
Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

13

[11] C. Esperanca and H. Samet. Representing orthogonal multidimensional objects by vertex lists.
In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, Aspects of Visual Form
Processing, pages 209--220, Singapore, 1994. World Scientific.

[12] G. Graefe. Volcano--an extensible and parallel query evaluation system. IEEE Transactions
on Knowledge and Data Engineering, 6(1):120--135, February 1994.

[13] R. H. Güting. Gral: An extensible relational system for geometric applications. In
Proceedings of the 15th International Conference on Very Large Databases, pages 33--44,
Amsterdam, August 1989.

[14] G. Hjaltason and H. Samet. Ranking in spatial databases. In M. J. Egenhofer and J. R.
Herring, editors, Proceedings of the Fourth Symposium on Spatial Databases, Portland,
ME, August 1995.

[15] B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. Extending a DBMS for geographic
applications. In Proceedings of the Fifth IEEE International Conference on Data
Engineering, pages 590--597, Los Angeles, February 1989.

[16] J. A. Orenstein and F. A. Manola. Spatial data modeling and query processing in PROBE.
Technical Report CCA-86-05, Computer Corporation of America, Cambridge, MA, October
1986.

[17] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, April 1994.

[18] N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial database system for
PSQL. IEEE Transactions on Software Engineering, 14(5):639--650, May 1988.

[19] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

[20] H. Samet and A. Soffer. Integrating images into a relational database system. Technical
Report CS-TR-3371, University of Maryland, College Park, MD, October 1994.

[21] M. Stonebraker. Inclusion of new types in relational data base systems. In Proceedings of the
2nd International Conference on Data Engineering, pages 262--269, Los Angeles, CA,
February 1986.

[22] Economics U.S Department of Commerce and Bureau of the Census Statistics
Administration. Tiger/line census files, 1992. Technical documentation, 1993.

[23] A. Wolf. The DASDBS GEO-Kernel: Concepts, experiences, and the second step. In A.
Buchmann, O. Günther, T. R. Smith, and Y. F. Wang, editors, Design and Implementation of
Large Spatial Databases, Proceedings of the First Symposium SSD’89, pages 67—88.
Springer-Verlag, Berlin, 1990. (also Lecture Notes in Computer Science 409).

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

12

5. Final Considerations

SAND is an on-going project. Most, but not all of the capabilities shown in this paper are
implemented. The plan generation and optimization used in the library is still crude and needs to be
enhanced. In particular, the heuristics used by the optimizer tend to favor plans using indices
whenever possible, which not always results in an optimal plans. Cost estimation is currently not
used at all.

In order to improve SAND's plan-generating strategies, we are presently considering a
rule-based optimizer in the molds of GRAL [5] and dynamic query optimization as proposed for
the Volcano system[8].

In its current state, however, SAND has already been proved of value. For instance, we
have built the "Map Browser'', an application that uses a simple graphical user interface to answer
simple queries. All examples shown in this paper were produced with the aid of the Map Browser.
Additionally, SAND has been used for the prototype of an image database [20].

References

[1] D. J. Abel. SIRO-DBMS: A database tool-kit for geographical information systems.
International Journal of Geographical Information Systems, 3(2):103--116, April--June
1989.

[2] W. G. Aref and H. Samet. An approach to information management in geographical
applications. In Proceedings of the Fourth International Symposium on Spatial Data
Handling, volume 2, pages 589--598, Zurich, Switzerland, July 1990.

[3] W. G. Aref and H. Samet. Extending a DBMS with spatial operations. In O. Günther and H. J.
Schek, editors, Advances in Spatial Databases - 2nd Symposium, SSD'91, pages 299--318,
Berlin, 1991. Springer-Verlag. (also Lecture Notes in Computer Science 525).

[4] W. G. Aref and H. Samet. The spatial filter revisited. In T. C. Waugh and R. G. Healey,
editors, Sixth International Symposium on Spatial Data Handling, pages 190--208,
Edinburgh, Scotland, September 1994. International Geographical Union Comission on
Geographic Information Systems, Association for Geographical Information.

[5] L. Becker and R. H. Güting. Rule-based optimization and query processing in an extensible
geometric database system. ACM Transanctions on Software Engineering, 17(2):247--303,
June 1992.

[6] R. Berman, M. Stonebraker, and L. Rowe. Geo-quel: A system for the manipulation and
display of geographical data. Computer Graphics, 11(2):186--191, 1977.

[7] E. F. Codd. A relational model for large shared data banks. Communications of the ACM,
13(6):377--387, June 1970.

[8] R. K. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In SIGMOD 94,
pages 150--160, Minneapolis, Minnesota, May 1994.

[9] D. Comer. The ubiquitous B--tree. ACM Computing Surveys, 11(2):121--137, June 1979.

[10] M. J. Egenhofer. Spatial sql: A query and presentation language. IEEE Transactions on
Knowledge and Data Engineering, 6(1):86--95, February 1994.

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

11

Create tmp relation with all lines of Georgia Ave
sand create tmp line line
set table_handle [select_plan sspring name=="Georgia"]
set tmp_handle [sand open tmp]
while {[$table_handle status]} {
 $tmp_handle setfrom $table_handle
 $tmp_handle insert
 $table_handle next
}
$tmp_handle close
$table_handle close

Scan PMR sspring.line block-wise
set block_handle [sand open sspring.line -blockwise]
while {[$block_handle status]} {
 set block [$block_handle get]
 set tmp_handle [select_plan tmp {[distance line $block]<=0.01}]
 while {[$tmp_handle status]} {
 set table_handle [select_plan sspring {[intersects line $block]}]
 while {[$table_handle.status]} {
 if [distance $tmp_handle.line $table_handle.line]<=0.01 {
 puts [$table_handle get]
 }
 $table_handle next
 }
 $table_handle close
 }
 $tmp_handle close
}
$block_handle close

A few notes about the above script:

• In command “sand create tmp line line ” the first line refers to the name
and the second to the type of the single attribute in table tmp 's schema.

• Command “$tmp_handle setfrom $table_handle ” copies all attributes
with same name from one tuple buffer to the other. In this case, only attribute line will
be copied.

• Option -blockwise , when used for opening a spatially organized table, means that
the returned table handle will scan blocks and not tuples. Thus, when the contents of the
tuple buffer for the handle is accessed (as in “$block_handle get ”), a value of
type rectangle is returned to indicate the position and extent of the block.

This plan demonstrates how the blocks of the PMR-quadtree can be used as bounding
boxes (step 3 in the strategy), and thus permit a fast elimination of tuples that cannot satisfy the
query. If we analyze this plan more carefully, however, we will notice that the temporary result
tmp is a simple table, i.e., it has no spatial structure. This forces each block retrieved from the
PMR-quadtree to be compared exhaustively with all elements of tmp . A possibly better alternative
is to use a temporary result which is spatially structured. The idea is to make tmp a PMR-
quadtree as well. This will allow the usage of a quadtree-based spatial join algorithm (see, for
instance, [4]), instead of the tuple-by-tuple nested loop join performed in steps 3 and 4 above. This
is a powerful technique, because it prevents the loss of information concerning the spatial
proximity of features as multiple steps of a plan are executed.

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

10

to the spatial access methods in use. For the type of PMR-quadtree implemented by SAND, for
instance, Aref and Samet [4] propose a spatial join algorithm that requires access to the relative
order and dimensions of each quadtree block appearing in each table. The SAND kernel addresses
this problem by supporting a special kind of scan iterator for PMR-quadtree tables that implements
block-by-block retrieval.

In order to illustrate this concept, consider a query where we want to list all streets within
a distance of 1 mile from Georgia Ave. Figure 2 shows a map with the line attribute of all
tuples that satisfy this query. A possible plan for this query could adopt the following strategy:

1. Perform a select plan to retrieve all tuples of sspring corresponding to Georgia Ave.

2. Create a temporary table tmp to store the line segments of the tuples retrieved by the
select plan.

3. Scan the PMR-quadtree sspring.line block-by-block and select those blocks B that
lie within one mile of a line segment L in tmp .

4. For each pair B/L, retrieve tuples of sspring whoseline attribute is overlapped by B
and test them against L.

5. Print those tuples that qualify.

Figure 2: Example of spatial join. Map of Silver Spring showing line segments
corresponding to Georgia Ave (thick line) and all line segments of streets within one
mile of Georgia Ave (thin lines).

A SAND script for this strategy is shown below.

Script to list all tuples of sspring within one mile of any
other tuple such that name="Georgia".

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

9

possible. Additionally, PMR-quadtree tables can be scanned in a number of spatially meaningful
orders. Such scan orders are achieved by using special forms of the first command. For
instance, it is possible to retrieve tuples in order of increasing or decreasing distance from a given
feature by using a command called firstcloseto . Note that only one command is needed to
initiate a scanning order, i.e., one particular form of first . In contrast, the next command
performs the function of retrieving successive tuples independently of the scanning order.

The firstcloseto command implements incremental spatial ranking as described in
[14]. The advantage of its incremental nature is that at any given moment of the scanning process,
the algorithm has processed only enough quadtree blocks to determine the position of the current
tuple within the scanning order.

It is important to realize the difference between explicit scanning orders such as those
implemented by sorting a relation or using a B-tree and implicit scanning orders such as the one
initiated by the firstcloseto command. In the first case, the order in which the tuples are
retrieved is a consequence of the sequential nature of the table, and therefore is limited to a few
variations, e.g., increasing or decreasing value of a B-tree key. In the second case, the ordering is
not "pre-computed'', that is, the ordering is a function of parameters that define geometric
relationships which can be infinitely varied. This is one of the reasons why the processing of
spatial data is intrinsically more challenging.

As an example, we will use a PMR-quadtree table defined as an index for attribute line
of sspring , to rewrite the query that returns all tuples within a certain distance of a point. In the
script below, this index table, called sspring.line , is scanned in such a way as to retrieve the
line segments in increasing order of distance from the point of interest. For each qualifying tuple of
the index, the corresponding tuple of sspring is retrieved by using the indexfrom command.
The scanning is interrupted if the line segment retrieved from the index is farther than one mile
from the point of interest.

Script to list all tuples of sspring in the area within one mile
(approx. 0.01 in map units) of point (-77.03, 39.0).
Uses only the SAND kernel.
set index_handle [sand open sspring.line]
set table_handle [sand open sspring]
set point "point -77.03 39.0"
$index_handle firstcloseto $point
while {[$index_handle status] &&
 [distance $index_handle.line $point]<=0.01} {
 $table_handle indexfrom $index_handle
 puts [$table_handle get]
 $index_handle next
}
$index_handle close
$table_handle close

Notice that the above plan could actually have been the plan produced by the library in our
previous implementation. This example illustrates how an application is frequently able to obtain
the desired results even in the absence of a query plan generator. This characteristic is important
for a research tool such as SAND.

Most selection queries based on spatial predicates can be answered efficiently by a
examining a PMR-quadtree table using an appropriate scan order. A tuple-by-tuple scan, however,
is too poor a mechanism for performing join queries based on spatial predicates -- the so-called
spatial joins. Spatial join algorithms usually take advantage of the clustering properties particular

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

8

In this script, .r refers to a graphical output window, draw_sand is a SAND command used for
drawing and -style is an option that modifies drawing parameters such as color or line
thickness. The output of this script is shown in Figure 1.

Figure 1: Map of a part of the city of Silver Spring, Maryland, obtained by drawing
the value of attribute line of relation sspring . The highlighted streets (thicker
lines) correspond to lines within 1 mile of point (-77.03, 39.0)

This example also illustrates how the application-oriented approach used in SAND can
sometimes pay off in terms of a relatively simple implementation. In order to obtain the same
results with a full-featured spatial database we would have to use a conventional programming
language capable of accessing the query engine (say, embedded SQL). Another alternative would
be to use a graphical presentation language like the one proposed by Egenhofer [10].

4.2. Spatially organized tables

In addition to being able to process spatial data at the attribute level, SAND supports two types of
spatial access structures implemented as tables: PMR-quadtrees and region quadtrees [19].

A PMR-quadtree table organizes tuples spatially based on one of its attributes whose type
must be one of SAND's spatial types, i.e., point, line, rectangle, polygon and region. As with any
other table type, tuples in a PMR-quadtree table may be examined by applying methods first
and next , in which case the tuples are retrieved in some arbitrary order. Such a scan order is used
in situations where the only requirement is that all tuples be examined exactly once as fast as

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

7

Since the only primitive data type handled by Tcl is the character string, constants and
variables representing spatial features must eventually be converted to and from strings of
characters. Thus, for instance, string "point 1.0 2.0'' represents a point in 2D with coordinates x
and y equal to 1 and 2 respectively. This translation process, however, is relatively costly, and
should be avoided in query evaluation plans. For this reason, the SAND kernel provides support
for attribute variables. These are similar to regular Tcl variables, except that they need not be
dereferenced explicitly (and thus converted to strings) when used in functions and predicates
implemented by SAND. In particular, the tuple buffer associated with an open table handle can be
accessed by means of attribute variables that are created automatically when the table is opened.
Thus, for instance, after executing the command

set handle [sand open sspring]

five attribute variables are created, named $handle.name , $handle.type ,
$handle.zipleft etc.

As an example, consider a query plan for listing all all streets of sspring within 1 mile
from a given point. One way to obtain such a plan would be to use the select_plan library
function by specifying a suitable predicate:

script to list all tuples of sspring in the area within one mile
(approx. 0.01 in map units) of point (-77.03, 39.0)
set handle [select_plan sspring {[distance line "point -77.03,
39.0"]<=0.01}]
$handle first
while {[$handle status]} {
 puts [$handle get]
 $handle next
}
$handle close

Consider now a related query where we wish to obtain a graphical output of table sspring by
drawing all line segments corresponding to attribute line , but emphasizing those line segments
lying within one mile of point (-77.03, 39.0). Clearly, this query requires that all tuples of sspring
be accessed, and thus it is very likely that a simple scan will prove to be an "optimal'' plan. All that
is required is to test each line segment for proximity with the given point in order to determine the
proper drawing style. This is shown in the following script:

script to draw all tuples of sspring, emphasizing
those within one mile of point (-77.03, 39.0)
set handle [sand open sspring]
$handle first
while {[$handle status]} {
 if [distance $handle.line "point -77.03, 39.0"]<=0.01}] {
 .r draw_sand $handle.line -style 1
 } else {
 .r draw_sand $handle.line -style 2
 }
 $handle next
}
$handle close

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

6

The plan generating strategies used in the library vary in complexity from very crude to
very sophisticated. Some, such as the ones described above, are modeled after relational algebra
operators [7], while others are implementations of classic algorithms such as the index-scan or the
hash-join algorithm. Since tables implemented both by the kernel and by the library share a
common interface, query plans can be built by drawing on either. In other words, SAND offers
table handling capabilities on various levels but does not impose a strict hierarchy among these
levels. This arrangement permits applications to use high-level tools when these are available, and
to resort to low-level tools either when higher level capabilities are unavailable or, sometimes, in an
attempt to extract better performance. This open ended architecture is also valuable in the study of
issues in spatial database optimization.

4. Spatial Data Handling

SAND supports spatial data at various levels. At the attribute level, five 2D geometric
data types can be used in table schemas and can be processed with the aid of a set of functions and
predicates. SAND also supports two types of spatially organized tables which can be accessed in
several ways.

4.1. Spatial features

The following set of spatial attribute types (also referred to as spatial features) are
currently implemented in SAND:

Attribute Type Description

point a point in 2D.

polygon a simple (no holes, non-self-intersecting) polygon in 2D.

rectangle an axes-aligned rectangle in 2D.

region an arbitrary axes-aligned polygon in 2D.

The coordinate values of all spatial features are stored as double-precision floating point
numbers. Polygons are stored as a list of its endpoints and regions are stored and manipulated with
the aid of structures called vertex lists [11].

SAND also supports a series of spatial predicates and functions. Most of these are
polymorphic, that is, they operate on any type of spatial features. For example:

distance f1 f2 is a function that returns the Euclidean distance between spatial
features f1 and f2.

intersects f1 f2 is a predicate that returns true if and only if features f1 and f2
occupy at least one common point in space.

bbox f1 f2 ... fN returns the smallest axes-aligned rectangle enclosing all features f1 ...
fN.

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

5

3. The SAND library

The most important distinction between a script in SAND and a query expressed in a high-
level query language such as SQL is that the latter does not usually describe a series of steps that
are required to obtain the answer, whereas the former very often looks like a standard computer
program. From the application point-of-view, the power of expression of a high-level query
language is certainly advantageous, but not indispensable. A more important issue is how
efficiently a query can be answered. In a standard database system, this issue is addressed by
providing a query planner and optimizer. In SAND, this same issue is addressed by a library that is
responsible for creating efficient plans.

As an example, consider a modification of the previous query so that the listing is
restricted to streets corresponding to zipcode 20895. Such a query could be expressed in SQL by:

select * from sspring where zipleft=20895 or zipright=20895

One way to express this query in SAND is to modify the previous script so that the action
of printing a tuple is conditioned to the satisfaction of the predicate. This approach, however, may
prove to be inefficient. For instance, it may be the case that sspring possesses other access
paths that allow the retrieval of tuples by zipcode directly. In a standard database system these
factors are weighed by the query optimizer in order to provide the best possible query evaluation
plan. In SAND, such a plan is created via a call to a library function. Some of the plan generating
functions implemented by the SAND library are listed below:

selection_plan name predicate generates a plan to retrieve all tuples of table name
which satisfy the given predicate.

project_plan name attr1 attr2 ... attrN generates a plan to retrieve from table name
distinct tuples corresponding to the subset of attributes attr1 attr2 ... attrN.

union_plan name1 name2 generates a plan to retrieve all distinct tuples from tables
name1 and name2.

semi_join_plan name1 name2 predicate generates a plan to retrieve all tuples of table
name1 such that there exists at least one tuple of name2 which satisfies predicate.

The predicate argument used in some of these functions has the form of a common Tcl
expression, except that attribute names are replaced by attribute values before its evaluation. The
result of calling any of these functions is a table handle which can be used in the same way as the
handles returned by the kernel sand open command. Thus, the above query may be answered
in SAND by using the following script:

script to list all tuples of sspring in the area of zipcode 20895
set handle [select_plan sspring zipleft==20895||zipright==20895]
$handle first
while {[$handle status]} {
 puts [$handle get]
 $handle next
}

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

4

For those not familiar with the syntax of Tcl, a few explanations are in order:

• The pound sign (#) used at the beginning of a line denotes a comment.

• The dollar sign ($) is used for variable dereferencing. Thus, construct “$var”
denotes the value of variable var.

• set var value assigns value to variable var.

• The construct “[string]” used as a value means that string is to be evaluated as a
command and the result used instead.

• puts is one of Tcl's file output commands.

One distinction that should be made at this point is that a table is not necessarily linked to
a file or any kind of storage structure. It may perhaps be compared to the concept of cursor
existing in many implementations of relational databases or, better still, to the concept of iterator
used in the Volcano system [12]. For instance, the output of SAND's query plan generator is also
a table, i.e., opening a query evaluation plan (QEP) is equivalent to starting its execution, with
methods get, first and nextserving the purpose of accessing the data computed by the plan. The
SAND library is discussed in the next section.

The table abstraction serves as a common ground to the various access methods available
in SAND. Again using object-oriented terminology, we say that the set of methods presented earlier
define the simplest type of table, or a "base'' table class. Other, more specialized tables, offer
additional capabilities by means of additional methods; these constitute "derived'' table classes. For
instance, the SAND kernel presently supports direct access tables, buffer tables, B-tree tables [9],
PMR-quadtree and region quadtree tables [19]. Each of these are supported by appropriate
additional methods:

1. Direct access tables and buffer tables support a method called goto which, given a
tuple identifier (i.e., a tid), loads the tuple buffer with the corresponding tuple.

2. B-tree and hash tables support the find method, which locates the tuple whose key is
closest to (or equal to, in the case of hash tables) the one presently loaded in the tuple
buffer, e.g. via the set method.

3. PMR-quadtrees offer methods related to the many varieties of spatial queries: window,
closest to feature, incremental nearest, etc.

4. Region quadtrees offer methods for performing operations on raster maps, such as set-
theoretic operations, buffer zones, connected component labeling, etc.

The creation and destruction of tables of any of the types described above is performed by
commands sand create and sand drop , respectively. Also, since all of these table types are
used for storage, their contents can be altered by the following two methods:

Method Description

insert the contents of the tuple buffer is added as a new tuple in the table

delete the tuple most recently retrieved from the table is removed

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

3

Method Description

get returns the value of the tuple buffer

set tuple value loads the tuple buffer with the given value

first loads the tuple buffer with the first tuple in the table

next loads the tuple buffer with the next tuple in the table

status returns a boolean value that indicates whether the last call
of an access method (e.g. first , next) was successful

To illustrate this mechanism, consider an example table called sspring . It is a relation
containing geographical information about an area corresponding to the city of Silver Spring,
Maryland. This table stores data provided by the Census Bureau [22] and has the following
schema:

Attribute Type Description

name char(30) the name of a street

type char(4) street type (e.g., road, ave., lane)

zipleft integer zip code for the left side of the street

zipright integer zip code for the right side of the street

line line line segment corresponding to the geographic location of
the street or a part thereof

If table sspring was part of a standard relational database, then in order to obtain a
listing of its contents, we would use the query language supported by the database system (e.g.,
SQL) to form a statement like:

select * from sspring

Compare this to the following SAND script:

script to list all tuples of sspring
set handle [sand open sspring]
$handle first
while {[$handle status]} {
 puts [$handle get]
 $handle next
}
$handle close

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

2

database systems did not provide enough flexibility to experiment with different data models,
spatial indexing structures and query optimization techniques. In other words, we feel that the
integration of spatial and non-spatial data processing is still an open problem that has to be
attacked on a wide front and at many levels. We would like, however, to be able to use the result of
efforts in that area from an application point-of-view, so that, as new capabilities are developed,
applications that can take advantage of such capabilities can be created or modified with little
effort. SAND was created in this spirit. It does not purport to be a full featured spatial database;
instead, it is a programming environment dedicated to the development of applications dealing with
spatial and non-spatial data.

SAND can also be viewed as a toolkit that is accessed primarily by means of an
interpreted language. Thus, all capabilities offered by SAND take the form of commands in that
language, and queries are usually expressed by means of short code fragments called scripts. This
arrangement allows SAND to emulate different paradigms for query processing. Currently, for
instance, SAND offers in its library a set of functions that implement operators of the relational
algebra[7]. No query language, however, has been devised for SAND, even though some high-
level query languages have been proposed in the past which would be adequate to express the class
of queries that SAND proposes to answer [6, 10, 15, 18].

The rest of this paper is organized as follows. Section 2 discusses the overall architecture
of the SAND kernel. Section 3 presents query processing with the aid of the SAND library. Section
4 elaborates on SAND's capabilities for spatial data processing. Section 5 concludes the paper.

2. The SAND kernel

SAND consists of a kernel that implements basic objects and functions and a library that is
responsible for assembling these into plans for evaluating higher level queries. Presently, the
kernel implements atomic objects of common non-spatial types (strings and numbers) as well as a
few choice two-dimensional geometric types (points, line segments, polygons, axes-aligned
rectangles and regions). These objects are organized in tuples and tables using a relational-like data
model. In order to access the functionality of the kernel in a flexible way, we opted to provide an
interface to it by means of an interpreted language. We chose Tcl [17] for that role, mainly because
it offers the benefits of an interpreted language but still allows code written in a high-level
compiled language (in our case, C++) to be incorporated via a very simple interface mechanism.

A table, as implemented by SAND, is an abstraction which can better be defined by its
functionality. In object-oriented programming, the concept known as class is used to refer to
software components (objects) which share the same functionality. Objects of class table are
repositories of data that can be handled one tuple at a time by means of a uniform set of functions,
or, to use object-oriented terminology, methods. The SAND kernel implements a few table
varieties (classes) and the SAND library implements a few more. In order to perform operations
on any given table, that table must be "opened'' -- a process not unlike opening a file. Table
varieties implemented by the kernel are opened by using the sand open command, while those
implemented by the library are opened via a call to a procedure. Either way, the result of such an
operation is an open table "handle'' which can be used to invoke table methods. Each opened
instance of a table contains a memory buffer large enough to contain one tuple of that table, to
which we refer here as a tuple buffer. A handle of an open table in SAND responds to the
following set of methods:

Proceedings of the Seventh International Workshop on Spatial Data Handling, Delft, The Netherlands, August 1996

Spatial Database Programming Using SAND1

CLAUDIO ESPERANÇA
Universidade Federal do Rio de Janeiro

COPPE, Programa de Engenharia de Sistemas e Computação
Caixa Postal 68511, Rio de Janeiro, RJ 21945-970, Brazil

e-mail:esperanc@cos.ufrj.br

and

HANAN SAMET
Computer Science Department and Center for Automation Research and

Institute for Advanced Computer Studies, University of Maryland
College Park, Maryland 20742

e-mail:hjs@umiacs.umd.edu

 Abstract

SAND (Spatial and Non-spatial Data) is an interactive environment that enables the
development of spatial database applications. It was designed as a tool for rapid
prototyping of algorithms and query evaluation plans dealing with spatial and non-
spatial data. In this paper we give an overview of SAND's architecture and illustrate
how typical spatial and non-spatial queries can be processed by means of short code
fragments.

Keywords: Spatial databases, GIS, query optimization.

1. Introduction

The design of spatial database applications involves many stages. The first stage is choosing a
proper development environment which entails the appraisal of the many existing software
packages in which will supply the basic facilities needed for the task. The software components
most commonly used in such applications are programs or libraries specialized in performing
operations on spatial data, while non-spatial data is frequently handled by database management
systems (DBMS). In fact, this combination has become so common that much effort has been put
into integrating these components into a single framework. For the most part, these efforts have
concentrated either in adding spatial capabilities to existing standard DBMS's [1, 2, 15, 21, 23] or
in developing new database systems with the "spatial'' aspect in mind [13, 16].

Our own experience with the problem [2, 3] has shown us that the so-called "extensible''

1 The Support of the National Science Foundation under Grant IRI-92-16970 and of Conselho Nacional de
Desenvolvimento Científico e Tecnológico is gratefully acknowledged.

