
DATA STRUCTURES

Hanan Samet*

Computer Science Department

University of Maryland

College Park, Maryland 20742

* Copyright 2006 by Hanan Samet. All figures are also copyright 2006 by Hanan Samet.

The field of data structures is important in geographic information science as it is the

foundation for the implementation of many operations. In particular, the efficient

execution of algorithms depends on the efficient representation of the data. There has

been much research on data structures in computer science with the most prominent work

being the encyclopedic treatises of Knuth. In this article we only review the basic data

structures.

The simplest way to understand a data structure is to view it as a mechanism for

capturing information that is usefully kept together. To most people who have any

computer programming experience, the first data structure that comes to mind is in the

form of a table where the rows correspond to objects where each column represents a

different piece of information of a particular type for the object associated with the row.

When all of the columns are of the same type, then we have an array data structure. As

an example of a table, consider an airline reservation system which makes use of a

passenger data structure where such information as name, address, phone, flight number,

destination (e.g., on a multi-stop flight), requiring assistance, etc. would be stored. We

use the term record to describe the collection of such information for each passenger. We

also use the term field (also called a key) to refer to the individual items of information in

the record.

There are several ways in which records are differentiated from arrays. Perhaps the most

distinguishing characteristic is the fact that each field can be of a different type. For

example, some fields contain numbers (e.g., ``phone number''), others contain letters

(e.g., ``name''), while others contain alphanumeric data (e.g., ``address''). Of course, there

are other possibilities as well.

Another very important distinguishing characteristic is that each field can occupy a

different amount of storage. For example, the ``requiring assistance'' field is binary (i.e.,

of type Boolean) and only requires one bit, while the ``phone number'' field is a number

and usually requires just one word. On the other hand, the ``address'' field is a string of

characters and requires a variable amount of storage. This is not true for a two-

dimensional array representation of a collection of records where all columns contain

information of the same type and of the same size.

The manner in which a particular data type is used by the program may also influence its

representation. For example, there are many ways of representing numbers. They can be

represented as integers, sequences of decimal digits such as binary-coded-decimal (i.e.,

BCD), or even as character strings using representations such as ASCII, EBCDIC, UNICODE.

So far, we have looked at records as a means of aggregating data of different types. The

data that is aggregated need not be restricted to the types that we have seen. It can also

consist of instances of the same record type or other record types. In this case our fields

contain information in the form of addresses of (called pointers or links to) other records.

For example, returning to the airline reservation system described above, we can enhance

the passenger record definition by observing that the reason for the existence of these

records is that they are usually part of a flight.

Suppose that we wish to determine all the passengers on a particular flight. There are

many ways of answering this query. They can be characterized as being implicit or

explicit. First, we must decide on the representation of the flight. Assume that the

passenger records are the primitive entities in the system. In this case, to determine all

passengers on flight f, we need to examine the entire database and check each record

individually to see if the contents of its ``flight number'' field is f. This is an implicit

response and is rather costly.

Instead, we could use an explicit response which is based on aggregating all the records

corresponding to all passengers on a particular flight and storing them together.

Aggregation of data in this way is usually done by use of a list or a set, where the key

distinction between a set and a list is the concept of order. In a set, the order of the items

is irrelevant -- the crucial property is the presence or absence of the item. In particular,

each item can only appear once in the set. In contrast, in a list, the order of the items is

the central property. An intuitive definition of a list is that item xk appears before item

xk+1. Items may appear more than once in a list.

There are two principal ways of implementing a list. We can either make use of

sequential allocation or linked allocation. Sequential allocation should be familiar as this

is the way arrays are represented. In particular, in this case, elements xk and xk+1 are

stored in contiguous locations. In contrast, using linked allocation implies the existence

of a pointer (also termed link) field in each record, say NEXT. This field points to the next

element in the list -- that is, NEXT(xk) contains the address of xk+1.

Both linked and sequential allocation have their advantages and disadvantages. The

principal advantage of sequential allocation is that random access is very easy and takes a

constant amount of time. In particular, accessing the k
th

 element is achieved by adding a

multiple of the storage required by an element of the list to the base address of the list. In

contrast, in order to access the kth element using linked allocation, we must traverse

pointers and visit all preceding k-1 elements. When every element of the list must be

visited, the random access advantage of sequential allocation is somewhat diminished.

Nevertheless, sequential allocation is still better in this case. The reason is that for

sequential allocation we can march through the list by using indexing. This is

implemented in assembly language by using an index register for the computation of the

successive addresses that must be visited. In contrast, for linked allocation, the successive

addresses are computed by accessing pointer fields which contain physical addresses.

This is implemented in assembly language by using indirect addressing, which results in

an additional memory access for each item in the list.

The main drawback of linked allocation is the necessity of additional storage for the

pointers. However, when implementing complex data structures (e.g., the passenger

records in the airline reservation system), this overhead is negligible since each record

contains many fields. Linked allocation has the advantage that sharing of data can be

done in a flexible manner. In other words, the parts that are shared need not always be

contiguous. Insertion and deletion are easy with linked allocation -- that is, there is no

need to move data as is the case for sequential allocation. It is relatively easy to merge

and split lists with linked allocation. Finally, it may be the case that we need storage for

an m element list and we have sufficient storage available for a list of n > m elements,

yet by using sequential allocation it could be that we are unable to satisfy the request

without repacking (a laborious process of moving storage) because the storage is non-

contiguous. Such a problem does not arise when using linked allocation.

In some applications we are given an arbitrary item in a list, say at location j, and we

want to remove it in an efficient manner. When the list is implemented using linked

allocation, this operation requires that we traverse the list starting at the first element and

find the element immediately preceding j. This search can be avoided by adding an

additional field called PREV which points to the immediately preceding element in the list.

The result is called a doubly-linked list. Doubly-linked lists are frequently used when we

want to make sure that arbitrary elements can be deleted from a list in constant time. The

only disadvantage of a doubly-linked list is the extra amount of space that is needed.

The linear list can be generalized to handle data aggregations in more than one

dimension. The result is termed an array. Arrays are usually represented using sequential

allocation. Their principle advantage such a representation is that the cost of accessing

each element is the same, whereas this is not the case for data structures that are

represented using linked allocation.

The tree is another important data structure which is a branching structure between

nodes. There are many variations of trees and the distinctions between them are subtle.

Formally, a tree is a finite set T of one or more nodes such that one element of the set is

distinguished. It is called the root of the tree. The remaining nodes in the tree form m (m

≥ 0) disjoint subsets (T1, T2.. Tm) where each subset is itself a tree. The subsets are called

the subtrees of the root. Figure 1 is an example of a tree. The tree is useful for

representing hierarchies.

A

DB

GE H

I JF

C

Figure1: Example tree.

The tree is not to be confused with its relative, the binary tree, which is a finite set of

nodes that is either empty, or contains a root node and two disjoint binary trees called the

left and right subtrees of the root. At a first glance, it would appear that a binary tree is a

special case of a tree (i.e., the set of binary trees is a subset of the set of trees). This is

wrong! The concepts are completely different. For example, the empty tree is not a ``tree''

while it is a ``binary tree''. Further evidence of the difference is provided by examining

the two simple trees in Figure 2. The binary trees in Figures 2a and 2b are different

because the former has an empty right subtree while the latter has an empty left subtree.

However, as ``trees'' Figures 2a and 2b are identical.

X

Y

X

Y

(a) (b)

Figure 2: Example of two different binary trees.

Trees find use as a representation of a search structure. In particular, in the case of a set

of numbers, a binary search tree stores the set in such a way that the values of all nodes

in the left subtree are less than the value of the root, and the values of all nodes in the

right subtree are greater than the value of the root. For example, Figure 3 is an example

of a binary search tree for the set {10, 15, 20, 30, and 45}. Binary search trees

enable a search to be performed in expected logarithmic time (i.e., proportional to the

logarithm of the number N of elements in the set). This is in contrast to the list

representation where the average time to search the list successfully is N/2.

10 25

20

155

Figure 3: Example binary search tree.

Variants of these data structures are used in many geographic information systems as a

means of speeding up search. In particular, the search can either be for a location or a set

of locations where a specified object or set of objects are found, or for an object which is

located at a given location. There are many such data structures, with variants of the

quadtree, which is a multidimensional binary search tree, and R-tree being the most

prominent. They are distinguished in part by being either space hierarchies, as are many

variants of the former, or object hierarchies, as are the latter. This means that, in the

former, the hierarchy is in terms of the space occupied by the objects, while in the latter,

the hierarchy is in terms of groups of objects. For more details, see the book by Samet.

Further Readings:

1. D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, vol. 1.

Addison-Wesley, Reading, MA, third edition, 1997.

2. D. E. Knuth. The Art of Computer Programming: Sorting and Searching, vol. 3.

Addison-Wesley, Reading, MA, second edition, 1998.

3. H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan-

Kaufmann, San Francisco, 2006.

