Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

[11] C. Esperanca and H. Samet. Representing orthoguriidimensional objects by vertdists.
In C. Arcelli, L. P. Cordella, and G. Sanniti Baja, editors, Aspects of Visual Form
Processingpages 209--220, Singapore, 1994. World Scientific.

[12] G. Graefe. Volcano--an extensible and parallel query evaluation sy&EmR.Transactions
on Knowledge and Data Engineering(1):120--135, February 1994.

[13] R. H. Giting. Gral: Anextensible relational systerfor geometric applications. In
Proceedings of the 15th International Conference/ery Large Databasepages 33--44,
Amsterdam, August 1989.

[14] G. Hjaltason and H. Samet. Rankingspatial databases. In M. Hgenhofer and J. R.
Herring, editors,Proceedings of the Fourth Symposium on Spatial Datapdsa$iand,
ME, August 1995.

[15] B. C. Oo0i, R. Sacks-Davis, and K. J. McDonddixtending aDBMS for geographic
applications. InProceedings of the Fifth IEEE International Conference on Data
Engineering pages 590--597, Los Angeles, February 1989.

[16] J. A. Orenstein and F. A. Manola. Spatialtamodelingand query processing IPROBE.
Technical Report CCA-86-05, Computer Corporation of America, Cambridge, MA, October
1986.

[17] J. K. Ousterhouflcl and the Tk ToolkitAddison-Wesley, April 1994.

[18] N. Roussopoulos, C. Faloutsos, and T. Sellis. effitient pictorial databasesystem for
PSQL.IEEE Transactions on Software Engineeritg(5):639--650, May 1988.

[19] H. SametThe Design and Analysis of Spatial Data Structueddison-Wesley, Reading,
MA, 1990.

[20] H. Samet and A. Soffer. Integratirignages into a relationalatabase systenT.echnical
Report CS-TR-3371, University of Maryland, College Park, MD, October 1994.

[21] M. Stonebraker. Inclusion oiewtypes in relationaflata bassystems. IfProceedings of the
2nd International Conference on Data Engineeyipages 262--269, Lo&ngeles, CA,
February 1986.

[22] Economics U.S Department ofCommerce andBureau of the Census Statistics
Administration. Tiger/line census files, 1992. Technical documentation, 1993.

[23] A. Wolf. The DASDBS GEO-Kernel: Concepts, experiences, andsdbendstep. In A.
Buchmann, O. Glnther, T. R. Smith, and Y. F. Wang, edid@sigh and Implementation of
Large Spatial Databases, Proceedings of the First Symposium SSi§és 67—88.
Springer-Verlag, Berlin, 1990. (also Lecture Notes in Computer Science 409).

13

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

5. Final Considerations

SAND is anon-goingproject. Most, buhot all of the capabilitieshown inthis paper are
implemented. The plan generation and optimization used iibthey is still crude andeeds to be
enhanced. Irparticular,the heuristics used by the optimizer tendfdeor plans usingndices
wheneverpossible, which not alays results in an optimal plarSostestimation is currently not
used at all.

In order to improveSAND's plan-generating strategies, @ presently considering a
rule-based optimizer in the molds GRAL [5] anddynamic query optimization as proposed for
the Volcano system(8].

In its current statehowever,SAND has alreadyeen proved ofalue. Forinstance, we
have built the "Map Browser", an application that usessngplegraphical user interface to answer
simple queries. All examples showntims papemere produced with thaid of theMap Browser.
Additionally, SAND has been used for the prototype of an image database [20].

References

[1] D. J. Abel. SIRO-DBMS: Adatabasetool-kit for geographical information systems.
International Journal of Geographical Information System8(2):103--116, April--June
1989.

[2] W. G. Aref and H. Samet. An approach itformation management in geographical
applications. InProceedings of the Fourth International Symposium on Spatial Data
Handling volume 2, pages 589--598, Zurich, Switzerland, July 1990.

[3] W. G. Aref and H. Samet. Extending a DBM&h spatial operations. In O. Gunther and H. J.
Schek, editorsAdvances in Spatial Databases - 2nd Symposium, SShag&s 299--318,
Berlin, 1991. Springer-Verlag. (also Lecture Notes in Computer Science 525).

[4] W. G. Aref and H. Samet. Thepatial filterrevisited. In T. C. Waugh and R. G. Healey,
editors, Sixth International Symposium on Spatial Data Handlipgges 190--208,
Edinburgh, Scotland, Septemb&®94. International GeographicdUnion Comission on
Geographic Information Systems, Association for Geographical Information.

[5] L. Becker and R. H. Guting. Rule-based optimization and query processing in an extensible
geometricdatabase systeACM Transanctions on Software Engineerinig(2):247--303,
June 1992.

[6] R. Berman, M. Stonebraker, and L. Rov@&eo-quel: A systenfor the manipulation and
display of geographical dat@omputer Graphicsl1(2):186--191, 1977.

[7] E. F. Codd. A relationaiodelfor large sharediata banksCommunications of the ACM
13(6):377--387, June 1970.

[8] R. K. Cole and G. Graefe. Optimizationdyinamic query evaluatioplans. INSIGMOD 94
pages 150--160, Minneapolis, Minnesota, May 1994.

[9] D. Comer. The ubiquitous B--tre&CM Computing Survey$1(2):121--137, June 1979.

[10] M. J. EgenhoferSpatial sql: A query and presentation languatfeEE Transactions on
Knowledge and Data Engineering(1):86--95, February 1994.

12

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

Create tmp relation with all lines of Georgia Ave
sand create tmp line line
set table_handle [select_plan sspring hame=="Georgia"]
set tmp_handle [sand open tmp]
while {[$table_handle status]} {
$tmp_handle setfrom $table_handle
$tmp_handle insert
$table_handle next

}
$tmp_handle close
$table_handle close

Scan PMR sspring.line block-wise
set block_handle [sand open sspring.line -blockwise]
while {[$block_handle status]} {
set block [$block_handle get]
set tmp_handle [select_plan tmp {[distance line $block]<=0.01}]
while {[$tmp_handle status]} {
set table_handle [select_plan sspring {[intersects line $block]}]
while {[$table_handle.status]} {
if [distance $tmp_handle.line $table_handle.line]<=0.01 {
puts [$table_handle get]

$table_handle next
}
$table_handle close
}
$tmp_handle close

}
$block_handle close

A few notes about the above script:

* In command Sand create tmp line line " thefirstline refers to thename
and the second to the type of the single attribute in tatgés schema.

¢« Command $tmp_handle setfrom $table handle " copies all attributes
with same name from one tuple buffer to the other. In this oaeattributeline will
be copied.

» Option-blockwise , whenused foropening aspatially organized tableneansthat
the returned tableandle willscan blocks and not tupléBhus,when thecontents of the
tuple buffer forthe handle is accesséas in ‘$block_handle get "), avalue of
typerectangle s returned to indicate the position and extent of the block.

This plan demonstratdsow theblocks of the PMR-quadtree can be usedasnding
boxes (step 3 in the strategy), dhds permit gastelimination oftuples thatannot satisfy the
query. If we analyze this plamore carefully, however, wavill notice that the temporary result
tmp is a simpletable, i.e., it has no spatial structure. This foreash block retrieved from the
PMR-quadtree to be compared exhaustively witkelalinents ofmp. A possibly better alternative
is to use a temporary resuwithich is spatially structured. Thigea is to makeémp a PMR-
qguadtree as welllhis will allow the usage of a quadtree-based spgtal algorithm (see, for
instance, [4]), instead of the tuple-by-tuple nested joimpperformed irsteps 3 and 4 above. This
is a powerful technique, because it prevents the loss of information concernisgaties
proximity of features as multiple steps of a plan are executed.

11

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

to thespatial accesmethods inuse. Forthe type of PMR-quadtreéenplemented bySAND, for
instance, Aref and Samet [4] proposspatialjoin algorithmthat requires access toe relative
order anddlimensions of each quadtree bl@appearing in each table. The SAKBrnel addresses
this problem by supporting a special kind of scan iterator for PMR-quadtree tablesptraients
block-by-block retrieval.

In order to illustrate this concept, consider a quemgre wewant to list all streetwithin
a distance of Inile from Georgia Ave. Figure 2 shows a map with line attribute of all
tuples that satisfy this query. A possible plan for this query could adopt the following strategy:

1. Perform a select plan to retrieve all tuplesgfring corresponding to Georgia Ave.

2. Create a temporary taliep to store the line segments of the tuples retrieved by the
select plan.

3. Scan the PMR-quadtrespring.line block-by-block and select those blocks B that
lie within one mile of a line segment Ltmp.

4. For each pair B/L, retrieve tuplessspring whosdine attribute is overlapped by B
and test them against L.

5. Print those tuples that qualify.

Figure 2: Example of spatiajoin. Map of Silver Springshowing line segments
corresponding to Georgiave (thick line) andall line segments o$treetswithin one
mile of Georgia Ave (thin lines).

A SAND script for this strategy is shown below.

Script to list all tuples of sspring within one mile of any
other tuple such that name="Georgia".

10

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

possible. Additionally, PMR-quadtree tables can be scanned in a number of speaiipgful
orders. Such scan orders aehieved by using special forms of tfiest command. For
instance, it is possible to retrieve tuples in order of increasing or decreasing distancagifrem a
feature by using aommand calledirstcloseto . Notethatonly one command is needed to
initiate a scanning order, i.eone particularform of first . In contrastthe next command
performs the function of retrieving successive tuples independently of the scanning order.

The firstcloseto command implements incremenggatial ranking aslescribed in
[14]. The advantage of itacrementahature is that at angiven moment othe scanning process,
the algorithmhas processeonly enough quadtree blocks to determine the position ofuhent
tuple within the scanning order.

It is important to realize the differendmtweenexplicit scanning orders such #sose
implemented bysorting a relation or using a B-tree antplicit scanning orders such as the one
initiated by thefirstcloseto command. In thefirst casethe order in which théuples are
retrieved is a consequence of the sequengaire of the table, and thereforelimited to a few
variations, e.g., increasing or decreasing value of a Bkageln the secondase the ordering is
not "pre-computed”that is, the ordering is a function of parametdtst define geometric
relationships whickcan beinfinitely varied. This is one of thereasonswhy the processing of
spatial data is intrinsically more challenging.

As an example, we willse a PMR-quadtree taldefined as an indefor attributeline
of sspring , to rewrite the query that returns all tuples within a certain distance of a point. In the
scriptbelow, thisindextable, calledsspring.line , iIs scanned in such a way as to retrieve the
line segments in increasing order of distance from the point of intEmrsgach qualifying tuple of
the index, the corresponding tuplessipring s retrieved by using thiedexfrom command.
The scanning is interrupted if thi@ee segment retrieved from the indexfésther thanone mile
from the point of interest.

Script to list all tuples of sspring in the area within one mile
(approx. 0.01 in map units) of point (-77.03, 39.0).
Uses only the SAND kernel.
set index_handle [sand open sspring.line]
set table_handle [sand open sspring]
set point "point -77.03 39.0"
$index_handle firstcloseto $point
while {[$index_handle status] &&
[distance $index_handle.line $point]<=0.01} {
$table_handle indexfrom $index_handle
puts [$table_handle get]
$index_handle next

$index_handle close
$table_handle close

Notice that the above plan could actually hateen theplan produced by th&brary in our
previous implementatiorThis exampleillustrateshow anapplication is frequently able to obtain

the desiredesultseven inthe absence of a query plan generator. This characteristic is important
for a research tool such as SAND.

Most selection queries based @patial predicates can kmnswered efficiently by a
examining a PMR-quadtree table usingagpropriate scan order. A tuple-by-tuple sdawever,
is too poor amechanisnfor performing join queriebased on spatial predicatesthe so-called
spatial joins Spatialjoin algorithmsusually take advantage of the clustering propep@sicular

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

In this script,.r refers to a graphical output windodraw_sand is a SAND command used for
drawing and-style is an optionthat modifies drawingparameters such as color oline
thickness. The output of this script is shown in Figure 1.

Figure 1: Map of a part othe city of Silver Spring, Maryland, obtained dsawing
the value ofattributeline of relationsspring . The highlighted streets (thicker
lines) correspond to lines within 1 mile of point (-77.03, 39.0)

This examplealso illustrateshow the application-orientedpproach used in SAND can
sometimegpay off in terms of aelatively simple implementation. In order to obtain Haene
results with a full-featuredpatial database wesould have to use a conventional programming
language capable of accessing the geeigine(say,embedded&QL). Another alternativevould
be to use a graphical presentation language like the one proposed by Egenhofer [10].

4.2. Spatially organized tables

In addition to being able fprocess spatial data thie attributelevel, SAND supportdwo types of
spatial access structures implemented as tables: PMR-quadtrees and region quadtrees [19].

A PMR-quadtree table organizes tuples spatially basemhemfits attributesvhose type
must beone of SAND's spatial types, i.e., poirine, rectangle, polygon and region. As with any
other table type, tuples in a PMR-quadtree table magxbenined by applying methodisst
andnext , in which case the tuples are retrieved in some arbitrary order. Such a scanuseer is
in situationswhere the only requirement that all tuples besxamined exactlyonce asfast as

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

Since the only primitivedatatype handled byicl is the character string, constants and
variables representingpatial features mustventually be converted to and from strings of
characters. Thus, fanstance, string "point.0 2.0"represents a point in 2D with coordinates x
and y equal to 1 and 2 respectively. This translation probesgver, is relatively costly, and
should be avoided in query evaluatjglans. For this reasothe SANDKkernel providesupport
for attribute variables Theseare similar to regular Tcl variablesxceptthat they neednot be
dereferenced explicitly (anthus converted to stringsjvhen used in functions and predicates
implemented by SAND. In particular, the tuple buffer associated with an open table handle can be
accessed by means attribute variables that are created automaticafiign thetable isopened.

Thus, for instance, after executing the command

set handle [sand open sspring]

five attribute variables are creatednamed $handle.name , $handle.type
$handle.zipleft etc.

As an example, consider a query pianlisting all all streets ofspring within 1 mile
from a givenpoint. One way to obtaisuch a plarwould be to use thselect_plan library
function by specifying a suitable predicate:

script to list all tuples of sspring in the area within one mile
(approx. 0.01 in map units) of point (-77.03, 39.0)
set handle [select_plan sspring {[distance line "point -77.03,
39.0"<=0.01}]
$handle first
while {[$handle status]} {

puts [$handle get]

$handle next

}
$handle close

Consider now aelated query where we wish ¢dtain agraphical output of tablesspring by
drawing allline segments correspondingdtiributeline , butemphasizinghose line segments
lying within one mile ofpoint (-77.03, 39.0). Clearly, thiguery requireshat all tuples okspring
be accessed, and thus it is very likely that a simplewtghprove to be an "optimalplan. All that
is required is to test eatihe segmentor proximity with the givenpoint in order tadetermine the
proper drawing style. This is shown in the following script:

script to draw all tuples of sspring, emphasizing
those within one mile of point (-77.03, 39.0)
set handle [sand open sspring]
$handle first
while {[$handle status]} {
if [distance $handle.line "point -77.03, 39.0"]<=0.01}] {
.rdraw_sand $handle.line -style 1
}else {
.rdraw_sand $handle.line -style 2

}
$handle next

}
$handle close

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

The plan generating strategies used inlithrary vary incomplexity from very crude to
very sophisticated. Some, such as dhes described abova;e modeledafter relational algebra
operators [7], while others are implementations of classic algorithms such as the index-scan or the
hash-join algorithm. Since tablésiplementedboth by the kernel and by tH#érary share a
commoninterface, query plans can be built by drawing on either. In other words, SAND offers
table handling capabilities omariouslevelsbut does not impose atrict hierarchyamong these
levels. This arrangement permits applications to higia-leveltools when thesare available, and
to resort to low-level tools either when higher level capabilities are unavailable or, sometimes, in an
attempt to extract better performance. Tdpen endedrchitecture is also valuable in the study of
issues in spatial database optimization.

4. Spatial Data Handling

SAND supports spatial data at varidesels. At theattribute level, five 2D geometric
data types can be used in table schemas and can be processed with the aid of a set of functions and
predicates. SAND also suppottgo types of spatially organized tablhich can be accessed in
several ways.

4.1. Spatial features

The following set of spatial attribute types (also referred tospatial featurep are
currently implemented in SAND:

Attribute Type | Description

point a point in 2D.

polygon a simple (no holes, non-self-intersecting) polygon in 2.
rectangle an axes-aligned rectangle in 2D.

region an arbitrary axes-aligned polygon in 2D.

The coordinate values of apatial features are stored dmuble-precision floating point
numbers. Polygons are stored as a list of its endpoints and regions are stored and mamitbulated
the aid of structures callegrtex list§11].

SAND also supports a series of spatial predicates and functions. Madlsesef are
polymorphic, that is, they operate on any type of spatial features. For example:

distance fl f2 is a functionthat returnsthe Euclidean distance betwespatial
featured1 andf2.

intersects f1 f2 is a predicate that returns true if aomly if featuresfl andf2
occupy at least one common point in space.

bbox f1f2 ... fN returnsthe smallest axes-aligned rectangle encloalhtgatured1 ...
fN.

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

3. The SAND library

The most important distinction between a script in SAND and a query expresdadhn a
level query language such &)L is thatthe latter does nousually describe a series of steps that
arerequired to obtain the answer, whereas the former very often likeka standardcomputer
program. From the application point-of-view, the power of expression biglalevel query
language is certainly advantageoumyt not indispensable. A more important issue is how
efficiently a querycan be answered. In a standard database system, this issue is addressed by
providing a query planner and optimizer. In SAND, this same issue is addressed by a library that is
responsible for creating efficient plans.

As an example, consider a modification of the previous queryhabthe listing is
restricted to streets corresponding to zipcode 20895. Such a query could be expressed in SQL by:

select * from sspring where zipleft=20895 or zipright=20895

One way to express this querySAND is tomodify theprevious script sthatthe action
of printing a tuple is conditioned to tkatisfaction of the predicate. Thapproachhowever, may
prove to be inefficientFor instance, it may be the cafigat sspring possesses other access
paths thatallow the retrieval of tuples by zipcode directly. Irstandard databassystem these
factors areweighed bythe query optimizer in order to provide the best possible query evaluation
plan. In SAND, such a plan is created via a call to a library funciiome of theplan generating
functions implemented by the SAND library are listed below:

selection_plan name predicategenerates a plan to retrieve all tuples of taidene
which satisfy the givepredicate

project_plan name attrl attr2... attrN generates a plan to retrieve from tablme
distinct tuples corresponding to the subset of attritattet attr2 ... attrN

union_plan namel nameljenerates a plan to retrieve all distinct tuples from tables
namelandname2

semi_join_plan namel namepredicategenerates a plan to retrieve all tuples of table
namelsuch that there exists at least one tupleaofie2which satisfiepredicate

The predicateargument used isome of theséunctions haghe form of acommon Tcl
expression, excephat attributenames arereplaced by attribute valubgforeits evaluation. The
result of calling any of these functions is a tdidedle whiclkcan be used in the same way as the
handles returned by the kerrsgind open command.Thus,the above query may be answered
in SAND by using the following script:

script to list all tuples of sspring in the area of zipcode 20895
set handle [select_plan sspring zipleft==20895||zipright==20895]
$handle first
while {[$handle status]} {

puts [$handle get]

$handle next

}

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

For those not familiar with the syntax of Tcl, a few explanations are in order:
* The pound sigr) used at the beginning of a line denotes a comment.

* The dollar sign §) is used for variablaereferencing.Thus, construct $var’
denotes the value of variablar.

* set var valueassignwalueto variablevar.

» The construct “[string]” used as a value meattgatstring is to be evaluated as a
command and the result used instead.

* puts is one of Tcl's file output commands.

One distinctiorthatshould be made dhis point isthat a table i:mot necessariljinked to
a file or anykind of storage structure. Itmay perhaps be compared to the conceptuo$or
existing in many implementations of relatiowi@tabases or, better still, tiee concept oiterator
used in the Volcano systeih?]. Forinstance, theutput of SAND's query plan generator is also
a table, i.e.ppening a query evaluatiggian (QEP) isequivalent to starting itsexecution, with
methodsget first andnexserving the purpose of accessing tledgacomputed by thelan. The
SAND library is discussed in the next section.

The table abstraction serves asomimonground to the various accesgthods available
in SAND. Again using object-oriented terminology, we say that the set of methods presented earlier
define the simplestype of table, or a "base" tabbtass. Othermore specializedables, offer
additional capabilities by means of additional methods; these constitute "désiviedclasses. For
instance, the SANRernel presentligupports direct access tables, buffer tabiegree tables [9],
PMR-quadtree andegion quadtredables [19]. Each otheseare supported by appropriate
additional methods:

1. Direct access tables and buffer tables suppartethod calledgoto which, given a
tuple identifier (i.e., @d), loads the tuple buffer with the corresponding tuple.

2. B-tree and hash tablesipportthe find method, which locates the tuplose key is
closest to (or equab, inthe case of hash tables) threepresently loaded in the tuple
buffer, e.g. via theetmethod.

3. PMR-quadtrees offamethods related to the many varietiesjpdtialqueries: window,
closest to feature, incremental nearest, etc.

4. Region quadtrees offer methdds performing operations oraster maps, such ast-
theoretic operations, buffer zones, connected component labeling, etc.

The creation and destruction of tables of any of the types described above is performed by
commandsand create andsand drop , respectively. Also, since all of these table types are
used for storage, their contents can be altered by the following two methods:

Method Description
insert the contents of the tuple buffer is added as a new tuple in the ftable
delete the tuple most recently retrieved from the table is removed

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

Method Description

get returns the value of the tuple buffer

set tuple value loads the tuple buffer with the given value

first loads the tuple buffer with the first tuple in the table

next loads the tuple buffer with the next tuple in the table

status returns aboolean valughatindicates whether thiast calll
of an access method (efgst , next) was successful

To illustrate thismechanism, consider an example table calgating . It is a relation
containing geographical informaticmbout an are&orresponding to the city of Silver Spring,
Maryland. This table stores dapmovided by the CensuBureau [22] and hathe following
schema:

Attribute Type Description

name char(30) | the name of a street

type char(4) street type (e.g., road, ave., lane)

zipleft integer zip code for the left side of the street

zipright integer zip code for the right side of the street

line line line segment corresponding to the geographic locatign of
the street or a part thereof

If table sspring waspart of astandard relational databaglkeen in order to obtain a
listing of its contents, wevould use the query language supported bydtiabaseystem (e.g.,
SQL) to form a statement like:

select * from sspring

Compare this to the following SAND script:

script to list all tuples of sspring
set handle [sand open sspring]
$handle first
while {[$handle status]} {

puts [$handle get]

$handle next

}
$handle close

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

database systendid not provide enough flexibility to experiment with differeddta models,

spatial indexing structures andjuery optimization techniques. In other words, feel that the
integration ofspatial and non-spatialata processing is still an open probletmat has to be
attacked on a wide front and at many levels. We would like, however, to be able to use the result of
efforts in that arefrom an application point-of-view, dbat, asnew capabilities areleveloped,
applications that can take advantage of such capabilities can be createdif@d with little

effort. SAND was created in this spirit.dbes nopurport to be dull featured spatial database;
instead, it is a programmirenvironment dedicated to the developmerapgdlications dealingith

spatial and non-spatial data.

SAND can also beviewed as atoolkit that is accessed primarily by means of an
interpreted languagdhus, all capabilitie®ffered by SAND take the form @ommands irthat
language, and queriese usuallyexpressed by means sfiortcode fragments callestripts. This
arrangement allows SAND to emulate different paradifpns query processing. Currently, for
instance, SAND offers in its library a set of functiaghatimplementoperators of the relational
algebra[7]. No query languagkowever,hasbeen devisedor SAND, eventhough some high-
level query languages have been proposed ipdbavhich would be adequate &xpress the class
of queries that SAND proposes to answer [6, 10, 15, 18].

The rest of this paper @ganized as follows. Section 2 discusses the overall architecture
of the SAND kernel. Section 3 presents query processing with the aid of the SAND library. Section
4 elaborates on SAND's capabilities for spatial data processing. Section 5 concludes the paper.

2. The SAND kernel

SAND consists of &ernel that implementsbasic objects and functions and a librémat is
responsible forassembling these into plafe evaluatinghigher levelqueries. Presently, the
kernel implements atomic objects obmmonnon-spatial types (strings and numbersjvalt as a

few choice two-dimensional geometrigpes (points,line segments, polygons, axes-aligned
rectangles and regions). These objects are organized in tuples and tables using a relatiatal-like
model. Inorder to access the functionality of tkernel in a flexiblevay, we opted to provide an
interface to it by means of an interpreted language. We dlobgE7] for that rolemainly because

it offers the benefits of an interpreted langudmsg still allows code written in ahigh-level
compiled language (in our case, C++) to be incorporated via a very simple interface mechanism.

A table, asmplemented bySAND, is an abstractiowhich can better belefined by its
functionality. In object-oriented programming, the condemwn asclass is used to refer to
software componentsolpjecty which share the same functionality. Objects abdiss table are
repositories oflata that can beandled oneuple at atime by means of a uniforset of functions,
or, to use object-oriented terminologymethods The SAND kernel implements a few table
varieties (classes) and the SANibrary implements a few more. lorder to perform operations
on anygiven table, that table must b®pened" -- gorocess nounlike opening a file. Table
varietiesimplemented by the kernake opened by using theand open command, while those
implemented by thébrary areopenedvia a call to a procedure. Either way, the result of such an
operation is an opetable "handle'which can be used tivoke table methods. Eachopened
instance of a table containsneemorybuffer largeenough to contailonetuple of that table, to
which we refer here as auple buffer A handle of an opetable in SAND responds to the
following set of methods:

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

Spatial Database Programming Using SAND

CLAUDIO ESPERANCA
Universidade Federal do Rio de Janeiro
COPPE, Programa de Engenharia de Sistemas e Computagéo
Caixa Postal 68511, Rio de Janeiro, RJ 21945-970, Brazil
e-mailiesperanc@cos.ufrj.br

and

HANAN SAMET
Computer Science Department and Center for Automation Research and
Institute for Advanced Computer Studies, University of Maryland
College Park, Maryland 20742
e-mailhjs@umiacs.umd.edu

Abstract

SAND (Spatial and Non-spatifllata) is arinteractive environmerthatenables the
development ofpatial database applications. It wiesigned as a todbr rapid
prototyping of algorithms and query evaluation pldealing withspatial andhon-
spatial data. In this paper wge&/e an overview oSAND's architecture and illustrate
howtypical spatial and non-spatiglieries can be processed by mearshoftcode
fragments.

Keywords: Spatial databases, GIS, query optimization.

1. Introduction

The design obpatial database applicatiomsolves manystages. The first stage ¢hoosing a
proper development environment whiclntails theappraisal ofthe many existing software
packages inwhich will supply thebasic facilitiesneededor thetask. The softwarecomponents
most commonly used in such applicatiorsre programs or librariespecialized in performing
operations on spatiaata,while non-spatiadata isfrequently handled byatabasenanagement
systems (DBMS). Irfact, thiscombinationhasbecome so commaat much efforthasbeen put
into integrating these components into a single framewarkthe mostpart, these efforthave
concentrated either in addisgatial capabilities texisting standar®@BMS's [1, 2, 15, 21, 23] or
in developing new database systems with the "spatial" aspect in mind [13, 16].

Our own experience with the problefd, 3] hasshown ugthatthe so-called "extensible"

! The Support of the National Science Foundation under Grant IRI-92-16970 and of Conselho Nacional de
Desenvolvimento Cientifico e Tecnoldgico is gratefully acknowledged.

