, as the ar-
ray requires an element for each cell re-
gardless of whether the cell is associated
with any of the objects. In this case, we
choose to keep track of only the nonempty
cells.

We have two ways to proceed. The first is
to use one of several multidimensional ac-
cess structures such as a point quadtree,
k-d tree, MX quadtree, etc. as described
in Samet [1990b]. The second is to make
use of one of the orderings of space shown
in Figure 2 to obtain a mapping from the
nonempty contiguous cells to the integers.
The result of the mapping serves as the
index in one of the familiar tree-like ac-
cess structures (e.g., binary search tree,
range tree, B+-tree, etc.) to store the ad-
dress which indicates the physical location
where the information about the object as-
sociated with the location in space corre-
sponding to the nonempty cell is stored.
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3. BLOCKS

An alternative class of representations
of the objects and their environment re-
moves the stipulation that cells making
up the object collection be of a unit size
and permits their sizes to vary. The result-
ing cells are termed blocks and are usu-
ally rectangular with sides parallel to the
coordinate axes (this is assumed in our
discussion unless explicitly stated other-
wise). The volume (e.g., area in two dimen-
sions) of the blocks need not be an integer
multiple of that of the unit-size cells, al-
though this is often the case. Observe that
when the volumes of the blocks are inte-
ger multiples of that of the unit-size cells,
then we have two levels of aggregation in
the sense that an object consists of an ag-
gregation of blocks which are themselves
aggregations of cells. We assume that all
the cells in a block belong to the same ob-
ject or objects. In other words, the situa-
tion that some of the cells in the block be-
long to object o1 while the others belong to
object o2 (and not to o1) is not allowed.

The collection of blocks is usually a re-
sult of a space decomposition process with
a set of rules that guide it. There are many
possible decompositions. When the decom-
position is recursive, we have the situation
that the decomposition occurs in stages
and often, although not always, the results
of the stages form a containment hierar-
chy. This means that a block b obtained in
stage i is decomposed into a set of blocks bj
that span the same space. Blocks bj are, in
turn, decomposed in stage i + 1 using the
same decomposition rule. Some decompo-
sition rules restrict the possible sizes and
shapes of the blocks as well as their place-
ment in space. Some examples include:

—congruent blocks at each stage
—similar blocks at all stages
—all but one side of a block are unit-sized
—all sides of a block are of equal size
—all sides of each block are powers of two
—etc.

Other decomposition rules dispense with
the requirement that the blocks be rectan-
gular, while still others do not require that

they be orthogonal. In addition, the blocks
may be disjoint or be allowed to overlap.
Clearly, the choice is large. In the follow-
ing, we briefly explore some of these de-
composition processes.

The simplest decomposition rule is one
that permits aggregation of identically-
valued cells in only one dimension. It as-
signs a priority ordering to the various
dimensions and then fixes the coordinate
values of all but one of the dimensions, say
i, and then varies the value of the ith co-
ordinate and aggregates all adjacent cells
belonging to the same object into a one-
dimensional block. This technique is com-
monly used in image processing applica-
tions where the image is decomposed into
rows which are scanned from top to bot-
tom, and each row is scanned from left
to right while aggregating all adjacent
pixels with the same value into a block.
It is useful in image transmission as we
only have to transmit the pixels where
a change in value takes place. The ag-
gregation into one-dimensional blocks is
the basis of runlength encoding [Rutovitz
1968]. Similar techniques are applicable
to higher-dimensional data where, for ex-
ample in the case of three-dimensional
data, one would scan the image one 2-
dimensional hyperplane at a time where
each hyperplane would be scanned in
raster scan order. Techniques analogous
to runlength encoding form the basis of
the vertex representation for represent-
ing axis-parallel polygons of arbitrary
dimension [Esperanca and Samet 1994;
Esperança 1995].

The drawback of the decomposition into
one-dimensional blocks described above is
that all but one side of each block must
be of unit width. The most general decom-
position removes this restriction along all
of the dimensions, thereby permitting ag-
gregation along all dimensions. In other
words, the decomposition is arbitrary. The
blocks need not be uniform or similar. The
only requirement is that the blocks span
the space of the environment. This gen-
eral decomposition has the potential of
requiring less space. However, its draw-
back is that the determination of optimal
partition points may be a computationally
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Fig. 4. Arbitrary block decom-
position for the collection of ob-
jects and cells in Figure 1. Blocks
corresponding to object O are la-
beled Oi and the blocks that are
not in any of the objects as Wi us-
ing the suffix i to distinguish be-
tween them in both cases.

expensive procedure. We assume that the
blocks are disjoint although this need not
be the case. We also assume that the blocks
are rectangular as well as orthogonal (e.g.,
Figure 4). although again this is not abso-
lutely necessary as there exist decomposi-
tions using other shapes as well (e.g., tri-
angles, etc.).

It is easy to adapt the explicit represen-
tation to deal with blocks resulting from
an arbitrary decomposition (which also in-
cludes the one that yields one-dimensional
blocks). In particular, instead of associat-
ing a set with each object o that contains
the location in space of each cell that com-
prises o, we need to associate with each
object o the locations in space and size of
each block that comprises o. This can be
done by specifying the coordinate values
of the upper-left corner of each block and
the sizes of its sides. Without loss of gen-
erality, we use this format for the explicit
representation of all of the block decompo-
sitions described in this section.

Using the explicit representation of
blocks, both the feature and location
queries are answered in essentially the
same way as they were for unit-sized cells.
The only difference is that for the location
query instead of checking if a particular
location l in space is a member of one of
the sets of cells associated with the vari-
ous objects, we must check if l is covered

by one of the blocks in the sets of blocks of
the various objects. This is a fairly simple
process as we know the location in space
and size of each of the blocks.

Implementing an arbitrary decomposi-
tion (which also includes the one that re-
sults in one-dimensional blocks) using an
implicit representation is also quite easy.
We build an index based on an easily iden-
tifiable location in each block such as its
upper-left corner. We make use of the same
techniques that were presented in the dis-
cussion of the implicit representation for
unit-sized cells in Section 2. The only dif-
ference is that we must also record the size
of each block along with the address indi-
cating the physical location where the in-
formation about the object associated with
the locations in space corresponding to the
block is stored.

As in the case of unit-size cells, regard-
less of which access structure is used to
implement the index, we determine the
object o associated with a cell at location
l by finding the block b that covers l . If
b is an empty block, then we exit. Oth-
erwise, we return the object o associated
with b. Notice that the search for the block
that covers l may be quite complex in the
sense that the access structures may not
necessarily achieve as much pruning of
the search space as in the case of unit-
sized cells. In particular, this is the case
whenever the space ordering and the block
decomposition method to whose results
the ordering is being applied do not have
the property that all of the cells in each
block appear in consecutive order. In other
words, given the cells in the block e with
minimum and maximum values in the or-
dering, say u and v, there exists at least
one cell in block f distinct from e which
is mapped to a value w where u < w < v.
Thus, supposing that the index is imple-
mented using a tree-like access structure,
a search for the block b that covers l may
require that we visit several subtrees of a
particular node in the tree.

As we saw in the description of the algo-
rithm for responding to query 2, the draw-
back of the arbitrary decomposition into
blocks is that since there is no rule for the
formation of the blocks, there is also no
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Fig. 5. (a) Block decomposition resulting from the imposition of a grid with partition
lines at arbitrary positions on the collection of objects and cells in Figure 1 yielding an
irregular grid, (b) the array access structure, (c) the linear scale for the x coordinate
values, and (d) the linear scale for the y coordinate values. Blocks corresponding to
object O are labeled Oi and the blocks that are not in any of the objects as Wi using the
suffix i to distinguish between them in both cases.

easy rule for accessing them. The irregular
grid is one way to overcome this drawback
by making use of a very simple decomposi-
tion rule that partitions a d -dimensional
space having coordinate axes xi into d -di-
mensional blocks by use of hi hyperplanes
that are parallel to the hyperplane formed
by xi = 0 (1 ≤ i ≤ d ). The result is a col-
lection of

∏d
i=1(hi +1) blocks. These blocks

form a grid of irregular-sized blocks as the
partition lines are at arbitrary positions
in contrast to the uniform grid [Franklin
1984] where the partition lines are po-
sitioned so that all of the resulting grid
cells are congruent. Observe that there is
no recursion involved in the decomposi-
tion process. For example, Figure 5(a) is
an example block decomposition using hy-
perplanes parallel to the x and y axes for
the collection of objects and cells given in
Figure 1.

The block decomposition resulting from
the use of an irregular grid is handled by
an explicit representation in the same way
as the arbitrary decomposition. Finding
a suitable implicit representation is a bit
more complex as we must define an ap-
propriate access structure. Although the
blocks are not congruent, we can still im-
pose an array access structure on them by
adding d access structures termed linear
scales. The linear scales indicate the posi-

tion of the partitioning hyperplanes that
are parallel to the hyperplane formed by
xi = 0 (1 ≤ i ≤ d ). Thus given a location
l in space, say (a,b) in two-dimensional
space, the linear scales for the x and y
coordinate values indicate the column and
row, respectively, of the array access struc-
ture entry which corresponds to the block
that contains l .

For example, Figure 5(b) is the ar-
ray access structure corresponding to the
block decomposition in Figure 5(a), while
Figures 5(c) and 5(d) are the linear scales
for the x and y axes, respectively. In this
example, the linear scales are shown as ta-
bles (i.e., array access structures). In fact,
they can be implemented using tree access
structures. The representation described
here is an adaptation for regions of the
grid file [Nievergelt et al. 1984] data struc-
ture for points.

Our implementation of the access struc-
tures for the irregular grid yields a repre-
sentation that is analogous to an indirect
uniform grid in the sense that given a cell
at location l we need to make d + 1 array-
like accesses (analogous to the two mem-
ory references involved with indirect ad-
dressing in computer instruction formats)
to obtain the object o associated with it
instead of just one array access when the
grid is uniform (i.e., all the blocks are
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Fig. 6. (a) Block decomposition and (b) its tree representation for the collection of
objects and cells in Figure 1. Blocks corresponding to object O are labeled Oi and the
blocks that are not in any of the objects as Wi using the suffix i to distinguish between
them in both cases.

congruent and cell-sized). The first d ac-
cesses find the identity of the array ele-
ment (i.e., block b) that contains l , while
the last access determines the object o as-
sociated with b. Once we have found block
b, we examine the adjacent blocks to ob-
tain the rest of the cells comprising ob-
ject o, thereby completing the response to
the location query, by employing the same
methods as we used for the array access
structure for the uniform-sized cells. The
only difference is that every time we find
a block b in the array access structure as-
sociated with o, we must examine b’s cor-
responding entries in the linear scales to
determine b’s size so that we can report the
cells that comprise b as parts of object o.

Perhaps the most widely known decom-
positions into blocks are those referred
to by the general terms quadtree and oc-
tree [Samet 1990a; Samet 1990b]. They
are usually used to describe a class of
representations for two and three-dimen-
sional data (and higher as well), respec-
tively, that are the result of a recursive
decomposition of the environment (i.e.,
space) containing the objects into blocks
(not necessarily rectangular) until the
data in each block satisfies some condi-
tion (e.g., with respect to its size, the na-
ture of the objects that comprise it, the
number of objects in it, etc.). The positions
and/or sizes of the blocks may be restricted
or arbitrary. It is interesting to note that
quadtrees and octrees may be used with
both interior-based and boundary-based

representations. Moreover, both explicit
and implicit aggregations of the blocks are
possible.

There are many variants of quadtrees
and octrees, and they are used in numer-
ous application areas including high en-
ergy physics, VLSI, finite element analy-
sis, and many others. Below, we focus on
region quadtrees [Klinger 1971] and re-
gion octrees [Hunter 1978; Meagher 1982].
They are specific examples of interior-
based representations for two and three-
dimensional region data (variants for data
of higher dimension also exist), respec-
tively, that permit further aggregation of
identically-valued cells.

Region quadtrees and region octrees are
instances of a restricted-decomposition
rule where the environment containing
the objects is recursively decomposed into
four or eight, respectively, rectangular
congruent blocks until each block is ei-
ther completely occupied by an object or
is empty (such a decomposition process is
termed regular). For example, Figure 6(a)
is the block decomposition for the region
quadtree corresponding to Figure 1. No-
tice that in this case, all the blocks are
square, have sides whose size is a power
of 2, and are located at specific positions.
In particular, assuming an origin at the
upper-left corner of the image correspond-
ing to the environment containing the ob-
jects, then the coordinate values of the
upper-left corner of each block (e.g., (i, j )
in two dimensions) of size 2s × 2s satisfy
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the property that a mod 2s = 0 and b mod
2s = 0.

A region quadtree can be implemented
using an explicit representation by associ-
ating a set with each object o that contains
its constituent blocks. Each block is speci-
fied by numbers corresponding to the coor-
dinate values of its upper-left corner and
the size of one of its sides. These numbers
are stored in the set in the form (i, j ) : k
where (i, j ) and k correspond to the coor-
dinate values of the upper-left corner and
depth, respectively, of the block. For ex-
ample, the explicit representation of the
collection of blocks in Figure 1 is given
by the sets A = {(0,0):2, (0,4):0, (1,4):0, (2,4):0,
(3,4):0}, B = {(5,1):0, (6,0):1}, and C = {(2,6):1,
(4,6):1, (6,6):1}, which correspond to blocks
{A1,A2,A3,A4,A5}, {B1,B2}, and {C1,C2,C3}, re-
spectively.

A region quadtree implementation that
makes use of an implicit representation is
quite different. First, we allocate an ad-
dress a in storage for each block b which
stores an identifier that indicates the iden-
tity of the object (or objects) of which b is
a member. Second, it is necessary to im-
pose an access structure on the collection
of blocks in the same way as the array
was imposed on the collection of unit-sized
cells. Such an access structure enables
us to determine easily the value associ-
ated with any point in the space covered
by a cell without resorting to exhaustive
search. Note that depending on the nature
of the access structure, it’s not always nec-
essary to store the location and size of each
block with a.

There are many possible access struc-
tures. Interestingly, using an array as an
access structure is not particularly useful
as it defeats the rationale for the aggrega-
tion of cells into blocks unless, of course, all
the blocks are of a uniform size in which
case we have the analog of a two-level grid.

The traditional, and most natural, ac-
cess structure for a region quadtree cor-
responding to a d -dimensional image is a
tree with a fanout of 2d (e.g., Figure 6(b)
corresponding to the collection of two-
dimensional objects in Figure 1 whose
quadtree block decomposition is given in
Figure 6(a)). Each leaf node in the tree

corresponds to a different block b and con-
tains the address a in storage where an
identifier is stored that indicates the iden-
tity of the object (or objects) of which b is a
member. As in the case of the array, where
we could store the object identifier o in the
array element itself instead of allocating a
separate address a for o, we could achieve
the same savings by storing o in the leaf
node of the tree. Each nonleaf node f cor-
responds to a block whose volume is the
union of the blocks corresponding to the
2d children of f . In this case, the tree is
a containment hierarchy and closely par-
allels the decomposition in the sense that
they are both recursive processes and the
blocks corresponding to nodes at different
depths of the tree are similar in shape.

Answering the location query using the
tree structure is different from using an
array where it is usually achieved by a
table lookup having an O(1) cost (unless
the array is implemented as a tree, which
is a possibility [DeMillo et al. 1978]). In
contrast, the location query is usually an-
swered in a tree by locating the block that
contains the location in space correspond-
ing to the desired cell. This is achieved
by a process that starts at the root of the
tree and traverses the links to the chil-
dren whose corresponding blocks contain
the desired location. This process has an
O(n + F ) cost where the environment has
a maximum of n levels of subdivision (e.g.,
an environment all of whose sides are of
length 2n), and F is the cardinality of the
answer set.

Using a tree with fanout 2d as an ac-
cess structure for a regular decomposition
means that there is no need to record the
size and location of the blocks. This infor-
mation can be inferred from knowledge of
the size of the underlying space as the 2d

blocks that result from each subdivision
step are congruent. For example, in two
dimensions, each level of the tree corre-
sponds to a quartering process that yields
four congruent blocks (rectangular here,
although a triangular decomposition pro-
cess could also be defined which yields four
equilateral triangles; however, in such a
case, we are no longer dealing with rect-
angular cells). Thus as long as we start
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from the root, we know the location and
size of every block.

There are a number of alternative ac-
cess structures to the tree with fanout
2d . They are all based on finding a map-
ping from the domain of the blocks to a
subset of the integers (i.e., to one dimen-
sion) and then applying one of the fa-
miliar tree-like access structures (e.g., a
binary search tree, range tree, B+-tree,
etc.). There are many possible mappings
(e.g., [Samet 1990a]). The simplest is to
use the same technique that we applied to
the collection of blocks of arbitrary size. In
particular, we can apply one of the order-
ings of space shown in Figure 2 to obtain
a mapping from the coordinate values of
the upper-left corner u of each block to the
integers.

Since the size of each block b in the re-
gion quadtree can be specified with a sin-
gle number indicating the depth in the
tree at which b is found, we can simplify
the representation by incorporating the
size into the mapping. One mapping sim-
ply concatenates the result of interleav-
ing the binary representations of the co-
ordinate values of the upper-left corner
(e.g., (a, b) in two dimensions) and i of each
block of size 2i so that i is at the right. The
resulting number is termed a locational
code and is a variant of the Morton order
(Figure 2(c)). Assuming such a mapping
and sorting the locational codes in increas-
ing order yields an ordering equivalent to
that which would be obtained by travers-
ing the leaf nodes (i.e., blocks) of the tree
representation (e.g., Figure 6(b)) in the or-
der NW, NE, SW, SE.

As the dimensionality of the space (i.e.,
d ) increases, each level of decomposition
in the region quadtree results in many
new blocks as the fanout value 2d is high.
In particular, it is too large for a prac-
tical implementation of the tree access
structure. In this case, an access struc-
ture termed a bintree [Knowlton 1980;
Samet and Tamminen 1988; Tamminen
1984] with a fanout value of 2 is used. The
bintree is defined in a manner analogous
to the region quadtree except that at each
subdivision stage, the space is decomposed
into two equal-sized parts. In two dimen-

sions, at odd stages we partition along the
y axis and at even stages we partition
along the x axis. Of course, in d dimen-
sions, the depth of the tree may increase
by a factor of d .

The region quadtree, as well as the
bintree, is a regular decomposition. This
means that the blocks are congruent—
that is, at each level of decomposition, all
of the resulting blocks are of the same
shape and size. We can also use decom-
positions where the sizes of the blocks
are not restricted in the sense that the
only restriction is that they be rectangular
and be a result of a recursive decomposi-
tion process. In this case, the representa-
tions that we described must be modified
so that the sizes of the individual blocks
can be obtained. An example of such a
structure is an adaptation of the point
quadtree [Finkel and Bentley 1974] to re-
gions. Although the point quadtree was de-
signed to represent points in a higher di-
mensional space, the blocks resulting from
its use to decompose space do correspond
to regions. The difference from the region
quadtree is that in the point quadtree, the
positions of the partitions are arbitrary,
whereas they are a result of a partition-
ing process into 2d congruent blocks (e.g.,
quartering in two dimensions) in the case
of the region quadtree.

As the dimensionality d of the space
increases, each level of decomposition in
the point quadtree results in many new
blocks since the fanout value 2d is high.
In particular, it is too large for a practical
implementation of the tree access struc-
ture. Therefore, we use a k-d tree [Bentley
1975] which is an access structure having
a fanout of 2 that has the same relation-
ship to the point quadtree as the bintree
has to the region quadtree. As in the point
quadtree, although the k-d tree was de-
signed to represent points in a higher di-
mensional space, the blocks resulting from
its use to decompose space do correspond
to regions. In other words, the bintree is a
regular decomposition k-d tree.

The k-d tree can be further generalized
so that the partitions take place on the
various axes at an arbitrary order, and,
in fact, the partitions need not be made
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on every coordinate axis. In this case, at
each nonleaf node of the k-d tree, we must
also record the identity of the axis that
is being split. We use the term general-
ized k-d tree to describe this structure. The
generalized k-d tree is really an adapta-
tion to regions of the adaptive k-d tree
[Friedman et al. 1977] and the LSD
tree [Henrich et al. 1989] which were orig-
inally developed for points. It can also
be regarded as a special case of the BSP
tree (denoting Binary Space Partition-
ing) [Fuchs et al. 1980]. In particular, in
the generalized k-d tree, the partitioning
hyperplanes are restricted to be parallel
to the axes, whereas in the BSP tree they
have an arbitrary orientation. The BSP
tree is used in computer graphics to facil-
itate viewing.

One of the shortcomings of the general-
ized k-d tree is the fact that we can only
decompose the space into two parts along
a particular dimension at each step. If we
wish to partition a space into p parts along
a dimension i, then we must perform p−1
successive partitions on dimension i. Once
these p−1 partitions are complete, we par-
tition along another dimension. The puz-
zletree [Dengel 1991] is a further gener-
alization of the k-d tree that decomposes
the space into two or more parts along a
particular dimension at each step so that
no two successive partitions use the same
dimension. In other words, the puzzletree
compresses all successive partitions on the
same dimension in the generalized k-d
tree.

The puzzletree is motivated by a de-
sire to overcome the rigidity in the shape,
size, and position of the blocks that re-
sult from the bintree (and to an equivalent
extent, the region quadtree) partitioning
process (because of its regular decompo-
sition). In particular, in many cases, the
decomposition rules ignore the homogene-
ity present in certain regions on account
of the need to place the partition lines in
particular positions as well as a possible
limit on the number of permissible par-
titions along each dimension at each de-
composition step. Often, it is desirable for
the block decomposition to follow the per-
ceptual characteristics of the objects as

well as reflect their dominant structural
features.

For example, consider a front view of a
scene containing a table and two chairs.
Figures 7(a) and 7(b) are the block decom-
positions resulting from the use of a bin-
tree and a puzzletree, respectively, for this
scene, while Figure 7(c) is the tree access
structure corresponding to the puzzletree
in Figure 7(b). Notice the natural decom-
position in the puzzletree of the chair into
the legs, seat, and back, and of the ta-
ble into the top and legs. On the other
hand, the blocks in the bintree (and to a
greater extent in the region quadtree, al-
though not shown here) do not have this
perceptual coherence. Of course, we are
aided here by the separability of the ob-
jects; however, this does not detract from
the utility of the representation as it only
means that the objects can be decomposed
into fewer parts.

4. IMAGE-BASED HIERARCHICAL
INTERIOR-BASED REPRESENTATIONS
(PYRAMIDS)

Our goal here is to be able to take an ob-
ject o as input and return the cells that
it occupies (the feature query) when us-
ing a representation that stores with each
cell the identities of the objects of which
it is a part. The most natural hierarchy
that can be imposed on the cells to enable
us to answer this query is one that aggre-
gates every q cells regardless of the values
associated with them into larger congru-
ent blocks (unlike the aggregation of iden-
tically valued cells into multidimensional
blocks as in the region quadtree). This pro-
cess is repeated recursively so that groups
of q blocks are repeatedly aggregated into
one block until there is just one block left.
The value associated with the block b is the
union of the names (i.e., object identifiers)
of the objects associated with the cells or
blocks that comprise block b. The identi-
ties of the cells and blocks that are ag-
gregated depends, in part, on how the
collection of the cells is represented. For
example, assuming a two-dimensional un-
derlying space, if the cells are represented
as one long list consisting of the cells of
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Fig. 7. Block decomposition for the (a) bintree and (b) puzzletree corre-
sponding to the front view of a scene containing a table and two chairs;
(c) is the tree access structure for the puzzletree in (b).

the first row, followed by those of the sec-
ond row, etc., then one possible aggrega-
tion combines every successive q cells. In
this case, the blocks are really one-dimen-
sional entities.

The process that we have just outlined
can be described more formally as follows.
We make the following assumptions:

—The blocks are rectangular with sides
parallel to the coordinate axes.

—Each block contains q cells or q blocks
so that, assuming d dimensions, q =
∏d

j=1 r j where the block has width r j

for dimension j (1 ≤ j ≤ d ) measured
in cells or blocks depending on the level
in the hierarchy at which the block is
found.

—All blocks at a particular level in the hi-
erarchy are congruent with the different
levels forming a containment hierarchy.

—There are S cells in the underlying
space, and let n be the smallest power
of q such qn ≥ S.

—The underlying space can be enlarged
by adding L empty cells so that qn =

S + L and that each side of the un-
derlying space along dimension j is of
width r j

n.

The hierarchy consists of the set of sets
{Ci} (0 ≤ i ≤ n) where Cn corresponds
to the original collection of cells having
S+L elements, Cn−1 contains (S + L)/q el-
ements corresponding to the result of the
initial aggregation of q cells into (S + L)/q
congruent blocks, and C0 is a set consist-
ing of just one element corresponding to
a block of size S + L. Each element e of
Ci (0 ≤ i ≤ n − 1) is a congruent block
whose value is the union of the values (i.e.,
sets of object identifiers) associated with
the blocks of the q elements of Ci+1. The
value of each element of Cn is the object
identifier(s) corresponding to the object(s)
of which its cell is a part.

The resulting hierarchy is known as
a cell pyramid (e.g., Aref and Samet
[1990], Burt [1980], Burton et al. [1984],
Dyer [1981, 1982], Ichikawa [1981], Miller
and Stout [1985], Rosenfeld [1980, 1984],
Shaffer and Samet [1987], Srihari [1984],
Solntseff and Wood [1977], and Tanimoto
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and Pavlidis [1975]3 and is frequently
characterized as a multiresolution repre-
sentation since the original collection of
objects is described at several levels of de-
tail by using cells that have different sizes,
although similar in shape. It is important
to distinguish the cell pyramid from the re-
gion quadtree which, as we recall, is an ex-
ample of an aggregation into square blocks
where the basis of the aggregation is that
the cells have identical values (i.e., are as-
sociated with the same object, or objects
if object overlap is permitted). The region
quadtree is an instance of what is termed a
variable-resolution representation, which,
of course, is not limited to blocks that are
square. In particular, it can be used with a
limited number of nonrectangular shapes
(most notably, triangles in two dimensions
[Bell et al. 1983; Samet 1990b]).

It is quite difficult to use the cell pyra-
mid, in the form that we have described,
to respond to the feature query and to the
complete location query (i.e., to obtain all
of the contiguous cells that make up the
object associated with the query location)
due to the absence of an access structure.
This can be remedied by implementing a
set of arrays Ai in a one-to-one correspon-
dence to Ci (0 ≤ i ≤ n) where Ai is a d -
dimensional array of side length r j

i for
dimension j (1 ≤ j ≤ d ). Each of the
elements of Ai corresponds to a d -dimen-
sional block of side length r j

n−i for dimen-
sion j (1 ≤ j ≤ d ) assuming a total under-
lying space of side length r j

n. The result is
a stack of arrays Ai, termed an array pyra-
mid, which serves as an access structure to
collections Ci (0 ≤ i ≤ n). The array pyra-
mid is an instance of an implicit interior-
based representation consisting of array
access structures. Of course, other repre-
sentations are possible through the use of
alternative access structures (e.g., differ-
ent types of trees).

We illustrate the array pyramid for two
dimensions with r1 = 2 and r2 = 2. As-
sume that the space in which the original

3Actually, the qualifier cell is rarely used. However,
we use it here to avoid confusion with other variants
of the pyramid which are based on a hierarchy of
objects rather than cells as discussed in Section 5.

Fig. 8. Array pyramid for the collection of objects
and cells in Figure 1. (a) Array A2. (b) Array A1.
(c) Array A0. The block decomposition in Figure 1
corresponds to Array A3.

collection of cells is found is of size 2n ×2n.
Let Cn correspond to the original collection
of cells. The hierarchy of arrays consists
of the sequence Ai (0 ≤ i ≤ n) so that
elements of Ai access the corresponding
elements in Ci. We obtain Cn−1 by form-
ing an array of size 2n−1 × 2n−1 with 22n−2

elements so that each element e in Cn−1
corresponds to a 2×2 square consisting of
4 elements (i.e., cells) in Cn and has a value
consisting of the union of the names (i.e.,
labels) of the objects that are associated
with these 4 cells. This process is applied
recursively to form Ci (0 ≤ i ≤ n−1) where
C0 is a collection consisting of just one el-
ement whose value is the set of names
of all the objects associated with at least
one cell. The arrays are assumed to be
stored in memory using sequential allo-
cation with conventional orderings (e.g.,
lexicographically), and are accessed by use
of the d -dimensional coordinate values of
the cells. For example, Figure 8 is the ar-
ray pyramid for the collection of objects in
Figure 1.

Using the array pyramid, it is very easy
to respond to the feature query, as we just
examine the relevant parts of the stack of
arrays. For example, suppose that we want
to determine the locations that comprise
object o, and we use the array pyramid
consisting of arrays Ai (0 ≤ i ≤ n) in a two-
dimensional space of size 2n×2n where the
blocks are squares of side length 2n−i. We
start with A0, which consists of just one
element e, and determine if o is a mem-
ber of the set of values associated with e.
If it is not, then we exit and the answer
is negative. If it is, then we examine the
four elements in A1 that correspond to e
and repeat the test. At this point, we know
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Fig. 9. Cell-tree pyramid for the collection of objects and cells in Figure 1.

that o is a member of at least one of them
as otherwise o could not have been a mem-
ber of the set of values associated with ele-
ment e of A0. This process is applied recur-
sively to elements of Aj that contained o
(i.e., the appropriate elements of Aj+1 are
examined for 1 ≤ j ≤ n − 1) until encoun-
tering An at which time the process stops.
The advantage of this method is that el-
ements of Aj+1 are not examined unless
object o is guaranteed to be a member of
the set of values associated with at least
one of them.

The array pyramid uses a sequence of
arrays as an access structure. An alterna-
tive implementation is one that imposes
an access structure in the form of a tree T
on the elements of the hierarchy {Ci}. One
possible implementation is a tree of fanout
q where the root T0 corresponds to C0,
nodes {Tij} at depth i to Ci (1 ≤ i ≤ n − 1),
while the leaf nodes {Tnj} correspond to
Cn. In particular, element t in the tree at
depth j corresponds to element e of Cj
(0 ≤ j ≤ n − 1) and t contains q point-
ers to its q children in Tj+1 corresponding
to the elements of Cj+1 that are contained
in e. The result is termed a cell-tree pyra-
mid. Figure 9 shows the cell-tree pyramid
corresponding to the collection of objects
in Figure 1 where the cells are labeled as
in Figure 6(a). This example makes use
of two-dimensional data with r1 = 2 and
r2 = 2. In this case, notice the similarity
between the cell-tree pyramid and the re-

gion quadtree implementation that uses
an access structure which is a tree with a
fanout of 4 (Figure 6(b)).

Using the term quadtree in its most
general sense (i.e., d -dimensional blocks
whose sides need not be powers of two
nor be of the same length), the cell-tree
pyramid can be viewed as a complete
quadtree (i.e., where no aggregation takes
place at the deepest level, or, equivalently,
all leaf nodes with no children are at
the maximum depth of the tree). Never-
theless, there are some very important
differences. The first difference, as we
pointed out before, is that the quadtree is a
variable-resolution representation, while
the cell-tree pyramid is a multiresolution
representation. The second, and most im-
portant, difference is that in the case of
the quadtree, the nonleaf nodes serve only
as an access structure. They do not in-
clude any information about the objects
present in the nodes and cells below them.
This is why the quadtree, like the array, is
not useful for answering the feature query.
Of course, we could also devise a vari-
ant of the quadtree (termed a truncated-
tree pyramid [Samet 1995]) which uses
the nonleaf nodes to store information
about the objects present in the cells and
nodes below them (e.g., Figure 10). Note
that both the cell-tree pyramid and the
truncated-tree pyramid are instances of
an implicit interior-based representation
with a tree access structure.
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Fig. 10. Truncated-tree pyramid for the collection of objects and cells
in Figure 1.

Our definition of the pyramid was made
in a bottom-up manner in the sense that
we started with a block size and an under-
lying space size. Next, we expanded the
size of the underlying space so that a con-
tainment hierarchy of congruent blocks at
each level and similar blocks at different
levels could be formed. We can also de-
fine a variant of the pyramid where the
requirements of block congruence at each
level and block similarity at different lev-
els are relaxed. This is a bit easier if we
define the pyramid in a top-down manner
as we can calculate the number of cells by
which the underlying space needs to be ex-
panded as the block sizes at the different
levels are defined. It should be clear that
the congruence requirement is more re-
strictive than the similarity requirement.
If we relax the requirement that the blocks
at different levels are similar, but retain
the requirement that the blocks at the
same level are congruent, then we must
store at each level i the size of the block
qi (i.e., the values of the individual compo-
nents rij of qi = ∏d

j=1 rij for dimension j
(1 ≤ j ≤ d )).

If we relax both the requirement that
the blocks at the different levels are sim-
ilar and the requirement that the blocks
at each level are congruent while still re-
quiring that they form a containment hi-
erarchy, then we are in effect permitting
partitioning hyperplanes (i.e., lines in two

dimensions) at arbitrary positions. In this
case, we get a more general pyramid if we
use a top-down definition as now we can
have a different partition at each level.
In this case, we have an irregular grid at
each level, and thus we must store the
positions of the partitioning hyperplanes
(i.e., lines in two dimensions) at each level.
We call the result an irregular grid pyra-
mid. If the irregular grid is implemented
with an array access structure, then the
result is called an irregular grid array
pyramid.

Other pyramid variants are also possi-
ble. For example, the dynamically quan-
tized pyramid (DQP) [O’Rourke and Sloan
Jr. 1984; Sloan Jr. 1981] is a two-dimen-
sional containment hierarchy where the
blocks at the different levels are neither
similar nor congruent. It differs from the
irregular pyramid in that the there is
a possibly different 2 × 2 grid partition
at each block at each level rather than
one grid partition at each level. Notice
the close similarity to a complete point
quadtree [Finkel and Bentley 1974]. The
DQP finds use in cluster detection as well
as multidimensional histogramming. Of
course, even more general variants are
possible. In particular, we could use any
one of the other recursive and nonrecur-
sive decompositions described in Section 3
at each block with the appropriate access
structure.
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5. OBJECT-BASED HIERARCHICAL
INTERIOR-BASED REPRESENTATIONS
(R-TREES)

Our goal here is to be able to take a loca-
tion a as input and return the objects in
which a is a member (the location query)
when using a representation that stores
with each object the addresses of the cells
that comprise it (i.e., an explicit represen-
tation). The most natural hierarchy that
can be imposed on the objects that would
enable us to answer this query is one that
aggregates every M objects (that are hope-
fully in close spatial proximity, although
this is not a requirement) into larger ob-
jects. This process is repeated recursively
until there is just one aggregated object
left. Since the objects may have different
sizes and shapes, it is not easy to compute
and represent the aggregate object. More-
over, it is similarly difficult to test each
one of them (and their aggregates) to de-
termine if they contain a since each one
may require a different test by virtue of
the different shapes. Thus, it is useful to
use a common aggregate shape and point-
inclusion test to prune the search.

The common aggregate shape and point-
inclusion test that we use assumes the
existence of a minimum enclosing box
(termed a bounding box) for each object.
This bounding box is part of the data as-
sociated with each object and aggregate of
objects. In this case, we reformulate our
object hierarchy to be in terms of bound-
ing boxes. In particular, we aggregate the
bounding boxes of every M objects into
a box (i.e., block) of minimum size that
contains them. This process is repeated
recursively until there is just one block
left. The value associated with the bound-
ing box b is its location (e.g., the coordi-
nate values of its diagonally opposite cor-
ners for two-dimensional data). It should
be clear that the bounding boxes serve as
a filter to prune the search for an object
that contains a.

In this section, we expand on hier-
archies of objects which actually ag-
gregate the bounding boxes of the ob-
jects. Section 5.1 gives an overview of
object hierarchies and introduces the

general concepts of an object pyramid
and an object-tree pyramid, which pro-
vides a tree access structure for the
object pyramid. Sections 5.2–5.4 present
several aggregation methods. In par-
ticular, Section 5.2 discusses ordering-
based aggregation methods. Section 5.3
discusses extent-based aggregation tech-
niques which result in the R-tree rep-
resentation, while Section 5.4 describes
the R∗-tree which is the best of the
extent-based aggregation methods. Next,
Section 5.5 discusses methods of updat-
ing or loading an object-tree pyramid
with a large number of objects at once,
termed bulk insertion and bulk loading,
respectively. Section 5.6 concludes the
presentation by reviewing some of the
shortcomings of the object-tree pyramid
and discussing some of the solutions that
have been proposed to overcome them. For
a comparative look at these different ag-
gregation methods, see the VASCO JAVA
applets found at http://www.cs.umd.edu/
~hjs/quadtree/index.html [Brabec and
Samet 1998]. The VASCO system also in-
cludes many other indexing techniques for
points, lines, rectangles, and regions that
are based on space decomposition (see also
the sp-GiST system [Aref and Ilyas 2001]).
Other libraries that are based on object hi-
erarchies include GiST [Hellerstein et al.
1995] and XXL [van den Bercken et al.
2001].

5.1. Overview

The nature of the aggregation (i.e., us-
ing bounding boxes), the number of objects
that are being aggregated at each step (as
well as whether it can be varied), and,
most importantly, deciding which objects
to aggregate is quite arbitrary although
an appropriate choice can make the search
process much more efficient. The decision
as to which objects to aggregate assumes
that we have a choice in the matter. It
could be that the objects have to be aggre-
gated in the order in which they are en-
countered. This could lead to poor search
performance when the objects are not en-
countered in an order that correlates with

ACM Computing Surveys, Vol. 36, No. 2, June 2004.



Object-Based and Image-Based Object Representations 183

spatial proximity. Of course, this is not an
issue as long as we just have ≤M objects.

It should be clear that the issue of choice
only arises if we know the identities of
all the objects before starting the aggre-
gation process (unless we are permitted
to rebuild the hierarchy each time we en-
counter a new object or delete an object),
and if we are permitted to reorder them so
that objects in aggregate i need not neces-
sarily have been encountered prior to the
objects in aggregate i + 1, and vice versa.
This is not always the case (i.e., a dynamic
versus a static database), although for the
moment we do assume that we know the
identities of all of the objects before start-
ing the aggregation, and that we may ag-
gregate any object with any other object.
Observe also that the bounding boxes in
the hierarchy are not necessarily disjoint.
In fact, the objects may be configured in
space in such a way that no disjoint hi-
erarchy is possible. By the same reason-
ing, the objects themselves need not be
disjoint.

The process that we have just outlined
can be described more formally as follows.
Assume that there are N objects in the
space and let n be the smallest power of M
such that M n ≥ N . Assume that all aggre-
gates contain M elements with the excep-
tion of the last one at each level which may
contain less than M as M n is not neces-
sarily equal to N . The hierarchy of objects
consists of the set D of sets {Di} (0 ≤ i ≤ n)
where Dn corresponds to the set of bound-
ing boxes of the individual objects, Dn−1
corresponds to the result of the initial ag-
gregation of the bounding boxes of M ob-
jects into N/M aggregates of objects and
consists of N/M bounding boxes, and D0
is a set containing just one element corre-
sponding to the aggregations of all of the
objects and is a bounding box that encloses
all of the objects. We term the resulting
hierarchy an object pyramid. Once again,
we have a multiresolution representation
as the original collection of objects is de-
scribed at several levels of detail by virtue
of the number of objects whose bounding
boxes are grouped at each level. This is in
contrast with the cell pyramid where the
different levels of detail are distinguished

by the sizes of the cells that comprise the
elements at each level.

Searching an object pyramid consisting
of sets Di (0 ≤ i ≤ n) for the object con-
taining a particular location a (i.e., the lo-
cation query) proceeds as follows. We start
with D0, which consists of just one bound-
ing box b, and determine if a is inside b.
If it is not, then we exit and the answer
is negative. If it is, then we examine the
M elements in D1 that are covered by
b and repeat the test using their bound-
ing boxes. Note that unlike the cell pyra-
mid, at this point, a is not necessarily in-
cluded in the M bounding boxes in D1 as
these M bounding boxes are not required
to cover the entire space spanned by b. In
particular, we exit if a is not covered by
at least one of the bounding boxes at this
level. This process is applied recursively
to all elements of D j for 0 ≤ j ≤ n until
all elements of Dn have been processed at
which time the process stops. The advan-
tage of this method is that elements of D j
(1 ≤ j ≤ n) are not examined unless a is
guaranteed to be covered by at least one of
the elements of D j−1.

The bounding boxes serve to distinguish
between occupied and unoccupied space,
thereby indicating whether the search for
the objects that contain a particular loca-
tion (i.e., the location query) should pro-
ceed further. At a first glance, it would
appear that the object pyramid is rather
inefficient for responding to the location
query as in the worst case all of the bound-
ing boxes at all levels must be examined.
However, the maximum number of bound-
ing boxes in the object pyramid, and hence
the maximum number that will have to be
inspected, is

∑n
j=0 M j ≤ 2N .

Of course, we may also have to exam-
ine the actual sets of locations associ-
ated with each object when the bounding
box does not result in any of the objects
being pruned from further consideration
since the objects are not necessarily rect-
angular in shape (i.e., boxes). Thus us-
ing the hierarchy provided by the object
pyramid results in at most an additional
factor of two in terms of the number of
bounding box tests while possibly saving
many more tests. Therefore, the maximum
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Fig. 11. (a) Object-tree pyramid for a collection of rectangle objects with M = 3, and
(b) the spatial extents of the objects and the bounding boxes of the nodes in (a) with
broken lines denoting the bounding boxes of the corresponding leaf nodes. Notice
that the leaf nodes in the index also store bounding boxes although this is shown
only for the nonleaf nodes.

amount of work to answer the location
query with the hierarchy is of the same
order of magnitude to that which would
have been needed had the hierarchy not
been introduced.

As we can see, the way in which we
introduced the hierarchy to form the ob-
ject pyramid did not necessarily enable us
to make more efficient use of the explicit
interior-based representation to respond
to the location query. The problem was
that once we determined that location a
was covered by one of the bounding boxes,
say b, in D j (0 ≤ j ≤ n−1), we had no way
to access the bounding boxes comprising
b without examining all of the bounding
boxes in D j+1. This is easy to rectify by
imposing an access structure in the form
of a tree T on the elements of the hierar-
chy D. One possible implementation is a
tree of fanout M where the root T0 corre-
sponds to the bounding box in D0. T0 has
M links to its M children {T1k} which cor-
respond to the M bounding boxes in D1
that comprise D0. The set of nodes {Tik} at
depth i correspond to the bounding boxes
in Di (0 ≤ i ≤ n), while the set of leaf nodes
{Tnk} correspond to Dn. In particular, node
t in the tree at depth j corresponds to
bounding box b in D j (0 ≤ j ≤ n − 1), and
t contains M pointers to its M children in
Tj+1 corresponding to the bounding boxes

in D j+1 that are contained in b. We use the
term object-tree pyramid to describe this
structure.

Figure 11(a) is an example object-tree
pyramid for a simple collection of 9 rectan-
gle objects with M = 3 (and thus n = 2).
Figure 11(b) shows the spatial extents of
the objects and the bounding boxes of the
nodes in Figure 11(a), with broken lines
denoting the bounding boxes correspond-
ing to the leaf nodes. Note that the object-
tree pyramid is not unique. Its structure
depends heavily on the order in which the
individual objects and their corresponding
bounding boxes are aggregated.

The object-tree pyramid that we have
just described still has a worst case where
we may have to examine all of the bound-
ing boxes in D j (1 ≤ j ≤ n) when exe-
cuting the location query or its variants
(e.g., a window query). This is the case
if query location a is contained in every
bounding box in D j−1. Such a situation, al-
though rare, can arise in practice because
a may be included in the bounding boxes
of many objects (termed a false hit), as the
bounding boxes are not disjoint, while a is
contained in a much smaller number of ob-
jects. Equivalently, false hits are caused by
the fact that a spatial object may be spa-
tially contained in full or in part in sev-
eral bounding boxes or nodes while being
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associated with just one node or bounding
box.

However, unlike the object pyramid, the
object-tree pyramid does guarantee that
only the bounding boxes that contain a
will be examined and no others. Thus we
have not improved on the worst-case of the
object pyramid in that we may still have
to examine 2N bounding boxes, although
we have reduced its likelihood. It is inter-
esting to observe that the object pyramid
and the object-tree pyramid are instances
of an explicit interior-based representa-
tion since it is still the case that associ-
ated with each object o is a set containing
the addresses of the cells that comprise it.
Note also that the access structure facil-
itates only the determination of the ob-
ject associated with a particular cell and
not which cells are contiguous. Thus the
object-tree pyramid is not an instance of
an implicit interior-based representation.

The decision as to which objects to
aggregate plays an important factor in
the efficiency of the object-tree pyramid
in responding to the location query. The
efficiency of the object-tree pyramid for
search operations depends on its abilities
to distinguish between occupied space and
unoccupied space, and to prevent a node
from being examined needlessly due to a
false overlap with other nodes.

The extent to which these efficiencies
are realized is a direct result of how well
our aggregation policy is able to satisfy
the following two goals. The first goal is to
minimize the number of aggregated nodes
that must be visited by the search. This
goal is accomplished by minimizing the
area common to sibling aggregated nodes
(termed overlap). The second goal is to
reduce the likelihood that sibling aggre-
gated nodes are visited by the search. This
is accomplished by minimizing the total
area spanned by the bounding boxes of
the sibling aggregated nodes (termed cov-
erage). A related goal to that of minimiz-
ing the coverage is one of minimizing the
area in sibling aggregated nodes that is
not spanned by the bounding boxes of any
of the children of the sibling aggregated
nodes (termed dead area). Dead area is
usually decreased by minimizing coverage

Fig. 12. (a) Four bounding boxes and the aggrega-
tions that would be induced, (b) by minimizing the
total area (i.e., coverage) of the covering bounding
boxes of the two nodes and (c) by minimizing the
area common (i.e., overlap) to the covering bound-
ing boxes of the two nodes. The dead area for the
two possible aggregations is shown shaded.

and thus minimizing dead area is often not
taken into account explicitly. Another way
of interpreting these goals is that they are
designed to ensure that objects that are
spatially close to each other are stored in
the same node. Of course, at times, these
goals may be contradictory.

For example, consider the four bounding
boxes in Figure 12(a). The first goal is sat-
isfied by the aggregation in Figure 12(c),
while the second goal is satisfied by the ag-
gregation in Figure 12(b). The dead area is
shown shaded in Figures 12(b) and 12(c).
Note that the dead area in Figure 12(b) is
considerably smaller than the dead area
in Figure 12(c) on account of the smaller
amount of coverage in the children in
Figure 12(b). Also observe that the dead
area for the bounding box of one aggre-
gated node is not part of the bounding
boxes of children a sibling aggregated node
as seen in Figure 12(b).

The aggregation techniques described
above take the space (i.e., volume) occu-
pied by (termed extent of ) the bounding
boxes of the individual spatial objects into
account. They are described in Sections 5.3
and 5.4. An alternative is to order the
objects prior to performing the aggrega-
tion. However, in this case, the only choice
that we may possibly have with respect
to the identities of the objects which are
aggregated is when the number of objects
(or bounding boxes) that are being aggre-
gated at each step is permitted to vary.
The most obvious order, although not par-
ticularly interesting or useful, is one that
preserves the order in which the objects
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were initially encountered (i.e., objects in
aggregate i have been encountered before
those in aggregate i + 1). The more com-
mon orders are based on proximity or on
the values of a small set of parameters de-
scribing a common property that is hope-
fully related to the proximity (and to a
lesser degree to the shape and extent) of
the objects or their bounding boxes in one
or all of the dimensions of the space in
which they lie [Kamel and Faloutsos 1993;
Moitra 1993; Roussopoulos and Leifker
1985]. Ordering-based aggregation tech-
niques are discussed in Section 5.2.

5.2. Ordering-Based Aggregation
Techniques

The most frequently used ordering tech-
nique is based on mapping the bounding
boxes of the objects to a representative
point in a lower, the same, or a higher-
dimensional space and then applying one
of the space-ordering techniques described
in Section 2 and shown in Figure 2. We use
the term object number to refer to the re-
sult of the application of space ordering.4
Some possible representative points for
two-dimensional rectangle objects include
the following (e.g., Samet [1990b]):

(1) The centroid.
(2) The centroid and the horizontal and

vertical extents (i.e., the horizontal
and vertical distances from the cen-
troid to the relevant sides).

(3) The x and y coordinate values of
the two diagonally opposite corners
of the rectangle (e.g., the upper-left and
lower-right corners).

(4) The x and y coordinate values of the
lower-right corner of the rectangle and
its height and width.

4Interestingly, we will see that no matter which of
the implementations of the object-tree pyramid is be-
ing deployed, the ordering is used primarily to build
the object-tree pyramid, although it is used for split-
ting in some cases such as the Hilbert R-tree [Kamel
and Faloutsos 1994]. The actual positions of the ob-
jects in the ordering (i.e., the object numbers) are not
usually recorded in the object-tree pyramid which is
somewhat surprising as this could be used to speed
up operations such as point location, etc.

Fig. 13. A collection 22 rectangle objects where
the numbers associated with the rectangles de-
note the relative times at which they were
created.

For example, consider the collection of
22 rectangle objects given in Figure 13
where the numbers associated with the
rectangles denote the relative times at
which they were created. Figure 14 shows
the result of applying a Morton order
(Figure 14(a)) and Peano–Hilbert order
(Figure 14(b)) to the collection of rectangle
objects in Figure 13 using their centroids
as the representative points.

Once the N objects have been ordered,
the hierarchy D is built in the order Dn,
Dn−1, . . . , D1, D0 where n is the small-
est power of M such that M n ≥ N .
Dn consists of the set of original ob-
jects and their bounding boxes. There
are two ways of grouping the items to
form the hierarchy D: one-dimensional
and multidimensional.

In the one-dimensional grouping
method, Dn−1 is formed as follows: The
first M objects and their corresponding
bounding boxes form the first aggre-
gate, the second M objects and their
corresponding bounding boxes form the
second aggregate, etc. Dn−2 is formed by
applying this aggregation process again
to the set Dn−1 of N/M objects and their
bounding boxes. This process is continued
recursively until we obtain the set D0 con-
taining just one element corresponding
to a bounding box that encloses all of
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Fig. 14. The result of applying (a) a Morton order, and (b) a Peano–Hilbert order to the
collection of 22 rectangle objects in Figure 13 using their centroids as the representative
points.

Fig. 15. The bounding boxes corresponding to the first level of aggregation for the (a) Hilbert
packed R-tree, (b) Morton packed R-tree, and (c) packed R-tree (using a Peano–Hilbert order
for the initial ordering) for the collection of 22 rectangle objects in Figure 13 with M = 6.
The numbers associated with the rectangle objects in (a) and (b) denote the positions of their
corresponding centroids in the order.

the objects. Note however, that when
the process is continued recursively, the
elements of the sets Di(0 ≤ i ≤ n − 1)
are not necessarily ordered in the same
manner as the elements of Dn.

There are several implementations of
the object-tree pyramid using the one-di-
mensional grouping methods. For exam-
ple, the Hilbert packed R-tree [Kamel and
Faloutsos 1993] is an object-tree pyramid
that makes use of a Peano–Hilbert order.
It is important to note that only the leaf
nodes of the Hilbert packed R-tree are or-
dered using the Peano–Hilbert order. The
nodes at the remaining levels are ordered

according to the time at which they were
created. For example, Figure 15(a) shows
the bounding boxes corresponding to the
first level of aggregation for the Hilbert
packed R-tree for the collection of 22 rect-
angle objects in Figure 13 with M = 6.
Similarly, Figure 15(b) shows the same
result were we to build the same struc-
ture using a Morton order (i.e., a Morton
packed R-tree), again with M = 6. No-
tice that there is quite a bit of overlap
among the bounding boxes as the aggrega-
tion does not take the extent of the bound-
ing boxes into account when forming the
structure.
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A slightly different approach is em-
ployed in the packed R-tree [Roussopoulos
and Leifker 1985] which is another in-
stance of an object-tree pyramid. The
packed R-tree is based on ordering the ob-
jects on the basis of some criterion such
as increasing value of the x coordinate or
any of the space-ordering methods shown
in Figure 2. Once this order has been
obtained, the leaf nodes in the packed
R-tree are filled by examining the ob-
jects in increasing order where each leaf
node is filled with the first unprocessed
object and its M − 1 nearest neighbors
which have not yet been inserted in other
leaf nodes. Once an entire level of the
packed R-tree has been obtained, the al-
gorithm is reapplied to add nodes at the
next level using the same nearest neighbor
criterion, terminating when a level con-
tains just one node. The only difference
between the ordering that is applied at
the levels containing the nonleaf nodes
from that used at the level of the leaf
nodes is that in the former case we are
ordering the bounding boxes while in the
latter case we are ordering the actual
objects.

Besides the difference in the way non-
leaf nodes are formed, we point out that
the packed R-tree construction process
makes use of a proximity criterion in the
domain of the actual data rather than the
domain of the representative points which
is the case of the Hilbert packed R-tree.
This distinction is quite important as it
means that the Hilbert packed R-tree con-
struction process makes no attempt to re-
duce or minimize coverage and overlap
which, as we shall soon see, are the real
cornerstones of the R-tree data structure
[Guttman 1984]. Therefore, as we point
out below, this makes the Hilbert packed
R-tree (and, to a lesser extent, the packed
R-tree) much more like a B-tree that is
constructed by filling each node to ca-
pacity. For example, Figure 15(c) shows
the bounding boxes corresponding to the
first level of aggregation for the packed
R-tree for the collection of 22 rectangle
objects in Figure 13. In this case, the ob-
jects were initially ordered using a Peano–
Hilbert order.

The STR method (denoting sort-tile-
recurse) of Leutenegger et al. [1997] is an
example of the multidimensional grouping
method. Our explanation assumes, with-
out loss of generality, that the underly-
ing space is two-dimensional although the
extension of the method to higher dimen-
sions is straightforward. Assuming a total
of N rectangles and a node capacity of M
rectangles per leaf node, Dn−1 is formed
by constructing a tiling of the underlying
space consisting of s vertical slabs where
each slab contains s tiles. Each tile cor-
responds to an object-tree pyramid leaf
node which is filled to capacity. Note that
the result of this process is that the un-
derlying space is being tiled with rect-
angular tiles thereby resembling a grid,
but, most importantly, unlike a grid, the
horizontal edges of horizontally adjacent
tiles (i.e., with a common vertical edge)
do not form a straight line (i.e., are not
connected). Using this process means that
the underlying space is tiled with approx-
imately

√
N/M ×√

N/M tiles and results
in approximately N/M object-tree pyra-
mid leaf nodes. The tiling process is ap-
plied recursively to these N/M tiles to
form Dn−2, Dn−3, . . . etc. until obtaining
just one node.

The STR method builds the object-tree
pyramid in a bottom-up manner. The ac-
tual mechanics of the STR method are as
follows. Sort the rectangles on the basis of
one coordinate value of some easily iden-
tified point that is associated with them,
say the x coordinate value of their cen-
troid. Aggregate the sorted rectangles into√

N/M groups of
√

NM rectangles each of
which forms a vertical slab containing all
rectangles whose centroid’s x coordinate
value lies in the slab. Next, for each verti-
cal slab v, sort all rectangles in v on the ba-
sis of their centroid’s y coordinate value.
Aggregate the

√
NM sorted rectangles in

each slab v into
√

N/M groups of M rect-
angles each. Recall that the elements of
these groups form the leaf nodes of the
object-tree pyramid. Notice that the mini-
mum bounding boxes of the rectangles in
each tile are usually larger than the tiles.
The process of forming a grid-like tiling
is now applied recursively to the N/M
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minimum bounding boxes of the tiles with
N taking on the value of N/M until the
number of tiles is no larger than M , in
which case all of the tiles fit in the root
node and we are done.

A couple of items are worthy of further
note. First, the minimum bounding boxes
of the rectangles in each tile are usually
larger than the tiles. This means that the
tiles at each level will overlap. Thus, we do
not have a true grid in the sense that the
elements at each level of the object-tree
pyramid are usually not disjoint. Second,
the ordering that is applied is quite simi-
lar to a row order (actually column order
to be precise) as illustrated in Figure 2(a)
where the x coordinate value serves as
a primary key to form the vertical slabs
while the y coordinate value serves as the
secondary key to form the tiles from the
vertical slabs. Nevertheless, the ordering
serves only to determine the partitioning
lines to form the tiles but is not used to
organize the collection of tiles.

Notice that the STR method is a bottom-
up technique. However, the same idea
could also be applied in a top-down man-
ner so that we originally start with M
tiles which are then further partitioned.
In other words, we start with

√
M vertical

slabs containing
√

M tiles apiece. This is
instead of the initial

√
N/M vertical slabs

containing
√

N/M tiles in the bottom-up
method. The disadvantage of the top-down
method is that it requires that we make
roughly 2 logM N passes over all of the
data whereas the bottom-up method has
the advantage of making just two passes
over the data (one for the x coordinate
value and one for the y coordinate value)
since all recursive invocations of the algo-
rithm deal with centroids of the tiles.

The top-down method can be viewed as
an ordering technique in the sense that the
objects are partitioned, thereby creating a
partial ordering, according to their rela-
tive position with respect to some criterion
such as a value of a statistical measure for
the set of objects as a whole. For example,
in the VAMSplit R-tree of White and Jain
[1996a], which is applied to point data, the
split axis (i.e., x or y or z, etc.) is chosen on
the basis of having the maximum variance

from the mean in the distribution of the
point data. Once the axis is chosen, the ob-
jects are split is into two equally-sized sets
constrained so that the resulting nodes are
as full as possible. This process is applied
recursively to the resulting sets.

The top-down method is also used by
Garcı́a et al. [1998a] with a different parti-
tioning strategy. For each dimension, this
strategy applies a user-defined function to
decide on the quality or penalty incurred
by the split (e.g., coverage, overlap, etc.).
Assuming N objects and a bucket capac-
ity M (which is also the fanout of packed
nonleaf nodes), the partitioning algorithm
uses a heuristic that considers O(M ) split
positions and selects the one among those
that yields the minimum cost or penalty.

The algorithm proceeds as follows. At
the initial step, it sorts the N objects
along each dimension, and then groups
the sorted objects into M groups of l =
�N/M	 objects each. It then constructs the
minimum bounding box of each group in
O(N ) time. Next, it processes the bound-
ing boxes of the groups in increasing or-
der and forms a bounding box for the first
two groups, the first three groups, . . . , up
to the first l − 1 groups. The algorithm
considers many different orderings, and
chooses the best split among all the dif-
ferent orderings. The suggested orderings
are the min, max, and center of the bound-
ing boxes for each dimension—that is, for
two-dimensional data, the suggested algo-
rithm may consider between two, four, or
six different orderings at each pass. The
same process is applied to the bounding
boxes in decreasing order. This can be done
in O(M ) time. At this point, the algorithm
finds the optimal split position by con-
sidering all possible O(M ) split positions,
which can also be done in O(M ) time.
This results in two buckets containing i · l
and N − i · l where i is between 1 and
M −1. This process is then applied to each
bucket that contains more than l objects,
which may also require that the objects be
sorted again. Once all buckets have ≤ l
objects, we have completed the first level
of the R-tree. Next, this process is applied
recursively to the subtrees at the next
level.
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If at each step of the algorithm, the
nodes resulting from the split contain ap-
proximately the same number of bounding
boxes, then the sorting component of the
algorithm performs a minimum number of
comparisons as the maximum sizes of the
buckets are minimized. In order to analyze
the execution time of the algorithm, we as-
sume a worst-case scenario for each split
(which means that i = 1 or equivalently
i = M − 1) at each stage for each level.
It can be shown that in such a case the
total execution time for sorting (which is
the dominant cost factor in the algorithm)
is O(c · d · N · (log N )2 · M/ log M ) where
c is the number of possible orderings and d
is the dimensionality of the data [Alborzi
and Samet, 2004]. It is important to note
that use of this method does not neces-
sarily result in a minimum cost partition
since it does not take into account all of the
possible groupings of the N objects, which
is exponential in N (i.e., O(2N )).

Regardless of how the objects are ag-
gregated, the object-tree pyramid is anal-
ogous to a height-balanced M -ary tree
where only the leaf nodes contain data (ob-
jects in this case), and all of the leaf nodes
are at the same level. Thus, the object-tree
pyramid is good for static data sets. How-
ever, in a dynamic environment where ob-
jects are added and deleted at will, the
object-tree pyramid needs to be rebuilt ei-
ther entirely or partially to maintain the
balance, order, and node size constraints.
In the case of binary trees, this issue is ad-
dressed by making use of a B-tree, or a B+-
tree if we wish to restrict the data (i.e., the
objects) to the leaf nodes as is the case in
our application. Below, we show how to use
the B+-tree to make the object-tree pyra-
mid dynamic.

When the aggregation in the object-tree
pyramid is based on ordering the objects,
the objects and their bounding boxes can
be stored directly in the leaf nodes of the
B+-tree. We term the result an object B+-
tree. The key difference between the ob-
ject B+-tree and the object-tree pyramid
is that the B+-tree (and likewise the ob-
ject B+-tree) permits the number of objects
and nodes that are aggregated at each step
to vary (i.e., the number of children per

node). This is captured by the order of the
B+-tree, where for an order (m, M ) B+-
tree, this number usually ranges between
m ≥ �M/2	 and M with the root having at
least 2 children unless it is a leaf node. The
only modification to the B+-tree definition
is in the format of the nodes of the object
B+-tree. In particular, the format of each
nonleaf node p is changed so that if p has
j children, then p contains the following
3 items of information for each child s:

(1) A pointer to s.
(2) The maximum object number associ-

ated with any of the children of s (anal-
ogous to a key in the conventional B+-
tree).

(3) The bounding box b for s (e.g., the co-
ordinate values of a pair of diagonally
opposite corners of b).

Notice that j bounding boxes are stored in
each node corresponding to the j children
instead of just one bounding box as called
for in the definition of the object-tree pyra-
mid. This is done to speed up the point-
inclusion tests necessary to decide which
child to descend when executing the loca-
tion query. In particular, it avoids a disk
access when the nodes are stored on disk.

A leaf node p in the object B+-tree has
a similar format with the difference that
instead of having pointers to j children
which are nodes in the tree, p has j
pointers to records corresponding to the j
objects that it represents. Therefore, p
contains the following three items of in-
formation for each object s:

(1) A pointer to the actual object corre-
sponding to s.

(2) The object number associated with s.
(3) The bounding box b for s (e.g., the co-

ordinate values of a pair of diagonally
opposite corners of b).

Observe that unlike the object-tree
pyramid, the object B+-tree does store ob-
ject numbers in both the leaf and non-
leaf nodes in order to facilitate updates.
The update algorithms (i.e., data struc-
ture creation, insertion, and deletion) for
an object B+-tree are identical to those
for a B+-tree with the added requirement
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Fig. 16. The bounding boxes corresponding to the first level of aggregation for
the (a) Hilbert R-tree, and (b) Morton R-tree for the collection of 22 rectangle
objects in Figure 13 with m = 3 and M = 6.

of maintaining the bounding box informa-
tion, while the search algorithms (e.g., the
location query, window queries, etc.) are
identical to those for an object-tree pyra-
mid. The performance of the object B+-tree
for answering range queries is enhanced
if the initial tree is built by inserting the
objects in sorted order filling each node
to capacity, subject to the minimum occu-
pancy constraints, thereby resulting in a
tree with minimum depth. Of course, such
an initialization will cause subsequent in-
sertions to be more costly as they will
inevitably result in node split operations
whereas this would not necessarily be the
case if the nodes were not filled to capac-
ity initially. The Hilbert R-tree [Kamel and
Faloutsos, 1994] is an instance of an ob-
ject B+-tree that applies a Peano–Hilbert
space ordering (Figure 2(d)) to the cen-
troid of the bounding boxes of the ob-
jects. The Hilbert R-tree is closely related
to the Hilbert tree [Lea 1988] which ap-
plies the same ordering to a set of points
and then stores the result in a height-
balanced binary tree (see also Tropf and
Herzog [1981], which makes use of a
Morton order and a 1–2 brother tree
[Ottmann and Wood 1980]).

Figure 16(a) shows the bounding boxes
corresponding to the first level of aggrega-
tion for the Hilbert R-tree for the collection
of 22 rectangle objects in Figure 13 with
m = 3 and M = 6 when the objects are

inserted in the order in which they were
created (i.e., their corresponding number
in Figure 13. Similarly, Figure 16(b) shows
the corresponding result when using a
Morton order instead of a Peano–Hilbert
order. Notice that for pedagogical reasons,
the trees were not created by inserting the
objects in sorted order as suggested above
as in this case the resulting trees would
be the same as the Hilbert packed R-tree
and Morton packed R-tree in Figures 15(a)
and 15(b), respectively.

Observe that use of ordering-based ag-
gregation methods can lead to substan-
tial overlap between the bounding boxes
of the nodes. Rearranging the objects that
are aggregated in each node can allevi-
ate this problem, but only to a very lim-
ited extent as the order of the leaf nodes
must be maintained—that is, all elements
of leaf node i must have a Peano–Hilbert
(Morton) order number that is less than
all elements of leaf node i + 1. Thus, all
we can do is change the number of el-
ements that are aggregated in the node
subject to the node capacity constraints.
Of course, this means that the result-
ing trees are not unique. For example, in
Figure 16(a), we could aggregate objects
13–17 into one nonleaf node and objects
18–22 into another nonleaf node which re-
sults in less overlap. However, the real
shortcoming is that it could be the case
that objects 2 and 20 should be aggregated
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Fig. 17. (a) R-tree for the same collection of rectangle objects given in
Figure 11 with m = 2 and M = 3, and (b) the spatial extents of the objects
and the bounding boxes of the nodes in (a) with broken lines denoting the
bounding boxes of the corresponding leaf nodes. Notice that the leaf nodes
in the index also store bounding boxes, although this is shown only for the
nonleaf nodes.

(actually object 2 with objects 18–22) but
this is impossible as their corresponding
positions in the Peano–Hilbert order are so
far apart. The problem is caused, in part,
by the presence of objects with nonzero ex-
tent and the fact that neither the extent
of the objects nor their proximity is taken
into account in the ordering-based aggre-
gation techniques (i.e., they do not try to
minimize coverage and/or overlap which
are the cornerstones of the R-tree). This
deficiency was also noted earlier for the
Hilbert packed R-tree.

5.3. Extent-Based Aggregation Techniques

When the objects are to be aggregated on
the basis of their extent (i.e., the space oc-
cupied by their bounding boxes), then good
dynamic behavior is achieved by making
use of an R-tree [Guttman, 1984]. An R-
tree is a generalization of the object-tree
pyramid where, for an order (m, M ) R-
tree, the number of objects or bounding
boxes that are aggregated in each node is
permitted to range between m ≤ �M/2	
and M while it is always M for the object-
tree pyramid. The root node in an R-tree
has at least two entries unless it is a leaf
node, in which case it has just one entry
corresponding to the bounding box of an
object. The R-tree is usually built as the
objects are encountered rather than wait-
ing until all objects have been input. Of

the different variations on the object-tree
pyramid that we discussed, the R-tree is
the one that is used most frequently, espe-
cially in database applications.

Figure 17(a) is an example R-tree for the
same collection of nine rectangle objects
given in Figure 11 with m = 2 and M = 3.
Figure 17(b) shows the spatial extents of
the objects and the bounding boxes of the
nodes in Figure 17 with broken lines de-
noting the bounding boxes corresponding
to the leaf nodes, and gray lines denot-
ing the bounding boxes corresponding to
the subtrees rooted at the nonleaf nodes.
Note that the R-tree is not unique. Its
structure depends heavily on the order in
which the individual objects were inserted
into (and possibly deleted from) the tree.

Given that each R-tree node can contain
a varying number of objects or bounding
boxes, it is not surprising that the R-tree
was inspired by the B-tree. This means
that nodes are viewed as analogous to disk
pages. Thus the parameters defining the
tree (i.e., m and M ) are chosen so that a
small number of nodes is visited during a
spatial query (i.e., variants of the location
query), which means that m and M are
usually quite large.

The need to minimize the number of
disk accesses also effects the format of
each R-tree node. Recall that in the def-
inition of the object-tree pyramid, each
node p contains M pointers to p’s children
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and one bounding box corresponding to the
union of the bounding boxes of p’s chil-
dren. This means that in order to decide
which of node p’s children should be de-
scended, we must access the nodes corre-
sponding to these children to perform the
point-inclusion test. Each such access re-
quires a disk I/O operation. In order to
avoid these disk I/O operations, the for-
mat of R-tree node p is modified so that
p contains k (m ≤ k ≤ M ) pointers to
p’s children and the k bounding boxes of
p’s children instead of containing just one
bounding box corresponding to the union
of the bounding boxes of p’s children as
is the case for the object-tree pyramid.5
Recall that this format is also used in
the definition of a node in the object B+-
tree. Once again, we observe that the k
point-inclusion tests do not require any
disk I/O operations at the cost of being
able to aggregate a smaller number of ob-
jects in each node since m and M are now
smaller assuming that the page size is
fixed.

As long as the number of objects in each
R-tree leaf node is between m and M , no
action needs to be taken on the R-tree
structure other than adjusting the bound-
ing boxes when inserting or deleting an
object. If the number of objects in a leaf
node decreases below m, then the node
is said to underflow. In this case, the ob-
jects in the underflowing nodes must be
reinserted, and bounding boxes in nonleaf
nodes must be adjusted. If these nonleaf
nodes also underflow, then the objects in
their leaf nodes must also be reinserted.
If the number of objects in a leaf node in-
creases above M , then the node is said to
overflow. In this case, it must be split and
the M + 1 objects that it contains must
be distributed in the two resulting nodes.
Splits are propagated up the tree.

5The A-tree [Sakurai et al. 2000] is somewhat of a
compromise in that it stores quantized approxima-
tions of the k bounding boxes of p’s children where
the locations of the bounding boxes of p’s children are
specified relative to the location of the bounding box
of p thereby enabling them to be encoded with just a
small number of bits. This idea was first proposed by
Henrich [1998] and is also used in the hybrid tree of
Chakrabarti and Mehrotra [1998, 1999].

Underflows in an R-tree are handled in
an analogous manner to the way they are
dealt with in a B-tree. In contrast, the
overflow situation points out a significant
difference between an R-tree and a B-tree.
Recall that overflow is a result of attempt-
ing to insert an item t in node p and deter-
mining that node p is too full. In a B-tree,
we usually don’t have a choice as to the
node p that is to contain t since the tree
is ordered. Thus once we determine that
p is full, we must either split p or apply a
rotation (also known as deferred splitting)
process. On the other hand, in an R-tree,
we can insert t in any node p, as long as p
is not full. However, once t is inserted in p,
we must expand the bounding box associ-
ated with p to include the space spanned
by the bounding box b of t. Of course, we
can also insert t in a full node p, in which
case we must also split p.

The need to expand the bounding box of
p has an effect on the future performance
of the R-tree, and thus we must make a
wise choice with respect to p. As in the case
of the object-tree pyramid, the efficiency of
the R-tree for search operations depends
on its abilities to distinguish between oc-
cupied space and unoccupied space, and to
prevent a node from being examined need-
lessly due to a false overlap with other
nodes. Again, as in the object-tree pyra-
mid, the extent to which these efficiencies
are realized is a direct result of how well
we are able to satisfy our goals of mini-
mizing coverage and overlap. These goals
guide the initial R-tree creation process as
well subject to the previously mentioned
constraint that the R-tree is usually built
as the objects are encountered rather than
waiting until all objects have been input.

In the original definition of the R-
tree [Guttman 1984] the goal of minimiz-
ing coverage is the one that is followed.
In particular, an object t is inserted by a
recursive process that starts at the root
of the tree and chooses the child whose
corresponding bounding box needs to be
expanded by the smallest amount to in-
clude t. As we will see, other researchers
make use of other criteria such as
minimizing overlap with adjacent nodes
and even perimeter (e.g., in the R∗-tree
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[Beckmann et al. 1990] as described in
Section 5.4). [Theodoridis and Sellis 1993,
1994] try to minimize the value of an objec-
tive function consisting of a linear combi-
nation of coverage, overlap, and dead area
with equal weights. Garcı́a et al. [1998a]
also make use of a similar objective func-
tion to build the entire R-tree in a top-
down manner.

Not surprisingly, these same goals also
guide the node-splitting process. In this
situation, one goal is to distribute the ob-
jects among the nodes so that the likeli-
hood that the two nodes will be visited
in subsequent searches will be reduced.
This is accomplished by minimizing the
total area spanned by the bounding boxes
of the resulting nodes (equivalent to what
we termed coverage). The second goal is to
reduce the likelihood that both nodes are
examined in subsequent searches. This
goal is accomplished by minimizing the
area common to both nodes (equivalent to
what we termed overlap). Again, we ob-
serve that, at times, these goals may be
contradictory.

Several node-splitting policies have
been proposed that take these goals into
account. They are differentiated on the ba-
sis of their execution-time complexity and
by the number of these goals that they at-
tempt to meet. An easy way to see the dif-
ferent complexities is to look at the follow-
ing three algorithms [Guttman 1984], all
of which are based on minimizing the cov-
erage. The simplest is an exhaustive algo-
rithm [Guttman 1984] that tries all pos-
sibilities. In such a case, the number of
possible partitions is 2M −1. This is unrea-
sonable for most values of M (e.g., M = 50
for a page size of 1024 bytes).

The exhaustive approach can be applied
to obtain an optimal node split accord-
ing to an arbitrary cost function that can
take into account coverage, overlap, and
other factors. Interestingly, although we
pointed out earlier that there are O(2M )
possible cases to be taken into account,
the exhaustive algorithm can be imple-
mented in such a way that it need not re-
quire O(2M ) time. In particular, Becker
et al. [1992] present an implementation
that takes only O(M 3) time for two-dimen-

sional data and O(dM log M + d2M 2d−1)
time for d -dimensional data.

Garcı́a et al. [1998b] present an imple-
mentation of the exhaustive approach that
uses the same insight as the implementa-
tion of Becker et al. [1992], which is that
some of the boundaries of the two result-
ing minimum bounding boxes are shared
with the minimum bounding box of the
overflowing node. This insight constrains
the number of possible groupings of the
M objects in the node that is being split.
The algorithm is flexible in that it can use
different cost functions for evaluating the
appropriateness of a particular node split.
However, the cost function is restricted
to being “extent monotone” which means
that the cost function increases monoton-
ically as the extent of one of the sides of
the two bounding rectangles is increased
(this property is also used by Becker et al.
[1992], although the property is stated
somewhat differently).

Although the implementations of
Becker et al. [1992] and Garcı́a et al.
[1998b] both find optimal node splits,
the difference between them is that the
former has the added benefit of guaran-
teeing that the node split satisfies some
balancing criteria, which is a requirement
in most R-tree implementations. The
rationale, as we recall, is that in this
way the nodes are not too full, which
would cause them to overflow again. For
example, in many R-tree implementations
there is a requirement that the split be
such that each node receives exactly half
the rectangles, or that each receives at
least 40% of the rectangles. Satisfying the
balancing criteria is more expensive, as
could be expected, and in two dimensions,
the cost of the algorithm of Becker et al.
[1992] is O(M 3) as opposed to O(M 2) for
the algorithm of Garcı́a et al. [1998a].

Garcı́a et al. [1998b] found that identify-
ing optimal node splits yielded only mod-
est improvements in query performance
which led them to introduce another im-
provement to the insertion process. This
improvement is based on trying to fit one
of the two groups resulting from a split of
node e into one of e’s siblings instead of
creating a new node for every split. In
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particular, one of the groups is inserted
into the sibling s for which the cost in-
crease, using some predefined cost func-
tion, resulting from movement into s is
minimized. Once a sibling s has been
chosen, we move the appropriate group
and reapply the node splitting algorithm
if the movement caused s to overflow.
This process is applied repeatedly as long
as there is overflow while requiring that
we choose among the siblings that have
not been modified by this process. If we
find that there is overflow in node i and
there is no unmodified sibling left, then
a new node is created containing one of
the new groups resulting from the split of
i. Even if each node overflows, this pro-
cess is guaranteed to terminate as at each
step there is one less sibling candidate for
motion.

The process described above is some-
what similar to what is termed forced rein-
sertion in the R∗-tree (see Section 5.4) with
the difference that forced reinsertion re-
sults in reinsertion of the individual en-
tries (i.e., objects in the case of leaf nodes
and minimum bounding boxes in the case
of nonleaf nodes) at the root instead of as
a group into one of the siblings. This rein-
sertion into siblings is also reminiscent of
rotation (i.e., “deferred splitting”) in con-
ventional B-trees with the difference being
that there is no order in the R-tree which
is why motion into all unmodified siblings
had to be considered. This strategy was
found to increase the node utilization and
thereby improve query performance (by
as much as 120% in experiments [Garcı́a
et al. 1998b] compared to the Hilbert R-
tree [Kamel and Faloutsos 1994]).

The remaining two node-splitting al-
gorithms have a common control struc-
ture that consists of two stages. The first
stage “picks” a pair of bounding boxes j
and k to serve as “seeds” for the two re-
sulting nodes, while the second stage re-
distributes the remaining bounding boxes
into the nodes corresponding to j and k.
The redistribution process tries to min-
imize the “growth” of the area spanned
by j and k. Thus, the first and second
stages can be described as “seed-picking”
and “seed-growing”, respectively.

The first of these “seed-picking” algo-
rithms [Guttman 1984] is a quadratic
cost algorithm that initially finds the two
bounding boxes that would waste the most
area were they to be in the same node.
This is determined by subtracting the sum
of the areas of the two bounding boxes
from the area of the covering bounding
box. These two bounding boxes are placed
in the separate nodes, say j and k. Next,
the remaining bounding boxes are exam-
ined, and for each bounding box, say i, dij
and dik are computed, which correspond
to the increases in the area of the covering
bounding boxes of nodes j and k, respec-
tively, when i is added to them. Now, the
bounding box r such that |drj − drk| is a
maximum is found, and r is added to the
node with the smallest increase in area.
This process is repeated for the remaining
bounding boxes. The motivation for select-
ing the maximum difference |drj−drk| is to
find the bounding box having the greatest
preference for a particular node j or k.

The second of of these “seed-picking” al-
gorithms [Guttman 1984] is a linear cost
algorithm that examines each dimension
and finds the two bounding boxes with the
greatest separation. Recalling that each
bounding box has a low and a high edge
along each axis, these two bounding boxes
are the one whose high edge is the lowest
along the given axis and the one whose low
edge is the highest along the same axis.
The separations are normalized by divid-
ing the actual separation by the width of
the bounding box of the overflowing node
along the corresponding axis. The final
“seeds” are the two bounding boxes having
the greatest normalized separation among
the d pairs that we found. The remaining
bounding boxes are processed in arbitrary
order and placed in the node whose bound-
ing box (i.e., of the entries added so far) is
increased the least in area as a result of
their addition. Empirical tests [Guttman
1984] showed that there was not much dif-
ference between the three node-splitting
algorithms in the performance of a win-
dow search query (i.e., in CPU time and in
the number of disk pages accessed). Thus,
the faster linear cost node-splitting algo-
rithm was found preferable for this query
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Fig. 18. (a) Example collection of rectangles demonstrating a linear node splitting
algorithm that ensures the most even distribution of bounding boxes, and the two
possible splits caused by associating each bounding box with its closest face caused
by a partition along the (b) x axis, and (c) y axis.

even though the quality of the splits was
somewhat inferior.

An alternative node splitting policy is
based on minimizing the overlap. One
technique which has a linear cost [Ang
and Tan 1997] applies d partitions (one for
each of the d dimensions) to the bounding
boxes in the node t being split thereby re-
sulting in 2d sets of bounding boxes. In
particular, we have one set for each face
of the bounding box b of t. The partition
is based on associating each bounding box
o in t with the set corresponding to the
closest face along dimension i of b.6 Once
the 2d partitions have been constructed
(i.e., each bounding box o has been asso-
ciated with d sets), select the partition
that ensures the most even distribution of
bounding boxes. In case of a tie, choose the
partition with the least overlap. In case
of another tie, choose the partition with
the least coverage. For example, consider
the four bounding boxes in Figure 18(a).
The partition along the x axis yields the
sets {1,2} and {3,4} (Figure 18(b)) while the
partition along the y axis yields the sets
{1,3} and {2,4} (Figure 18(c)). Since both
partitions yield sets that are evenly dis-

6Formally, each bounding box o has two faces foil and
foih that are parallel to the respective faces fbil and
fbih of b where l and h correspond to the low and high
values of coordinate or dimension i. For each dimen-
sion i, there are two sets Sil and Sih corresponding
to faces fbil and fbih of b, and the algorithm inserts
o into Sil if xi( foil)−xi( fbil) < xi( fbih)−xi( foih) and
into Sih otherwise where xi( f ) is the ith coordinate
value of face f .

tributed, we choose the one that minimizes
overlap (i.e., along the y axis).

The algorithm is linear as it examines
each bounding box once along each di-
mension (actually, it is O(dM) for M ob-
jects but d is usually much smaller than
M ). Experiments with randomly gener-
ated rectangles [Ang and Tan 1997] re-
sulted in lower coverage and overlap than
the linear and quadratic algorithms de-
scribed above [Guttman 1984] that are
based on minimizing the coverage. The
window search query was also found to be
about 16% faster with the linear algorithm
based on minimizing overlap than the
quadratic algorithm based on minimizing
coverage. The drawback of this linear al-
gorithm (i.e., Ang and Tan [1997]) is that it
does not guarantee that the two nodes re-
sulting from the partition will contain an
equal number of bounding boxes. This is
because the partitions are based on prox-
imity to the borders of the bounding box of
the node being split. In particular, when
the data is not uniformly distributed, al-
though the resulting nodes are likely to
have little overlap (as they are likely to
partition the underlying space into two
equal areas), they will most likely contain
an uneven number of bounding boxes.

5.4. R*-tree

Better decompositions in terms of less
node overlap and lower storage require-
ments than those achieved by the linear
and quadratic node-splitting algorithms
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have also been reported in [Beckmann
et al. 1990] where three significant
changes have been made to the R-tree con-
struction algorithm including a different
node-splitting strategy. An R-tree that is
built using these changes is termed an
R*-tree [Beckmann et al. 1990].7 These
changes are described below. Interest-
ingly, these changes also involve using a
node splitting policy that, at times, tries
to minimize both coverage and overlap.

The first change is the use of an intel-
ligent object insertion procedure that is
based on minimizing overlap in the case of
leaf nodes, while minimizing the increase
in area (i.e., coverage) in the case of non-
leaf nodes. The distinction between leaf
and nonleaf nodes is necessary as the in-
sertion algorithm starts at the root and
must process nonleaf nodes before encoun-
tering the leaf node where the object will
ultimately be inserted. Thus, we see that
the bounding box b for an object o is in-
serted into the leaf node p for whom the
resulting bounding box has the minimum
increase in the amount of overlap with the
bounding boxes of p’s siblings (children of
nonleaf node s). This is in contrast to the R-
tree where b is inserted into the leaf node
p for whom the increase in area is a mini-
mum (i.e., based on minimizing coverage).
This part of the R∗-tree object insertion al-
gorithm is quadratic in the number of en-
tries in each node (i.e., O(M 2) for an or-
der (m, M ) R∗-tree where the number of
objects or bounding boxes that are aggre-
gated in each node is permitted to range
between m ≤ �M/2	) as the overlap must
be checked for each leaf node child p of
the selected nonleaf node s with all of p’s
O(M ) siblings.

The second change is that when a node p
is found to overflow in an R∗-tree, instead
of immediately splitting p as is done in
the R-tree, first, an attempt is made to see
if some of the objects in p could possibly
be more suited to being in another node.
This is achieved by reinserting a fraction

7The ‘*’ is used to signify its “star”-like performance
[Seeger 1990] in comparison with R-trees built using
the other node-splitting algorithms as can be seen in
examples such as Figures 19 and 20.

(30% has been found to yield good perfor-
mance [Beckmann et al. 1990]) of these
objects in the tree (termed forced reinser-
tion). Forced reinsertion is similar in spirit
to rotation (also known as “deferred split-
ting”) in a conventional B-tree, which was
also a technique developed to avoid split-
ting a node.

There are several ways of determining
the objects to be reinserted. One sugges-
tion is to sort the bounding boxes in p ac-
cording to the distance of the centers of
their bounding boxes from the center of
the bounding box of p, and to reinsert the
designated fraction that are the farthest.
Once we have determined the objects to
be reinserted, we need to choose an order
in which to reinsert them. There are two
obvious choices: from farthest to closest
(termed far-reinsert) or from closest to far-
thest (termed close-reinsert). Beckmann
et al. [1990] make a case for using close-
reinsert on the basis of results of experi-
ments. One possible explanation is that if
the reinsertion procedure places the first
object to be reinserted in p, then the size
of the bounding box of p is likely to be
increased more if “far-reinsert” was used
rather than “close-reinsert” thereby in-
creasing the likelihood of the remaining
objects being reinserted in p as well. This
has the effect of defeating the motivation
for the introduction of the reinsertion pro-
cess which is to try to reorganize the nodes.
However, it could also be argued that us-
ing “far-reinsert” is more likely to result
in the farthest object being reinserted in
a node other than p, on account of the
smaller amount of overlap, which is one of
the goals of the reinsertion process. Thus,
the question of which method to use is not
completely settled.

The sorting step in forced reinsertion
takes O(M log M ) time. However, this cost
is greatly overshadowed by the fact that
each invocation of forced reinsertion can
result in the reinsertion of O(M ) objects
thereby increasing the cost of insertion by
a factor of O(M ). One problem with forced
reinsertion is that it could lead to over-
flow in the same node p again when all
of the bounding boxes are reinserted in
p, or even to overflow in another node q
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at the same depth. This could lead to an
infinite loop. In order to prevent the oc-
currences of such a situation, forced rein-
sertion is applied only once at each depth
for a given object. Note also that forced
reinsertion is applied in a bottom-up man-
ner in the sense that resolving overflow in
the leaf nodes may also lead to overflow of
the nonleaf nodes, in which case we apply
forced reinsertion to the nonleaf nodes as
well. When applying forced reinsertion to
a nonleaf node p at depth l , we reinsert
only the elements in p and at depth l .

Forced reinsertion is quite important as
usually an R-tree is built by inserting the
objects one by one as they are encoun-
tered in the input. Thus, we don’t usually
have the luxury of processing the objects
in sorted order. This could lead to some
bad decompositions in the sense that the
redistribution stage may prefer one of the
“seed” nodes over the other in a consistent
manner. Of course, this can be overcome by
taking into account the bounding boxes of
all of the objects before building the R-tree;
but now the representation is no longer dy-
namic. Forced reinsertion is a compromise
in the sense that it permits us to periodi-
cally rebuild part of the R-tree as a means
of compensating for some bad node place-
ment decisions.

The third change involves the manner
in which an overflowing node p is split.
Again, as in the original R-tree node-
splitting algorithm, a two-stage process is
used. The difference is in the nature of
the stages. The process follows closely an
approach presented in an earlier study of
the R-tree [Greene 1989] which did not re-
sult in the coining of a new name for the
data structure! In particular, in contrast
to the original R-tree node-splitting strat-
egy [Guttman 1984] where the first stage
“picks” two “seeds” for the two resulting
nodes which are subsequently “grown” by
the second stage, in the R∗-tree (as well
as in the approach described in Greene
[1989]), the first stage determines the axis
(i.e., hyperplane) along which the split is
to take place, while the second stage deter-
mines the position of the split. In two di-
mensions, for example, the split position
calculated in the second stage serves as

the boundary separating the left (or an
equivalent alternative is the right) sides
of the bounding boxes of the objects that
will be in the left and right nodes result-
ing from the split.

Note that the result of the calculation
of the split position in the second stage
has the same effect as the redistribution
step in the linear and quadratic cost R-
tree node-splitting algorithms as it indi-
cates which bounding boxes are associated
with which node. In particular, as we will
see below, the first stage makes use of the
result of sorting the faces of the bound-
ing boxes along the various dimensions.
Moreover, it would appear that the first
and last bounding boxes in the sort se-
quence play a somewhat similar role to
that of the “seeds” in the original R-tree
node-splitting algorithms. However, this
comparison is false as there is no “grow-
ing” process in the second stage. In par-
ticular, these “seeds” do not “grow” in an
independent manner in the sense that the
bounding boxes bi that will be assigned to
their groups are determined by the rela-
tive positions of the corresponding faces of
bi (e.g., in two dimensions, the sorted order
of their left, right, top, or bottom sides).

This two-stage process is implemented
by performing 2d sorts (two per axis) of the
bounding boxes of the objects in the over-
flowing node p. For each axis a, the bound-
ing boxes are sorted according to their two
opposite faces that are perpendicular to a.
The positions of the faces of the bounding
boxes in the sorted lists serve as the candi-
date split positions for the individual axes.
There are several ways of using this in-
formation to determine the split axis and
split position along the axis.

Beckmann et al. [1990] choose the split
axis as the axis a for which the average
perimeter of the bounding boxes of the
two resulting nodes for all of the possible
splits along a is the smallest while still
satisfying the constraint posed by m and
M . An alternative approach (although not
necessarily yielding the desired result as
shown below) is one that chooses the split
axis as the axis a for which the perime-
ter of the two resulting nodes is a mini-
mum. Basing the choice on the value of
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the perimeter is related to the goal of min-
imizing coverage by favoring splits that re-
sult in nodes whose bounding boxes have
a square-like shape. Basing the choice of
the split axis on the minimum average
perimeter results in giving greater weight
to the axis where the majority of the pos-
sible splits result in nodes whose bound-
ing boxes have square-like shapes. This
stage takes O(d M log M ) time as the sort
takes O(M log M ) time for each axis while
the average perimeter computation can be
done in O(M ) time for each axis when
scanning the faces of the bounding boxes
in sorted order.

The position of the split along the axis a
selected by the first stage is calculated by
examining the two sorted lists of possible
split positions (i.e., faces of the bounding
boxes) for a and choosing the split position
for which the amount of overlap between
the bounding boxes of the two resulting
nodes is the smallest while still satisfying
the constraint posed by m and M . Ties are
resolved by choosing the position which
minimizes the total area of the resulting
bounding boxes thereby reducing the cov-
erage. Minimizing the overlap reduces the
likelihood that both nodes will be visited
in subsequent searches. Thus, we see that
the R∗-tree’s node-splitting policy tries to
address the issues of minimizing both cov-
erage and overlap. Determining the split
position requires O(M ) overlap computa-
tions when scanning the bounding boxes
in sorted order. Algorithms that employ
this sort-and-scan paradigm are known
as plane-sweep techniques [Baird 1976;
Preparata and Shamos 1985; Shamos and
Hoey 1976].

Figure 19 shows the bounding boxes
corresponding to the first level of aggre-
gation for an R∗-tree in comparison to
that resulting from the use of an R-tree
that deploys the exhaustive (Figure 20(a)),
linear cost (Figure 20(b)), quadratic
cost (Figure 20(c)), and the linear cost
of Ang and Tan [1997] (Figure 20(d)) node-
splitting algorithms for the collection of
22 rectangles in Figure 14. It is quite clear
from the figure, at least for this exam-
ple data set, that the combined criterion
used by the R∗-tree node-splitting algo-

rithm that chooses the split which min-
imizes the sum of the perimeters of the
bounding boxes of the two resulting nodes,
as well as their overlap, seems to be work-
ing. Whether this is indeed the change in
the definition that leads to this behavior
is unknown.

Empirical studies have shown that use
of the R∗-tree node-splitting algorithm
instead of the conventional linear and
quadratic cost R-tree node-splitting algo-
rithms leads to a reduction in the space re-
quirements (i.e., improved storage utiliza-
tion) ranging from 10 to 20% [Beckmann
et al. 1990; Hoel and Samet 1995] while
requiring significantly more time to build
the R∗-tree [Hoel and Samet 1995]. The
effect of the R∗-tree node-splitting algo-
rithms vis-a-vis the conventional linear
and quadratic cost node-splitting algo-
rithms on query execution time is not so
clear due to the need to take factors such
as paging activity, node occupancy, etc.
into account [Beckmann et al. 1990; Hoel
and Samet 1995; Moitra 1993].

Although the definition of the R∗-tree
makes three changes to the original R-
tree definition [Guttman 1984], it can be
argued that the main distinction, from a
conceptual point of view rather than from
its effect on performance, is in the way
an overflowing node is split, and in the
way the bounding boxes are redistributed
in the two resulting nodes.8 In particu-
lar, the original R-tree node splitting algo-
rithms [Guttman 1984] determine “seeds”
while the R∗-tree algorithm determines
a split axis and an axis split value. The
bounding boxes of the objects are redis-
tributed about these “seeds” and axis, re-
spectively. At this point, it is important to
re-emphasize that the motivation for these
redistribution strategies is to avoid the ex-
haustive search solution which looks at all
possible partitions.

The R∗-tree redistribution method first
sorts the boundaries of the bounding boxes

8On the other hand, it could also be argued that
forced reinsertion is the most important distinction
as it has the ability to undo the effect of some inser-
tions that may have caused undesired increases in
overlap and coverage.
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Fig. 19. The bounding boxes correspond-
ing to the first level of aggregation for an
R∗-tree for the collection of 22 rectangles
in Figure 14.

along each of the axes and then uses this
information to find the split axis a (with
respect to the minimum average perime-
ter of the bounding boxes of the resulting
nodes) and split position (with respect to
the minimal overlap once the split axis
was chosen). This is a heuristic that at-
tempts to approximate the solution to the
d -dimensional problem (i.e., optimal par-
titioning with minimal coverage or over-
lap) with an approximation of the optimal
one-dimensional solution along one of the
axes. Intuitively, the validity of this ap-
proximation would appear to decrease as
d (i.e., the dimensionality of the underly-
ing space) increases since more and more
splits are eliminated from consideration.
However, the opposite conclusion might be
true as it could be argued that although
the number of eliminated splits grows ex-
ponentially with d , the majority of the
eliminated splits are bad anyway. This is
a problem for further study.

The remaining changes involving forced
reinsertion and intelligent object inser-
tion could have also been used in the
R-tree construction algorithms. In partic-
ular, although the original R-tree defini-
tion [Guttman 1984] opts for minimizing
coverage in determining the subtree in
which an object is to be inserted, it does
leave it open as to whether minimizing
coverage or overlap is best. Similarly, us-

ing forced reinsertion does not change the
R-tree definition. It can be applied regard-
less of how a node is split and which policy
is used to determine the node into which
the object is to be inserted. The evalua-
tion of the R∗-tree conducted in Beckmann
et al. [1990] involves all three of these
changes. An evaluation of R-trees con-
structed using these remaining changes is
also of interest.

The node splitting rules that form the
basis of the R∗-tree have also been used
in conjunction with some of the methods
for constructing instances of the object-
tree pyramid such as the Hilbert packed
R-tree. In particular, DeWitt et al. [1994]
suggest that it is not a good idea to fill
each leaf node of the Hilbert packed R-tree
to capacity. Instead, they pack each leaf
node i, say up to 75% of capacity, and then
for each additional object x to be placed
in i, they check if the bounding rectan-
gle of i needs to be enlarged by too much
(e.g., more than 20% in area [DeWitt et al.
1994]) in order to contain x, in which case
they start packing another node. In addi-
tion, whenever a node has been packed,
the contents of a small number (e.g.,
3 [DeWitt et al. 1994]) of the most re-
cently created nodes are combined into a
large node which is then resplit using the
R∗-tree splitting methods. Although ex-
periments show that these modifications
lead to a slower construction time than
that for the conventional Hilbert packed
R-tree, the query performance is often im-
proved (e.g., up to 20% in the experiments
[DeWitt et al. 1994]).

5.5. Bulk Insertion and Bulk Loading

Up to now, our discussion of building the
object-tree pyramid has been differenti-
ated on the basis of whether it is done in
a static or a dynamic environment. The
static methods exemplified by the various
packing methods such as the packed R-
tree, Hilbert packed R-tree, and the STR
method were primarily motivated by a
desire to build the structure as fast as
possible. This is in addition to the sec-
ondary considerations of maximizing stor-
age utilization and possibly faster query
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Fig. 20. The bounding boxes corresponding to the first level of aggregation
for an R-tree built using different node splitting policies: (a) exhaustive, (b)
linear, (c) quadratic), and (d) the linear algorithm of [Ang and Tan 1997] for
the collection of 22 rectangles in Figure 14.

performance as a result of a shallower
structure since each node is filled to ca-
pacity thereby compensating for the fact
that these methods may result in more
coverage and overlap. The dynamic meth-
ods exemplified by the R-tree and the R∗-
tree were motivated equally by a desire to
avoid rebuilding the structure as updates
occur (primarily as objects are added and,
to a lesser extent, deleted), and by a de-
sire for faster query performance due to a
reduction of coverage and overlap.

At times, it is desired to update an exist-
ing object-tree pyramid with a large num-
ber of objects at once. Performing these
updates one object at a time using the im-
plementations of the dynamic methods de-
scribed above can be expensive. The CPU

and I/O costs can be lowered by group-
ing the input objects prior to the insertion.
This technique is known as bulk insertion.
It can also be used to build the object-tree
pyramid from scratch in which case it is
also known as bulk loading. In fact, we
have seen several such techniques already
in our presentation of the static methods
which employ packing. The difference is
that although the bulk loading methods
that we discuss below are based on group-
ing the input objects prior to using one of
the dynamic methods of constructing the
object-tree pyramid, the grouping does not
involve sorting the input objects which is
a cornerstone of the bulk loading methods
that employ packing. We discuss the bulk
insertion methods first.
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A simple bulk insertion idea is to sort all
of the m new objects to be inserted accord-
ing to some order (e.g., Peano–Hilbert) and
then insert them into an existing object-
tree pyramid in this order [Kamel et al.
1996]. This approach is used in the cube-
tree [Roussopolos et al. 1997], a packed
R-tree like structure for data warehous-
ing and OLAP (denoting online analytic
processing [Chaudhuri and Dayal 1997])
applications. The rationale for sorting the
new objects is to have each new object be
relatively close to the previously inserted
object so that most of the time the nodes
on the insertion path are likely to be the
same, which is even more likely to be the
case if some caching mechanism is em-
ployed. Thus, the total number of I/O op-
erations is reduced. This technique works
fine when the number of objects being in-
serted is small relative to the total num-
ber of objects. Also, it may be the best
choice when the collection of new objects
is spread over a relatively large portion of
the underlying space, as in such cases the
use of other methods (see below) may lead
to excessive overlap (but see discussion of
GBI [Choubey et al. 1999] below). It can be
used with any of the methods of building
an object-tree pyramid.

Another related bulk insertion method,
due to Kamel et al. [1996], first orders the
new objects being inserted according to the
Peano–Hilbert order, and then aggregates
them into leaf nodes where each node is
filled to a predetermined percentage of the
capacity (e.g., 70%) as if we are building
just the leaf nodes of a Hilbert packed R-
tree for the new objects. These leaf nodes
are inserted into an object-tree pyramid in
the order in which they were built.

The STLT (denoting Small-Tree-Large-
Tree) method of Chen et al. [1998] can
be viewed as a generalized variant of the
method of Kamel et al. [1996] in that in-
stead of inserting the leaf nodes of the
object-tree pyramid T of the new data
(which has been built using any construc-
tion algorithm) in the existing tree E,
it just inserts the root of T so that the
leaf nodes of T will be at the same depth
as the leaf nodes of E. Although this
method will lead to a faster insertion time

than dynamic insertion, it will result in
poorer query performance due to a sig-
nificant overlap between the nodes in T
and E. In order to overcome this prob-
lem Choubey et al. [1999] introduce a new
method (termed Generalized Bulk Inser-
tion (GBI)) that uses cluster analysis to
divide the new data into clusters. Small
clusters (e.g., containing just one point)
are inserted using a regular dynamic in-
sertion method, whereas for larger clus-
ters, a tree is built and inserted using the
STLT method. In other words, the STLT
method is really a sub-component of the
GBI method. This reduces the amount of
overlap, which can be very high for the
STLT method.

The bulk loading methods that we de-
scribe [Arge et al. 1999; van den Bercken
et al. 1997] insert the individual objects
using dynamic insertion methods. In par-
ticular, as we pointed out above, the ob-
jects are not preprocessed (e.g., via an ex-
plicit sorting step or aggregation into a
distinct object-tree pyramid) prior to in-
sertion as is the case for the bulk inser-
tion methods. In particular, the sorting is
deferred as much as possible although at
the end of the bulk loading process, the
data is ordered on the basis of the under-
lying tree structure, and hence can be con-
sidered to be sorted. These bulk loading
methods are general in that they are not
just applicable to the R-tree; instead, they
are applicable to most balanced tree data
structures which resemble B-trees. They
are based on the general concept of the
buffer tree [Arge 1996], wherein each in-
ternal node of the buffer tree contains a
buffer of records stored on disk.

The basic idea behind the methods
based on the buffer tree is that insertions
into each nonleaf node of the buffer tree
are batched. In particular, insertions oc-
cur into the buffer associated with the root
node and slowly trickle down the tree as
buffers are emptied when they are full.
The buffers enable the effective use of
available main memory, thereby resulting
in large savings in I/O cost over the reg-
ular dynamic insertion method (although
the CPU cost may be higher, in part, due
to the large fanout when using one of the
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methods [van den Bercken et al. 1997]
as we point out below). Nevertheless, it
could be the case that the actual execu-
tion could be slower in comparison to a
non bulk-loading method in the case that
many overflowing buffers need to be trick-
led down.

In the method proposed by van den
Bercken et al. [1997], the R-tree is built
recursively bottom-up. At each stage, an
intermediate tree structure is built where
the lowest level corresponds to the next
level of the final R-tree. The nonleaf nodes
in the intermediate tree structures have
a high fanout (determined by available
internal memory) as well as a buffer
that receives insertions. Arge et al. [1999]
achieve a similar effect by using a regu-
lar R-tree structure (i.e., where the non-
leaf nodes have the same fanout as the
leaf nodes which is the size of a disk page)
and only attaching buffers to nodes at cer-
tain levels of the tree. The advantages of
the method of Arge et al. [1999] over the
method of van den Bercken et al. [1997]
are that it is more efficient as it does not
build intermediate structures, and it re-
sults in a better space partition. More-
over, the method of Arge et al. [1999]
yields the same R-tree as would have been
obtained using conventional dynamic in-
sertion methods without buffering (with
the exception of the R∗-tree where the use
of forced re-insertion is difficult to incor-
porate in the buffering approach), while
this is not the case for the method of
van den Bercken et al. [1997]. In addition,
the method of Arge et al. [1999] supports
bulk-insertions (as opposed to just initial
bulk-loading as in van den Bercken et al.
[1997]) and other bulk-queries including
intermixed insertions and queries.

5.6. Shortcomings and Solutions

In this section, we point out some of the
shortcomings of the object-tree pyramid as
well as point out some of the solutions. As
we are dealing with the representations
of objects, which are inherently of low di-
mension, we do not discuss the shortcom-
ings and solutions for high-dimensional
data (e.g., the X-tree [Berchtold et al. 1996]

which attempts to address the problem
arising when there is much overlap among
the nodes corresponding to the partitions
that result from a node split). One of the
drawbacks of the object-tree pyramid (i.e.,
the R-tree as well as its variants such
as the R∗-tree) is that as the node size
(i.e., page size—that is, M ) gets large,
the performance starts to degrade. This
is somewhat surprising as according to
conventional wisdom, performance should
increase with node size as the depth of
the tree decreases thereby requiring fewer
fewer disk accesses. The problem is that as
the node size increases, operations on each
node take more CPU time. This is espe-
cially true if the operation involves search
(e.g., finding the nearest object to a point)
as the bounding boxes in each node are not
ordered [Hoel and Samet 1992].

This problem can be overcome by order-
ing the bounding boxes in each node us-
ing the same ordering-based aggregation
techniques that were used to make the
object-tree pyramid more efficient in re-
sponding to the location query. For exam-
ple, we could order the bounding boxes by
applying a Morton or Peano–Hilbert space
ordering to their centroids. We term the re-
sult an ordered R-tree. Interestingly, the
ordered R-tree can be viewed as a hybrid
between an object B+-tree and an R-tree
in the sense that nodes are ordered inter-
nally (i.e., their constituent bounding box
elements) using the ordering of the object
B+-tree, while they are ordered externally
(i.e., vis-a-vis each other) using an R-tree.

Although the R-tree is height-balanced,
the branching factor of each node is not
the same. Recall that each node contains
between m and M objects or bounding
boxes. This has several drawbacks. First,
it means that the nodes are not fully occu-
pied thereby causing the tree structure to
be deeper than it would be had the nodes
been completely full. Therefore, the num-
ber of data objects in the leaf nodes of
the descendants of sibling nonleaf nodes
is not the same and, in fact, can vary quite
greatly, thereby leading in imbalance in
terms of the number of objects stored in
different subtrees. This could have a detri-
mental effect on the efficiency of retrieval.
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Second, satisfying the branching factor
condition often requires compromising the
goal of minimizing total coverage, over-
lap, and perimeter. The packed R-tree and
the Hilbert packed R-tree are some ways
to overcome this problem as they initially
have a branching factor of M at all but the
last node at each level. However, they are
not necessarily designed to meet our goals
of minimizing total coverage, overlap, and
perimeter.

The S-tree [Aggarwal et al. 1997] is
an approach to overcome the above draw-
backs of the R-tree and its packed variants
by trading off the height-balanced prop-
erty in return for reduced coverage, over-
lap, and perimeter in the resulting mini-
mum bounding boxes. The S-tree has the
property that each node that is not a leaf
node or a penultimate node (i.e., a node
whose children are all leaf nodes) has M
children. In addition, for any pair of sib-
ling nodes (i.e., with the same parent) s1
and s2 with Ns1 and Ns2 objects in their
descendants, respectively, we have that
p ≤ Ns1/Ns2 ≤ 1/p (0 < p ≤ 0.5), where
p, termed the skew factor, is a parame-
ter that is related to the skewness of the
data and governs the amount of tradeoff
thereby providing a worst-case guarantee
on the skewness of the descendants of the
node. In particular, the number of objects
in the descendants of each of a pair of sib-
ling nodes is at least a fraction p of the to-
tal number of objects in the descendants of
both nodes. This guarantee is fairly tight
when p is close to 0.5, while it is quite loose
when p is small. In other words, when
p = 0.5, the difference in the number of
objects that will be found in the subtrees
of a pair of sibling nodes is within a factor
of 2, whereas this ratio can get arbitrarily
large in a conventional R-tree.

The cost-based unbalanced R-tree
(CUR-tree) of Ross et al. [2001] is another
variant of an R-tree where the height-
balanced requirement is relaxed in order
to improve the performance of point and
window queries in an environment where
all the data is in main memory. The CUR-
tree makes use of a cost model for the data
structure (i.e., the R-tree) that accounts
for operations such as reading the node

and making the comparisons needed to
continue the search. In particular, upon
every insertion and deletion (rather than
just upon overflow), every node on the
insertion path is examined to determine
if its entries should be rearranged to
lower the cost function. The result is that
nodes can be split, and their entries can
be promoted or demoted, at the cost of a
slower update time.

Garcia et al. [1999] propose to improve
the query performance of R-trees by re-
structuring the tree. Such restructuring
can be performed after an R-tree has been
built or dynamically as insertions take
place. The key idea is to select a node
e to be restructured and then apply the
restructuring process to e and its ances-
tors by merging and resplitting sibling
nodes. In the dynamic case, the restruc-
turing is applied with some fixed proba-
bility for each insertion thereby ensuring
that the restructuring does not happen at
each insertion. Although at a first glance,
restructuring seems similar to forced rein-
sertion in the case of an R∗-tree (see
Section 5.4), they are quite different upon
closer scrutiny. In particular, forced rein-
sertion takes individual node entries and
reinserts them at the root. In contrast, re-
structuring operates on groups of node en-
tries by repeatedly merging and resplit-
ting them, as necessary, in order to obtain
better query performance through greater
storage utilization and less overlap among
sibling nodes.

A shortcoming of all of the representa-
tions that are based on object hierarchies
(i.e., including all of the R-tree variants)
is that when the objects are not hyper-
rectangles, use of the bounding box ap-
proximation of the object eliminates only
some objects from consideration when re-
sponding to queries. In other words, the
actual execution of many queries requires
knowledge of the exact representation of
the object (e.g., the location query). In
fact, the execution of the query may be
quite complex using this exact represen-
tation. At times, these queries may be
executed more efficiently by decomposing
the object further into smaller pieces such
as triangles, trapezoids, convex polygons,
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etc. (e.g., Brinkhoff et al. [1994] and
Kriegel et al. [1991]). For example, the
TR∗-tree [Brinkhoff et al. 1994; Schneider
and Kriegel 1991] is such a representation
where each object in an R∗-tree is decom-
posed into a collection of trapezoids. The
DR-tree [Lee and Chung 2001] is a related
approach where the minimum bounding
box is recursively decomposed into mini-
mum bounding boxes until the volume of
each box is less than predefined fraction
of the volume of the initial bounding box.
The result of the decomposition process
is represented as a binary tree which is
stored separately from the hierarchy that
contains the minimum bounding boxes of
the objects and can be processed in mem-
ory once it has been loaded.

6. DISJOINT OBJECT-BASED
HIERARCHICAL INTERIOR-BASED
REPRESENTATIONS (K-D-B-TREES,
R++-TREES, AND CELL TREES)

In our descriptions of the object pyramid
and the object-tree pyramid in Section 5,
we observed that we may have to exam-
ine all of the bounding boxes at all levels
when attempting to determine the iden-
tity of the object o that contains location a
(i.e., the location query). This was caused
by the fact that the bounding boxes cor-
responding to different nodes may over-
lap. The fact that each object is associated
with only one node while being contained
in possibly many bounding boxes (e.g., in
Figure 17, rectangle 1 is contained in its
entirety in R1, R2, R3, and R5) means that
the location query may often require sev-
eral nonleaf nodes to be visited before de-
termining the object that contains a. This
problem also arises in the R-tree as seen
in the following example.

Suppose that we wish to determine the
identity of the rectangle object(s), in the
collection of rectangles given in Figure 17
that contains point Q at coordinate values
(22, 24). We first determine that Q is in R0.
Next, we find that Q can be in both or either
of R1 or R2, and thus we must search both
of their subtrees. Searching R1 first, we
find that Q could be contained only in R3.
Searching R3 does not lead to the rectangle

that contains Q even though Q is in a por-
tion of rectangle D that is in R3. Thus, we
must search R2 and we find that Q can be
contained only in R5. Searching R5 results
in locating D, the desired rectangle. The
drawback of the R-tree as well as other
representations that make use of an object
pyramid is that unlike those based on the
cell pyramid, they do not result in a dis-
joint decomposition of space. Recall that
the problem is that an object is associated
with only one bounding bounding box (e.g.,
rectangle D in Figure 17 is associated with
bounding box R5, yet it overlaps bounding
boxes R1, R2, R3, and R5). In the worst case,
this means that when we wish to respond
to the location query (e.g., given a point,
determining the containing rectangle in a
rectangle database, or an intersecting line
in a line segment database, etc. in the two-
dimensional space from which the objects
are drawn), we may have to search the en-
tire database. Thus, what we need is a hi-
erarchy of disjoint bounding boxes.

An obvious way to overcome this draw-
back is to use one of the hierarchical
image-based representations described in
Section 4. Recall that these representa-
tions made use of a hierarchy of disjoint
cells that completely spanned the underly-
ing space. The hierarchy consists of a set of
sets {Cj } (0 ≤ j ≤ n) where Cn corresponds
to the original collection of cells, and C0
corresponds to one cell. The sets differed
in the number and size of the constituent
cells at the different depths, although each
set was usually a containment hierarchy
in the sense that a cell at depth i usually
contained all of the cells below it at depth
i + 1. The irregular grid pyramid is an ex-
ample of such a hierarchy.

A simple way to adapt the irregular grid
pyramid to our problem is to overlay the
decomposition induced by Cn−1 (i.e., the
next to the deepest level) on the bounding
boxes {bi} of the objects {oi} thereby decom-
posing the bounding boxes and associate
each part of the bounding box with the
corresponding covering cell of the irregu-
lar grid pyramid. Note that we use the set
at the next to the deepest level (i.e., Cn−1)
rather than the set at the deepest level
(i.e., Cn) as the deepest level contains the
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original collection of unit-sized cells cnk
and thus does not correspond to any aggre-
gation. The cells cjk at the remaining levels
j (0 ≤ j ≤ n − 2) are formed in the same
way as in the irregular grid pyramid—that
is, they contain the union of the objects cor-
responding to the portions of the bounding
boxes associated with the cells comprising
cell cjk. Using our terminology, we term
the result an irregular grid bounding-box
pyramid. It should be clear that the depth
of the irregular grid bounding-box pyra-
mid is one less than that of the correspond-
ing irregular grid pyramid.

The definition of the irregular grid
pyramid as well as the other hierar-
chical image-based representations stipu-
lates that each unit-sized cell is contained
in its entirety in one or more objects.
Equivalently, a cell cannot be partially in
object o1 and partially in object o2. The
same restriction also holds for block de-
compositions which are not hierarchical
(see Section 3). In contrast, in the case of
the irregular grid bounding-box pyramid,
the fact that the bounding boxes are just
approximations of the objects enables us
to relax this restriction in the sense that
we allow a cell (or a block in the case of
the block decompositions of Section 3) to
contain parts of the bounding boxes of sev-
eral objects. In other words, cell (or block)
b can be partially occupied by part of the
bounding box b1 of object o1, by part of the
bounding box b2 of object o2, and may even
be partially empty.

The irregular grid bounding-box pyra-
mid is a hierarchy of grids, albeit that
the grid sizes are permitted to vary in
an arbitrary manner between levels. This
definition is still overly restrictive in the
sense that we want to be able to aggregate
a varying, but bounded, number of cells
at each level (in contrast to a predefined
number) that depends on the number of
bounding boxes or objects that are asso-
ciated with them so that we can have a
height-balanced dynamic structure in the
spirit of the B-tree. We also wish to use
a hierarchy that makes use of a different
block decomposition rule (e.g., a k-d tree,
generalized k-d tree, point quadtree, bin-
tree, region quadtree, etc. thereby form-

ing a variant of the cell-tree pyramid) in-
stead of a grid as in the case of an irregular
bounding-box pyramid.

Our solution is equivalent to a marriage
of the bounding-box cell-tree pyramid hi-
erarchy with one of the block decomposi-
tions described in Section 3. This is done
by choosing a value M for the maximum
number of cells (actually blocks) that can
be aggregated and a block decomposition
rule (e.g., a generalized k-d tree). As we
are propagating the identities of the ob-
jects associated with the bounding boxes
up the hierarchy rather than the space oc-
cupied by them, we use an object-based
variant of the block decomposition rule.
This means that a block is decomposed
whenever it contains the bounding boxes
of more than M objects rather than on
the basis of the absence of homogeneity.
Note that the occupied space is implicit
to the block decomposition rule and thus
need not be explicitly propagated up the
hierarchy.

It should be clear that each object’s
bounding box can appear only once in each
block as the objects are continuous. If more
than M of the bounding boxes overlap
each other in block b (i.e., they all have
at least one point in common), then there
is no point in attempting to decompose b
further as we will never be able to find
subblocks bi of b so that each of bi does
not have at least one point in common
with the overlapping bounding boxes. Ob-
serve also that although the block decom-
positions yield a partition of space into
disjoint blocks, the bounding boxes at the
lowest level of the hierarchy may not nec-
essarily be disjoint. For example, consider
a database of line segment objects and
the situation of a vertex where five of the
line segments meet. It is impossible for the
bounding boxes of the line segments to be
disjoint.

The object-based variants of the block
decomposition rules are quite different
from their image-based counterparts that
were discussed in Section 3 which based
the decomposition on whether the space
spanned by the block was completely cov-
ered by an object. It is important to re-
iterate that the blocks corresponding to
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Fig. 21. (a) k-d-B-tree for the same collection of rectangle objects given in Figure 11
with m = 2 and M = 3, and (b) the spatial extents of the nodes. Notice that only in the leaf
nodes are the bounding boxes minimal.

the leaf nodes do not represent hyper-
rectangular aggregates of identically val-
ued unit-sized cells as in the conventional
pyramid. Instead, they represent hyper-
rectangular aggregates of bounding boxes
of objects or pieces thereof.

Without loss of generality, assuming a
generalized k-d tree block decomposition
rule, the hierarchy of sets {Hj } (1 ≤ j ≤ n)
is defined as follows. H0 consists of one
block. H1 consists of a subset of the nodes
of a generalized k-d tree decomposition
Z of the underlying space so that Z has
a maximum of M elements whose corre-
sponding blocks span the entire underly-
ing space. H2 is formed by removing from
Z all nodes corresponding to members of
H1 and their ancestors, and then apply-
ing the same rule that was used to form
H1 to each of the blocks in H1 with re-
spect to Z . In other words, H2 consists of
generalized k-d tree decompositions of the
blocks h1k (1 ≤ k ≤ M ) that comprise H1.
Each element of H2 contains no more than
M blocks for a a maximum of M 2 blocks.
This process is repeated at each succes-
sive level down to the leaf level at depth
n − 1. The nodes at the leaf level contain
the bounding boxes of the objects or parts
of the bounding boxes of the objects. The
pyramid means that the hierarchy must
be height-balanced with all leaf nodes at
the same level, and that the cells at depth
j are disjoint and that they span the space
covered by the cells at the immediately
lower level at depth j + 1.

We term the resulting data structure a
generalized k-d tree bounding-box cell-tree
pyramid on account of the use of the gener-
alized k-d tree as the building block of the
pyramid and the use of a tree access struc-
ture, although it is more commonly known
as a k-d-B-tree [Robinson 1981] on account
of the similarity of the node structure to
that of a B-tree. If we would have used the
point quadtree or the bintree as the build-
ing blocks of the hierarchy, then we would
have termed the result a point quadtree
bounding-box cell-tree pyramid or a bin-
tree bounding-box cell-tree pyramid, re-
spectively. It is interesting to note that
the k-d-B-tree was originally developed for
storing point-like objects although the ex-
tension to objects with extent is relatively
straightforward as shown here.

Figure 21 is an example of one possible
k-d-B-tree for the collection of 9 rectangle
objects given in Figure 11. Broken lines de-
note the leaf nodes, and thin lines denote
the space spanned by the subtrees rooted
at the nonleaf nodes. Of course, other vari-
ations are possible since the k-d-tree is
not unique. This particular tree is of order
(2,3) (i.e., having a minimum and maxi-
mum of 2 and 3 entries, respectively) al-
though in general it is not possible to al-
ways guarantee that all nodes will have a
minimum of 2 entries, nor is the minimum
a part of the definition of the k-d-B-tree.
Notice that rectangle object D appears in
three different nodes, while rectangle ob-
jects A, B, E, and G appear in two different
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nodes. Observe also that the example uses
a partition scheme that cycles through the
axes in the order x, y , x, y , etc. although,
as we shall see below, this cycling is not
guaranteed to hold once objects are in-
serted and deleted.

Our definition of the structure was given
in a top-down manner. In fact, the struc-
ture is often built in a bottom-up manner
by inserting the objects one-at-a-time. Ini-
tially, the hierarchy contains just one node
corresponding to the bounding box of the
single object. As each additional object o
is processed, we insert o’s bounding box b
into all of the leaf nodes which overlap it.
If any of these nodes become too full, then
we split these nodes using an appropriate
block decomposition rule and determine if
the parent is not too full so that it can sup-
port the addition of a child. If not, then we
recursively apply the same decomposition
rule to the parent. The process stops at
the root in which case overflow will usu-
ally cause the hierarchy to grow by one
level.

Variants of the bounding-box cell-tree
pyramid such as the k-d-B-tree are good
for answering both the feature and loca-
tion queries. However, in the case of the
location query, they act only as a partition
of space. They do not distinguish between
occupied and unoccupied space. Thus, in
order to determine if a particular loca-
tion a is occupied by one of the objects
associated with cell c, we need to check
each of the objects associated with c, which
can be time consuming, especially if M is
large. We can speed this process by modify-
ing the general definition of the bounding-
box cell-tree pyramid so that a bounding
box is stored in each node r in the hier-
archy, regardless of r ’s depth, that covers
the bounding boxes of the cells that com-
prise r. Thus associated with each node r is
the union of the objects associated with the
cells comprising r as well as a bounding
box of the union of their bounding boxes.
We term the result a disjoint object pyra-
mid. Recall that the depth of any vari-
ant of the bounding-box pyramid is one
less than that of the corresponding con-
ventional pyramid, and the same is true
for the disjoint object pyramid.

A key difference between the disjoint
object pyramid and variants of the con-
ventional pyramid, and to a lesser extent
the bounding-box pyramid, is that the el-
ements of the hierarchy of the disjoint ob-
ject pyramid are also parts of the bound-
ing boxes of the objects rather than just
the cells that make up the objects which is
the case for both variants of the bounding-
box and conventional pyramids. The rep-
resentation of the disjoint object pyramid,
as well as variants of the bounding-box
pyramid such as the k-d-B-tree, is also
much simpler as they both just decom-
pose the objects until a a criterion in-
volving the number of objects that are
present in the block is satisfied rather
than one based on the homogeneity of
the block. This results in avoiding some
of the deeper levels of the hierarchy that
are needed in variants of the conventional
pyramid.

There are many variants of the disjoint
object pyramid. They differ according to
which of the block decomposition rules de-
scribed in Section 3 is used. They are usu-
ally referred to by the general term R+-
tree [Faloutsos et al. 1987; Sellis et al.
1987; Stonebraker et al. 1986] on account
of the similarity to the R-tree since they
both store a hierarchy of bounding boxes.
However, the block decomposition rule is
usually left unspecified although a gener-
alized k-d tree block decomposition rule is
often suggested. An alternative is not to
use any decomposition rule in which case
each node is just a collection of blocks as
in Figure 4.

R+-trees are built in the same incremen-
tal manner as any of the bounding-box
cell-tree pyramids that we described (e.g.,
the k-d-B-tree, etc.). Again, as each addi-
tional object o is processed, we insert o’s
bounding box b into all of the leaf nodes
which overlap it. If any of these nodes be-
come too full, then we split these nodes
using the appropriate block decomposition
rule and determine if the parent is not too
full so that it can support the addition of
a child. If not, then we recursively apply
the same decomposition rule to the parent.
The process stops at the root in which case
the R+-tree may grow by one level. The
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Fig. 22. (a) R+-tree for the same collection of rectangle objects given in Figure 11 with
m = 2 and M = 3, and (b) the spatial extents of the bounding boxes. Notice that the leaf
nodes in the index also store bounding boxes although this is shown only for the nonleaf
nodes.

difference from the method used in the
bounding-box cell-tree pyramids is that
we also propagate the minimum bounding
box information up the hierarchy. The en-
tire process is analogous to that used in
a B-tree upon overflow. The difference is
that at times, as is also the case for the
k-d-B-tree, the decomposition at a nonleaf
node may result in the introduction of a
new partition that may force the reparti-
tioning of nodes at deeper levels in the R+-
tree.

Figure 22 is an example of one possible
R+-tree for the same collection of nine rect-
angles given in Figure 11. Broken lines
denote the bounding boxes corresponding
to the leaf nodes, and thin lines denote
the bounding boxes corresponding to the
subtrees rooted at the nonleaf nodes. In
this case, we simply took the k-d-B-tree
of Figure 21 and added bounding boxes
to the nonleaf nodes. This particular tree
is of order (2,3) although in general it is
not possible to always guarantee that all
nodes will have a minimum of two entries.
Notice that rectangle D appears in three
different nodes, while rectangles A. B, E,
and G appear in three different nodes. Of
course, other variants are possible since
the R+-tree is not unique.

The cell tree of Günther [1987] and
Günther and Bilmes [1991] is similar to
the R+-tree. The difference is that the non-
leaf nodes of the cell tree are convex poly-
hedra instead of bounding rectangles. The
children of each node, say P , form a binary

space partition (BSP) [Fuchs et al. 1980]
of P . The cell tree is designed to deal with
polyhedral data of arbitrary dimension. As
in the R+-tree, the polyhedral data that is
being represented may be stored in more
than one node. When the decomposition
causes an object to be split too many times,
Günther and Noltemeier [1991] store the
object in what they term oversized shelves
which are associated with nonleaf nodes
in the structure. This is somewhat simi-
lar in spirit to the X-tree [Berchtold et al.
1996] which is a variant of an R-tree where
a node is not split upon overflow if too
much overlap would result among its chil-
dren (in which case, the node is termed a
supernode).

7. CONCLUDING REMARKS

We have reviewed a number of hierarchi-
cal image and object representations with
a focus on hierarchical methods whose
use enables us to answer the fundamen-
tal queries of what and where. As we have
seen, there are two key classes of meth-
ods, and we distinguished between them
on the basis of whether they were image-
based or object-based. To get the most
power in terms of the queries that can be
handled, we can either use object hierar-
chies, which employ aggregates of bound-
ing boxes, or space hierarchies, which
employ a disjoint decomposition of the un-
derlying space that is spanned by the ob-
jects. Neither method can be considered as
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being the best. Each method has its advan-
tages and disadvantages.

The drawback of object hierarchies (of
which the R-tree is the most commonly
used example) is that they do not yield
a disjoint decomposition of the underly-
ing space. This leads to the multiple cov-
erage problem in the sense that the area
containing a particular location a in ob-
ject o may be spanned by several R-tree
nodes while o is contained in just one R-
tree node. Thus just because object o was
not found in the search of one path in the
tree whose bounding box contains a, does
not mean that o would not be found in the
search of another path in the tree. This
makes search in an R-tree somewhat inef-
ficient as in the worst case we may have
to examine all of the bounding boxes at all
levels of the hierarchy when attempting to
determine the identity of the object o that
contains location a.

The conventional alternative solution is
to make use of a disjoint decomposition of
the underlying space as provided by many
structures such as the R+-tree and vari-
ants of the quadtree/pyramid. These solu-
tions do not suffer from the multiple cov-
erage problem. However, their drawback
is that an object o may need to be de-
composed into several pieces and hence
reported as satisfying the query several
times as the area spanned by o may be
contained in several blocks. For example,
suppose that we want to retrieve all the ob-
jects that overlap a particular region (i.e.,
a window query) rather than a point. In
this case, we could report the same object
as many times as it has been decomposed
into blocks. We can avoid reporting the ob-
ject several times when using these meth-
ods by removing the duplicate objects be-
fore reporting the final answer. Removing
the duplicate objects usually requires in-
vocation of some variant of a sorting algo-
rithm. Interestingly, there has been some
work in developing algorithms for certain
classes of objects and different data struc-
tures which are based on a disjoint decom-
position that avoid reporting duplicate ob-
jects (e.g., Aref and Samet [1992, 1994b]
and Dittrich and Seeger [2000]) without
resorting to sorting.

The BV-tree [Freeston 1995] is an alter-
native solution that makes use of an object
hierarchy similar to that of the R-tree and
a more restricted form of a containment hi-
erarchy where any pair of bounding boxes
of two children a and b of node r must be
either disjoint or one child is completely
contained in the other child (i.e., a is in
b or b is in a). At a first glance, the BV-
tree would appear to also be afflicted by
the multiple coverage problem. However,
the BV-tree overcomes the multiple cover-
age problem by making use of the concept
of a guard which is carried along during
the search process as the tree is descended
thereby ensuring that only one path is fol-
lowed in any search. The drawback of the
BV-tree is that it is not balanced although
the depth is bounded based on the maxi-
mum number of data points or objects. It
is worth noting that the key idea in the
BV-tree is the decoupling of the decompo-
sition hierarchy from the directory hierar-
chy (i.e., the manner in which the various
nodes are aggregated) [Samet 2004]. The
PK-tree [Wang et al. 1998] applies similar
ideas to image hierarchies, with the same
drawback of possibly being unbalanced.

We now point out a few more consid-
erations which should be taken into ac-
count. Object-based methods such as the
R-tree and the R+-tree have the advantage
of being able to distinguish between occu-
pied and unoccupied space for a particu-
lar data set. However, they cannot corre-
late occupied space in two different data
sets. In other words, the bounding boxes
of the two data sets are not in registration
which means that more intersection op-
erations must be performed between the
two sets when executing operations such
as a spatial join if no preprocessing sort-
ing step has been applied (e.g., Arge et al.
[1998], Koudas and Sevcik [1997], and
Patel and DeWitt [1996]), although a num-
ber of good algorithms have been devised
for spatial joins for object-based represen-
tations (e.g., Lo and Ravishankar [1994,
1996]). In contrast, disjoint image-based
methods that make use of a regular de-
composition of the underlying space such
as the region quadtree and the pyramid
are good when operating on two different
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data sets as the occupied space in the two
sets is correlated thereby simplifying the
spatial join algorithms which makes them
preferable to disjoint image-based meth-
ods that do not employ regular decompo-
sition such as the R+-tree (e.g., Hoel and
Samet [1995]). Nevertheless, there is the
cost of dealing with duplicate answers (as
mentioned above) which is incurred re-
gardless of which disjoint method is used.
Thus there is no one best or optimal rep-
resentation. Ultimately, users make their
decision on the basis of what is impor-
tant to them, possibly making use of cost
models (e.g., Aref and Samet [1994a] and
Theodoridis et al. [2000]).
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