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ABSTRACT
At the heart of Air Traffic Management (ATM) lies the De-
cision Support Systems (DST) that rely upon accurate tra-
jectory prediction to determine how the airspace will look
like in the future to make better decisions and advisories.
Dealing with airspace that is prone to congestion due to
environmental factors still remains the challenge especially
when a deterministic approach is used in the trajectory pre-
diction process. In this paper, we describe a novel stochastic
trajectory prediction approach for ATM that can be used
for more efficient and realistic flight planning and to assist
airspace flow management, potentially resulting in higher
safety, capacity, and efficiency commensurate with fuel sav-
ings thereby reducing emissions for a better environment.

Our approach considers airspace as a 3D grid network,
where each grid point is a location of a weather observation.
We hypothetically build cubes around these grid points, so
the entire airspace can be considered as a set of cubes. Each
cube is defined by its centroid, the original grid point, and
associated weather parameters that remain homogeneous
within the cube during a period of time. Then, we align
raw trajectories to a set of cube centroids which are ba-
sically fixed 3D positions independent of trajectory data.
This creates a new form of trajectories which are 4D joint
cubes, where each cube is a segment that is associated with
not only spatio-temporal attributes but also with weather
parameters. Next, we exploit machine learning techniques
to train inference models from historical data and apply a
stochastic model, a Hidden Markov Model (HMM), to pre-
dict trajectories taking environmental uncertainties into ac-
count. During the process, we apply time series clustering to
generate input observations from an excessive set of weather
parameters to feed into the Viterbi algorithm. Our experi-
ments use a real trajectory dataset with pertaining weather
observations and demonstrate the effectiveness of our ap-
proach to the trajectory prediction process for ATM.
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1. INTRODUCTION
The goals of Air Traffic Control (ATC) are the safe and ef-

ficient management of aircraft. The Air Navigation Service
Provider (ANSP) in the USA, the FAA, is concerned with
providing optimal airspace capacity and efficiency within the
National Airspace System (NAS). These goals require the
separation and sequencing of airborne aircraft by controllers
who often use DSTs to monitor the progress of each aircraft
and resolve conflicts when necessary. Other controllers mon-
itor the future aggregate flows of aircraft traffic and using a
DST implement flow management decisions to ensure that
the traffic density always remains within safe limits. At the
core of these automation tools resides the Trajectory Predic-
tion (TP) tool, that given the aircraft initial state, its flight
plan and the wind and temperatures, computes where the
aircraft will be in the future in four dimensions. Inaccurate
trajectory prediction can have a substantial impact on the
performance of the DST and the ATM system, resulting in

• larger separation standards that limit the number of
aircraft that can be allowed in controllers’ sectors and/or

• increased numbers of conflicts increasing the workload
of the controllers and reducing their sector capacity
and/or

• inefficient fuel consumption due to continual deviations
to avoid other aircraft and/or

• adverse impact on the environment due to more fuel
burn leading to more emissions.

As a consequence, the performance of the TP tool which
supports the DSTs is critical to the success of the DST func-
tions.

Although prior trajectory prediction research and devel-
opment activities have been able to address the challenge
to some extent, dealing with increasingly congested airspace
and new environmental concerns still remains the challenge
when deterministic approach is used in trajectory prediction
process. Hence due to the nature of uncertainties that con-
tribute to trajectory prediction errors, in our research, we
have taken a stochastic approach to address the trajectory
prediction issues.

We define airspace as a set of spatio-temporal data cubes
where each cube is considered as an atomic unit. Weather
parameters such as temperature, wind speed, and wind di-
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rection remain homogeneous within the cube during a period
of time. Other parameters that describe the cube include
its center coordinates (latitude, longitude, altitude) along
with a time stamp. These spatio-temporal data cubes form
the overall airspace. Then, we adapt raw trajectories to the
cubes, by aligning each trajectory vertex to the nearest cube
centroid, inspired by the Realm method [19]. The process
yields 4D joint cubes that can be considered as piecewise
trajectory segments. Using adapted trajectories in the form
of 4D joint cubes, we train our model with the historical
data and choose a state sequence that best explains the cur-
rent observations, the pertinent weather parameters. This
process corresponds to the Problem No.2 described in [33]
where it attempts to uncover the hidden part of the model,
which is the optimal state sequence, given the observations.
Note that in the process, each segment is chosen from one of
the many hidden segments and the occurrence of a hidden
segment that underlines an observation is dependent on the
hidden state of the previous segment. Since our objective is
to find the most likely trajectory, we use HMM that is noth-
ing more than a probabilistic function of a Markov process.
Due to the nature of interconnected cube centroids form-
ing a trellis, we use the Viterbi algorithm [48] to efficiently
generate the optimal trajectory by joining the multiple seg-
ments together, where one segment is only dependent on the
previous segment.

Now, a critical question arises: What constitutes the in-
put observations? or more importantly, among so many
weather observations in the airspace volume of interest dur-
ing the time period of flight, which ones should be passed to
the Viterbi process? We address this problem by clustering
the current weather observations for the cube centroids that
were historically traversed. Before the process, we split the
current weather observations into buckets and then perform
time series clustering [21]. We finally feed the output clus-
ter into the Viterbi algorithm to probabilistically generate
the best state sequence.

In summary, the contributions of this paper are as follows:

• We propose a novel way of representing aircraft tra-
jectories, a set of 4D joint cubes generated upon an
alignment and fusion process.

• We build a stochastic model, HMM that learns from
the combination of historical trajectories and aircraft
specifications, and their correlation with the pertinent
weather parameters. Then, we perform time series
clustering on the trajectory segments that were histor-
ically traversed. Finally, we feed the series of cluster
centroids as observations into the Viterbi algorithm in
order to predict trajectories that can be used as more
realistic pre-departure flight plans.

• We conduct experiments based on real host track and
aircraft specification data and demonstrate that our
system effectively predicts aircraft trajectories.

Although the proposed solution can be adapted for both
tactical and strategic trajectory prediction, our experimen-
tal study focuses more on a ground-based tactical trajectory
prediction system that can be used by both AOC dispatch-
ers to file more realistic flight plans and/or flow managers
at the Air Traffic Control System Command Center (ATC-
SCC) to approve the proposed flight plans based on their
conformance to the relatively more realistic predicted tra-
jectories, right before the aircraft departs.

The rest of the paper is organized as follows. Section 2 re-
views the related work. Section 3 introduces the preliminary
concepts, presents the problem, and overviews the proposed
system. Section 4 discusses in the detail the aircraft trajec-
tory prediction system, that we propose. Section 5 presents
the results of an experimental evaluation. Section 6 con-
cludes the paper and outlines some future work.

2. RELATED WORK
There has been much work on trajectories in the spatial

domain for motor vehicles along roads [40] with an empha-
sis on their generation (e.g., [41]), queries (e.g., [30, 32, 36,
38, 39]), and matching (e.g., [20, 29, 37]). This is not our
subject here. On the other hand, there has been a vast
amount of research and abundant literature with regards to
predicting aircraft trajectories. Methodologies to attain this
goal can be divided into deterministic and probabilistic ap-
proaches. Deterministic approaches are made up of nominal
and worst-case techniques, and probabilistic techniques in-
clude Sequential Monte Carlo (SMC), Hidden Markov Mod-
els (HMM) and others.

The nominal technique gives the aircraft position by prop-
agating estimated states into the future along a single trajec-
tory without considering uncertainties of the state estimate
and the prediction [13, 22]. Worst-case techniques assume
that an aircraft will perform any of a set of maneuvers and
the worst case, defined by the application, is considered for
aircraft trajectory prediction. Algorithms based on this idea
are too conservative since civilian aircraft rarely perform ex-
treme maneuvers [47]. Overall, deterministic techniques [8,
10, 11, 34] suffer from degraded accuracy due to fact that
they don’t account for uncertainties and address only specific
phase(s) of the flight when predicting aircraft trajectories.

Past efforts addressing aircraft trajectory prediction using
probabilistic methods are similar to our approach in a way
that they aim at modeling uncertainties to describe poten-
tial changes in the future trajectory of an aircraft. However,
many of them [23, 24, 26, 42, 50, 51] either lack empiri-
cal validation or use a simulated set of aircraft trajectories
instead of real host track data in their evaluations.

Aside from accounting for uncertainties in the computa-
tion, there is considerable research in identifying potential
sources of uncertainties in trajectory prediction [12, 27, 45].
In addition to purely deterministic and probabilistic meth-
ods, a hybrid method combining the SMC and the worst-
case method was also proposed [15]. Although the majority
of the research on trajectory prediction is used toward de-
tecting and resolving conflicts with other aircraft, there is
also a number of research papers on the same topic from the
standpoint of convective weather and Special Use Airspace
(SUA) avoidance [25, 28, 43, 44, 46].

Our work is closer in spirit to research [14, 16, 49] that
studied the aircraft trajectory prediction problem with ma-
chine learning approach, in which they train the model us-
ing historical surveillance data and make predictions using
various observations. Choi et al [14] present an approach
to predict future motion of a moving object based on its
past movement. The approach exploits the similarities of
short-term movement behaviors by modeling a trajectory as
a concatenation of short segments. Although their approach
shares some common ground with ours, they have never ap-
plied it to aircraft trajectory prediction. Leege et al. [16]
specifically propose a machine learning approach to aircraft
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trajectory prediction. However, unlike our study, they use
a stepwise regression approach to systematically determine
which input variables to include in the models based on ex-
planatory power. In his PhD. dissertation, Winder et al.
[49] present a framework for designing a hazard avoidance
alerting system that is based on a Markov decision process
model.

The machine learning approach also inspires our study as
with our stochastic technique, we leverage the historical Air-
craft Situation Display to Industry (ASDI) [3] track data
and aircraft specifications to select among the possible inter-
mediate reference points and predict the aircraft trajectory
based on meteorological observations. During the process,
we assume that the weather observations are realizations of
hidden trajectory segments and the transitions between the
underlying hidden segments follow a Markov model.

To summarize, our approach is distinguished from the past
efforts in at least one of the following four respects: i) We
use probabilistic approach by taking the uncertainties into
account, which yields higher accuracy ii) We consider trajec-
tories as a set of 4D joint cubes, which helps us to unify tra-
jectory segments and associate them with pertinent weather
parameters, iii) We perform time series clustering on the
excessive set of current observations to generate time series
to feed into the Viterbi algorithm, which is an efficient way
to find the optimal state sequence, and iv) We use real host
track and aircraft specifications data along with weather ob-
servations to validate the effectiveness of our approach.

3. PRELIMINARY AND OVERVIEW
In this section we introduce some preliminary concepts,

present the problem, and give an overview of the proposed
aircraft trajectory prediction system.

3.1 Concepts
The EUROCONTROL/FAA Action Plan 16 (AP16) de-

fines a(n) (aircraft) trajectory as ”the path a moving aircraft
follows through the airspace and can be mathematically de-
scribed by a time-order set of trajectory (state) vectors or
the geometry of the flight path” in the TP Requirements En-
gineering Methodology paper [1]. The International Civil
Aviation Organization (ICAO)’s definition of trajectory is
slightly different; ”the description of the movement of an
aircraft, both in the air and on the ground, including posi-
tion, time, and at least via calculation, speed and accelera-
tion” [4]. Our definition of trajectory, which we call ”original
trajectory”, inspired by Ayhan et al. [9] is slightly different:

Definition 1. An original trajectory of an aircraft is a con-
tinuous representation of its motion with 4D spatio-temporal
parameters (latitude, longitude, altitude, and time), indicat-
ing the exact path, traveled by the aircraft.

Due to the fact that there exists no system that continu-
ously records and stores exact positions of an aircraft’s origi-
nal trajectory, only a discrete set of sample data are recorded
and stored which presumably represent a close approxima-
tion of the original trajectory. We call this a raw trajectory,
which we formally define below.

Definition 2. A raw trajectory T of an aircraft is a fi-
nite sequence of positions with timestamps sampled from
the original trajectory. T = [p1, p2, ..., pn], where each point

p is defined by its 4D spatio-temporal parameters (latitude,
longitude, altitude, and time).

Depending on sampling strategy, which is the way how
the position recording is triggered, discrete set of spatio-
temporal parameters are captured as the aircraft moves.
Among others, the most widely used sampling strategies are
time-driven (e.g once every minute), distance-driven (once
every mile), and geometry-driven (e.g. once the aircraft de-
viates from its heading more than 15 degrees). Our study
uses ASDI track data which is a form of time-driven raw
trajectory, described in detail in Section 4.

Definition 3. A reference point r is a fixed spatial location
in the 3D space, that is independent of the trajectory data
source. A set of evenly distributed reference points form a
reference system R.

Our study uses the Global Forecast System (GFS) Rapid
Refresh (RAP) weather model’s 3D grid network [7] as a
reference system, described in detail in Section 4. Figure 1.a
shows a 2D partial view of the RAP weather model’s grid
network, which is the reference model overlaid on top of the
western Florida area in Google Earth [5].

Definition 4. An aligned trajectory T̄ is a set of refer-
ence points that the raw trajectory points are transformed
into. More formally, given a reference system R, the aligned
trajectory T̄ for the raw trajectory T = [p1, p2, ..., pn] is
T̄ = [r1, r2, ..., rn], where ri ∈ R.

Aligned trajectories must preserve the original trajectories
as much as possible. Note that erroneous adjustments are in-
troduced each time original trajectories are turned into raw
trajectories and raw trajectories are turned into aligned tra-
jectories. Hence, preserving original trajectories in aligned
trajectories is obviously a challenging task. This study uses
Euclidean distance as a distance function and searches for
the nearest neighboring grid point in the reference system to
transform raw trajectory points into reference points. Fig-
ure 1.b illustrates 3D partial view of both aligned and raw
trajectories with the reference system on top of the western
Florida area in Google Earth.

Definition 5. A spatio-temporal data cube is an atomic
trajectory unit in space, defined by its reference point co-
ordinates (latitude, longitude, altitude) where weather pa-
rameters (temperature, wind speed, and wind direction) are
considered to remain constant within a period of time.

Aligning raw trajectories to reference points is a critical
preparation step where all necessary parameters are aggre-
gated per point. However, due to uncertainties, we hypo-
thetically create cubes around reference points, building an
entire airspace composed of 3D cubes, where each data cube
has homogeneous weather parameters within during a cer-
tain period of time. This way, trajectories are defined by
a set of cubical segments. In our study, the lateral resolu-
tion of each cube is 13km and temporal resolution is 1hr.
Figure 1.c is an illustration of a set of spatio-temporal data
cubes defining an aligned trajectory transformed from a par-
tial raw trajectory.

Definition 6. An airspace volume of interest is a 4D airspace
volume in which a number of spatio-temporal data cubes are
stacked up horizontally and/or vertically.
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Figure 1: Partial illustration of reference system, raw and aligned trajectories, and spatio-temporal data
cubes on top of the western Florida area in Google Earth.

3.2 Problem Statement
Given a set of historical raw trajectories for specific air-

craft types along with pertinent historical weather obser-
vations, we aim at learning a model that reveals the cor-
relation between weather conditions and aircraft positions
and predicts trajectories in the form of a time series. In this
problem space, we assume that the weather observations are
realizations of hidden aircraft positions i.e. trajectory seg-
ments and the transitions between the underlying hidden
segments follow a Markov model. This assumption consid-
ers a finite set of states, each of which is associated with
a probability distribution over all possible trajectory seg-
ments. Transitions among the states are managed by a set
of probabilities. The states are not visible, but the pertinent
observations are. Given a sequence of observations, we want
to learn an HMM, a statistical Markov model, and derive a
sequence of hidden states that correspond to the sequence
of observations.

The Viterbi algorithm [48] is an efficient method to com-
pute this. However, in our problem space, the observation
sequence for which we want to predict the state sequence is
unknown. In other words, given a set of weather observa-
tions for the full set of spatio-temporal cubes covering the
airspace volume of interest and approximate time period of
flight, we need to identify the ones that we can input into
the Viterbi process.

3.3 System Overview
Figure 2 shows the overview of the proposed aircraft tra-

jectory prediction system, which generates the optimal state
sequence in three steps:

• In the first step, we perform training data processing
by generating the HMM parameters based on a set of
historical trajectories and weather parameters.

• In the second step, we perform test data processing
by executing time series clustering on weather obser-

vations for the entire airspace volume of interest which
yields the observation sequence.

• In the final step, we use the output of the first two
steps in the Viterbi algorithm to generate the optimal
state sequence based on the observation sequence.

In Figure 2, data storage is colored yellow, training data
processing is colored red, test data processing is colored
blue, and the Viterbi process with the final output is col-
ored green.

4. AIRCRAFT TRAJECTORY PREDICTION
This section presents our approach to aircraft trajectory

prediction and elaborates in detail each step of the process.

4.1 Training Data Processing
This step enables us to accurately fuse weather parame-

ters per sample point of a raw trajectory. To attain this goal,
we need a weather model with the highest spatio-temporal
resolution available and that offers both current and histor-
ical weather data. The National Oceanic and Atmospheric
Administration (NOAA) GFS RAP product operational at
the National Center for Experimental Prediction (NCEP)
meets these requirements. Hence, we use GFS RAP weather
model’s 3D grid network as our reference system.

Training data processing, colored red in Figure 2, is per-
formed as follows: Based on the reference system, grid-based
alignment is performed on the historical raw trajectories.
The process is based on the simple idea of finding the nearest
3D reference point for each sample point of a raw trajectory
and then mapping the original sample point to a nearest 3D
reference point, inspired by the Realm method [19]. More
precisely, each sample point in a raw trajectory is aligned to
a nearest 3D reference point. This process generates aligned
trajectories for historical trajectory data. Although, this
seems to suffer from accuracy, it allows to form a unified set
resulting in increased similarity between aligned trajectory
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Figure 2: System overview. Data storage is colored yellow, training data processing is colored red, test data
processing is colored blue, and the Viterbi process with the final output is colored green

points. Spatio-temporal data cubes are formed in the next
step. During this step, weather parameters for the pertinent
time window are retrieved from the weather database and re-
sampled to generate N buckets with distinct ranges. Then,
the weather parameters in distinct buckets are fused with
spatial data for each grid point along the aligned trajectory.
The process yields training data where each historical raw
trajectory becomes a set of 4D joint data cubes.

4.2 Test Data Processing
In order for us to compute the maximum probability of

HMM generating the optimal state sequence of s1, s2, ..., sm,
the observation sequence o1, o2, ..., om is needed. Although
the reference points covering the entire airspace volume of
interest are known, we don’t know which one of these should
be fed into the Viterbi process. To answer this question, we
perform time series clustering with Dynamic Time Warping
(DTW) on excessive set of observations and generate the
input time series.

Test data processing, colored blue in Figure 2, enables us
to address this question. In this step, among all reference
points between the departure and arrival airports, we con-
sider only the ones that were traversed in the historical tra-
jectories. The first step in the process is to perform transfor-
mation on these aligned historical trajectories by replacing
the original date per reference point with the current date,
presuming the flight is about to depart. In other words, dur-
ing this step, all aligned historical trajectories are treated as
if they are current. In the second step, based on new times-
tamps, weather parameters are retrieved from the weather
database and resampled to generate N buckets with distinct
ranges. Next, the weather parameters in distinct buckets are
fused with spatial data for each grid point along the aligned
trajectory. This step generates hypothetical cubes, in the
same way as in the training data processing. The output of
this step is an excessive set of spatio-temporal data cubes
forming distinct trajectories in the form of a time series.

In the final step of the test data processing, spatial data is
omitted and k-Nearest Neighbors (k-NN) clustering is per-
formed using DTW on the weather parameters along the
time series. The algorithm enforces a locality constraint and
uses a LB Keogh lower bound.

Note that in time series analysis, DTW is an algorithm for
measuring similarity between multiple temporal sequences
which may vary in time or speed. For simplicity, suppose
there are two temporal sequences, Q and C, of length n
and m respectively, such that Q = q1, q2, ..., qi, ..., qn and
C = c1, c2, ..., ci, ..., cn. To align two sequences using DTW,

n-by-m matrix is constructed where the (ith, jth) element of
the matrix contains the distance d(qi, cj) between the two
points qi and cj . Each matrix element (i, j) corresponds
to the alignment between the points qi and cj . A warping
path W is a contiguous set of matrix elements that defines a
mapping between Q and C. During the process, the warping
path is subject to a locality constraint. There are exponen-
tially many warping paths that satisfy this constraint. We
are only interested in the path that minimizes the warping
cost. This path can be found using dynamic programming
to evaluate the following recurrence, which defines the cu-
mulative distance γ(i, j) as the distance d(i, j) found in the
current cell and the minimum of the cumulative distances of
the adjacent elements:

γ(i, j) = d(qi, cj)+min{γ(i−1, j−1), γ(i−1, j), γ(i, j−1)}

By enforcing locality constraint through a threshold win-
dow, the algorithm ensures that it is unlikely for di and tj
to be matched if i and j are too far apart. In this algorithm,
the number of clusters is set apriori to 1 and similar time
series are clustered together. The process yields an obser-
vation sequence in the form of a set of weather parameters
which are fed into the Viterbi process, in the next step.

4.3 HMM Processing and Viterbi
We approach the HMM problem by identifying the pa-

rameter set computed based on training data as follows:

• States S = {S1, S2, ..., SK} are represented by refer-
ence points’ coordinates (latitude, longitude, altitude)
that form aligned trajectories.

• Transition probabilities A = {aij}, 1 ≤ i, j ≤ K, i.e.
aij is the probability of an aircraft discretely tran-
sitioning from one state Si to another Sj along its
aligned trajectory, T̄ .

• Emission probabilities B = {bi(o)}, 1 ≤ i ≤ K is the
probability of discrete weather parameters having been
observed at a specific state, Si.

• Initial probabilities π = {πi}, 1 ≤ i ≤ K is the prob-
ability of an aligned trajectory beginning at a specific
state, Si.

These parameters form an HMM, denoted by λ = {S,A,B, π}.
The next step in the process is to choose a corresponding
state sequence s = {s1, s2, ..., sm}, that best explains the
observation sequence, O = {o1, o2, ..., om}. To answer this
question, we use the Viterbi algorithm [48], which has a
recursive approach that works in parallel for all states in a
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Figure 3: 3D raw trajectories of flight DAL2173 be-
tween Atlanta and Miami for the period of May 2010
through December 2011 in Google Earth

strictly time synchronous manner. The key component in
the algorithm is the optimal probability, denoted as δm(i),
which is the maximal probability of HMM generating the
observation segment o1, o2, ..., om, along the optimal state
sequence s1, s2, ..., sm, in which sm = i. Hence, we com-
pute:

δm(i) = max
s1,...,sm−1

πs1bs1(o1)

m∏
j=2

(asj−1,sj bsj (oj))

The process colored green in Figure 2 yields the predicted
aircraft trajectory.

5. EXPERIMENTAL EVALUATION
In this section, we conduct experiments to validate the ef-

fectiveness of our aircraft trajectory prediction system. Sec-
tion 5.1 introduces the experimental dataset. Section 5.2
presents the implementation details and our environment.
Section 5.3 discusses the results for our prediction system,
and Section 5.4 outlines the discoveries gained by our tra-
jectory prediction system.

5.1 Experimental Dataset
Our empirical evaluation used real host track data along

with real weather data: The Delta Airlines’ flights DAL2173,
departing from Hartsfield-Jackson Atlanta International Air-
port (ATL) and arriving at Miami International Airport
(MIA) for the period of May 2010 through December 2011
were studied. The dataset has a total of 594 trajectories
and 56752 points. ATL to MIA is one of the major routes in
the NAS due to fact that the departure airport is the busi-
est airport in the U.S. and the flights are prone to frequent
convective weather in the airspace controlled by three Air
Route Traffic Control Centers (ARTCC), Atlanta (ZTL),
Jacksonville (ZJX), and Miami (ZMA). Figure 3 shows 3D
raw trajectories of flight DAL2173 between Atlanta and Mi-
ami for the period of May 2010 through December 2011.

Two main data sources to our Aircraft Trajectory Predic-
tion System are the FAA’s ASDI and NOAA’s RAP data
which are colored yellow in Figure 2 and presented next.

5.1.1 ASDI
The source of the raw trajectory data is ASDI, which is

a continuous stream of messages delivered over a TCP/IP
network socket. Note that a total of over 30 million ASDI
messages are processed in any single day. ASDI messages
can be flight plan related data, oceanic reports, or host track
reports. The host track data is recorded once in every 60
seconds, and provided in near real-time by the FAA. Upon
processing, the data is stored in a relational database and
made available for use by our trajectory prediction system.
Note that surface data is not included in the ASDI feed,
although departure and arrival airports remain the same,
the positions of the first and last track records may differ
over time. The raw trajectory data is generated by joining
various ASDI message types including: Track Information
and Flight Plan Information. The process generates source
center, date, time, aircraft ID, speed, latitude, longitude, al-
titude values from the Track Information and special aircraft
qualifier from the Flight Plan Information message type.

5.1.2 RAP
The source of the weather data is NOAA National Cen-

ters for Environmental Prediction (NCEP) Rapid Refresh
(RAP) [7] which is the continental-scale NOAA hourly-
updated assimilation/modeling system. RAP covers North
America and is comprised primarily of a numerical forecast
model and an analysis/assimilation system to initialize that
model. It has 13km horizontal resolution with 50 vertical
levels, ptop=10hPa, sigma vertical coordinate. Although
there is an experimental 3km hourly updated nest inside of
the 13km Rapid Refresh, it is not widely available yet. The
RAP weather data is stored as a set of grib2 files [6] each
hour and made available for use by our prediction system.

5.2 Implementation
The ASDI host track data is composed of radar record-

ings at an approximate rate of once every 60 seconds by
each Air Route Traffic Control Center (ARTCC) for any air-
craft operating under Instrument Flight Rules (IFR) within
the confines of an ARTCC’s airspace. Our airspace volume
of interest is controlled by three separate ARTCCs, due to
fact that an aircraft traveling between Atlanta and Miami
airports uses Atlanta ARTCC (ZTL), Jacksonville ARTCC
(ZJX), and Miami ARTCC (ZMA). The ASDI host track
data contains multiple recordings when the aircraft crosses
a boundary between multiple ARTCCs. Hence, our ini-
tial implementation step filtered these multiple recordings
by taking the timestamp and source center (ARTCC) in-
formation into account. The filtering process reduced the
number of historical recordings from 56752 to 48694. As in
rare cases, ARTCCs recorded multiple track data within a
relatively short period of time, such as 20 seconds, we also
filtered these recordings. The process brought the number
of historical recordings down to 44824.

The remaining historical raw trajectory points went through
alignment process as elaborated in Section 4.1. During
the process, we used GFS RAP weather model’s 3D grid
network as our reference model, and mapped the raw tra-
jectory points to the nearest reference points. This pro-
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Table 1: Buckets for weather parameters
Temperature (temp)

No Bucket Value (kelvin)
1 temp ≤ 220 220
2 220 < temp ≤ 240 240
3 240 < temp ≤ 260 260
4 260 < temp ≤ 280 280
5 280 < temp ≤ 300 300
6 300 < temp ≤ 350 350

Wind speed (ws)
No Bucket Value (knots)
1 ws ≤ 30 30
2 30 < ws ≤ 60 60
3 60 < ws ≤ 90 90
4 90 < ws ≤ 120 120
5 120 < ws ≤ 150 150

Wind direction (wd)
No Bucket Value (degrees)
1 wd ≤ 45 45
2 45 < wd ≤ 90 90
3 90 < wd ≤ 135 135
4 135 < wd ≤ 180 180
5 180 < wd ≤ 225 225
6 225 < wd ≤ 270 270
7 270 < wd ≤ 315 315
8 315 < wd ≤ 360 360

cess yielded aligned historical trajectories. In the next step,
spatio-temporal data cubes were formed and reference points
along aligned trajectories were fused with weather parame-
ters. However, due to lack of historical weather data for the
flight time window of interest of some aligned trajectories,
we were not able to expand their dimensions. Subsequently
these aligned historical trajectories were eliminated bringing
the total number of reference points down to 37849. Fusing
positional data with weather parameters yielded the follow-
ing attributes per spatio-temporal data cube: source center,
date, time, aircraft id, speed, latitude, longitude, altitude,
aircraft type, temperature, wind speed, wind direction. As
the final step of the training data processing, we split the
weather parameters into buckets as shown in Table 1.

Next, we computed the following HMM parameters:

• 3698 distinct states, S were generated.

• A sparse transition matrix, A of size 3698 x 3698 =
13675204 was generated.

• An emission matrix, B of size 117 x 3698 = 432666
was generated.

• An initial matrix, π of size 28 x 1 was generated.

Aside from these HMM parameters, we also needed to feed
the observation sequence into the Viterbi algorithm.

To evaluate our prediction system, we performed boot-
strapping by drawing many trajectory samples with replace-
ment from the historical trajectories. In the meantime,
we removed the pertinent track records from the training
dataset. The process allowed us to plot 95% confidence in-
terval (CI) for the mean error and standard deviation of our
trajectory samples. Note that one of the trajectory samples
we draw happened to be May 14, 2011. Hence, we present
the process for this particular trajectory sample. The test
data processing repeated itself for other trajectory samples.

Test data processing for this particular trajectory sample
is as follows: We used aligned trajectories for the same his-
torical data. However, this time we treated each trajectory
as if it was flown on May 14, 2011. This required a simple
transformation of replacing date value per aligned trajectory
point. The next step in the process required that we obtain
weather parameters for the positional data. However, in or-
der for us to do that, we needed to identify the time period of
the flight. Given the median duration of the flight DAL2173
being 78 minutes, we decided to use two RAP grib2 weather
files, one targeting weather observations recorded at 15:00
UTC and the other targeting weather observations recorded
at 16:00 UTC on May 14, 2011. By using these files, we
retrieved the pertinent weather parameters per aligned tra-
jectory point. Next, we split the weather parameters into
buckets as shown in Table 1. In the final step of test data
processing, we performed time series clustering, using DTW.
The input to the process was 474 time series of 78 weather
observations, where each observation contained temperature,
wind speed, wind direction parameters. The k-nearest neigh-
bors (k-NN) clustering with k=1 used DTW Euclidean dis-
tance for similarity measure. To speed up the process, we
used LB Keogh lower bound. The resulting set of cluster
centroids identified by weather parameters defined the ob-
servation sequence Ys.

As the final step of the process, we fed the observation
sequence Ys and HMM parameters, λ = {S,A,B, π} into
the Viterbi algorithm. The algorithm worked in parallel for
all states in a strictly time synchronous manner and returned
the optimal state sequence with the maximum probability.

Our experiments were conducted on a computer with Intel
Core i7-3840QM CPU @ 2.80GHz and 16GB memory, run-
ning on Linux Ubuntu 14.04.2 64-bit LTS Operating System.
All the algorithms were implemented in Python v2.7.

5.3 Results
We evaluated the effectiveness of our prediction system

based on bootstrapping by drawing 23 trajectory samples
with replacement from the historical trajectories. This way,
we compared our prediction with the ground truth, flight
DAL2173’s aligned trajectory. Next, we computed the mean
error and standard deviation per trajectory sample. Then,
we ranked order the means to estimate the 2.5 and 97.5
percentile values for 95% CI.

Figure 4 shows actual flown trajectory in red overlaid on
top of spatio-temporal data cubes in white predicted by our
system for one of the trajectory samples drawn, May 14,
2011 as part of the bootstrapping. Major prediction errors
are introduced around top of climb and descent phases.

Our quantitative evaluation is based on trajectory pre-
diction accuracy metrics, including horizontal, along-track,
cross-track, and vertical errors, as outlined in [18, 31]. The
errors illustrated in Figure 5 are based on the coordinates
of the aircraft, denoted as AC, and a trajectory segment
containing the points TJ1 and TJ2.

Table 2 captures mean error µ and standard deviation σ
for horizontal, vertical, along-track, and cross-track errors
for the entire set of trajectory samples with 95% CI. The
errors were computed based on our prediction versus flight
DAL2173’s raw trajectory per trajectory sample.

The horizontal error is unsigned whereas the along-track
and cross-track errors are signed errors. Note that the mean
value for the cross-track error µ(ecross) along the entire tra-
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Figure 4: Actual flown trajectory overlaid on top
of spatio-temporal data cubes generated for flight
DAL2173 on May 14, 2011 by our prediction system

jectory of flight DAL2173 is 6.804nm (=12.601km), when
the sign is omitted. Due to fact that spatial resolution of
our trajectory prediction system is 13km, which is the hori-
zontal length of each spatio-temporal cube, we can conclude
that the mean value µ(ecross) for the cross-track error of
12.601km is within the boundaries of our spatial resolution.

Figure 6 illustrates the pertinent histograms for horizon-
tal, vertical, along-track and cross-track errors for the entire
set of trajectory samples with 95% CI. Due to fact that the
along-track and cross-track errors are signed errors, they
generate a relatively symmetric distribution about the zero,
as shown in Figure 6. The area of the histograms provides
an indication of overall performance.

To evaluate behavior of trajectory prediction errors over
time, we also computed horizontal, along-track, and cross-
track errors for the entire set of trajectory samples with
95% CI based on look-ahead time, as shown in Figure 7.
Generally, the longer the look-ahead time, the greater the
uncertainty, yielding larger errors. However, this is not the
case for our system, as shown in Figure 7.

As part of the time-based evaluation, we compared esti-
mated time of arrival initially entered by AOC, predicted
time of arrival computed by our system and the actual time
of arrival for flight DAL2173.

Figure 5: Trajectory prediction accuracy metrics

Table 2: Mean and standard deviation values for
horizontal, vertical, along-track, and cross-track er-
rors for flight DAL2173 on trajectory samples

Mean error (µ)
µ(ehoriz) µ(ealong) µ(ecross) µ(evert)
12.965nm 1.454nm -1.859nm 687.497ft

Standard deviation (σ)
σ(ehoriz) σ(ealong) σ(ecross) σ(evert)
12.093nm 13.833nm 10.836nm 4910.691ft

Although our prediction system considers time of last ASDI
track record as arrival time, there is an additional 4 min-
utes in average for the aircraft to actually land. By taking
this offset into account, our predicted arrival time virtually
matches the actual arrival time. Accurate arrival time pre-
diction is a critical capability in maintaining safe separation
and sequencing of aircraft.

5.4 Discoveries
In this section, we present the value our system offers in

an operational view of flight planning.
The majority of other ground-based tactical TP tools com-

municate with the aircraft periodically throughout the flight,
obtain and update the following parameters, and predict
trajectories: i) initial conditions (aircraft’s 4D position), ii)
flight plan, iii) aircraft performance model, iv) weather ob-
servations, and v) aircraft intent.

As with proprietary implementations, their prediction ac-
curacy depends on correct initial state values and look-ahead
time. Hence, they require frequent parameter updates from
the aircraft. Each update requires datalink communication
throughout the flight, resulting in high communication costs.
To give a notional idea on communication cost, it is safe
to assume that a TP tool communicates with an aircraft
once every 10 seconds for position and once every 2 min-
utes for aircraft intent data where each message costs $0.50,
although airlines pay yearly flat rates to data link service
providers such as ARINC and SITA that are kept confiden-
tial. Based on the assumption, for a single flight of 80-
minute duration, the data link communication cost can add
up to $260. Depending on the fleet size and frequency and
distance of flights, data link communication cost can easily
become millions of dollars per year.

Unlike other TP tools, our system inputs only weather ob-
servations and predicts a trajectory, based on an HMM that
was learned from the historical trajectories for particular air-
craft types. Our prediction system is also ground-based and
runs offline requiring no datalink communication with the
aircraft. As presented in the analysis of mean error versus
look-ahead time, the accuracy of a trajectory predicted by
our system is independent of look-ahead time. Our system
saves the airlines data communications costs, if deployed.

Initial pre-departure flight plans are filed by the AOC and
approved by the FAA, when validated. As presented in the
analysis of mean errors and standard deviation values, our
system predicts aircraft trajectory within the boundaries of
our horizontal spatial resolution of 13km. Hence, when de-
ployed by the airlines, AOC can generate an accurate flight
plan and file for approval. In return, the FAA can run our
system and validate the filed flight plans, when deployed.

As presented in the analysis of arrival times, our system
predicted virtually the same arrival time of flight DAL2173
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Figure 6: Histograms for horizontal, vertical, along-
track, and cross-track errors

as the actual arrival time. The accuracy would help in
maintaining separation and sequencing of aircraft in the
NAS. Better maintained separation and sequencing means:
i) higher safety and capacity, ii) accurate arrival meter-
ing which translates to efficiency and so fuel savings and
reduced emissions. An erroneously predicted arrival time
would lead the Air Traffic Controller to allot more time or
insufficient time and airspace for the flight, and generate the
incorrect landing sequence potentially reducing runway ac-
ceptance rate and causing other aircraft to be perturbed in
their operations resulting in reduced efficiency, waste of re-
sources, and possibly reducing safety. Note that the aircraft
type Delta Airlines flown for DAL2173 on May 14, 2011 is
Boeing 757-200 and operational cost of this particular air-
craft per hour is $8,383.15 [2], or $139.72 each minute of
extra flight time due to erroneous arrival prediction plus the
cost of the impact on other perturbed dependent flights.

6. CONCLUSIONS
The role and performance of trajectory prediction system

is critical to the success of the DST functions which have
substantial impact on ATM and airspace flow management.
In this paper, we have proposed a novel approach to air-
craft trajectory prediction that can be used for more efficient
and realistic flight planning by aircraft operators and to as-
sist airspace flow management, potentially achieving higher
safety, capacity, and efficiency and commensurate fuel sav-
ings and so emission reductions for a better environment.

Our evaluation on a real trajectory dataset verified that
our prediction system achieved horizontal accuracy of 12.601km
which is defined as a mean cross-track error µ(ecross) that
is within the boundaries of highest spatial resolution, our
trajectory prediction system has to offer. In order for us
to achieve higher accuracy, we need weather observations of
higher spatial resolution than 13km, which is the current
highest spatial resolution available. We plan to investigate
the feasibility of resampling and intelligent interpolation of
weather data to generate higher spatial resolution. Another
option would be to use the recent High-Resolution Rapid

Figure 7: Horizontal, along-track, and cross-track
mean errors over look-ahead time

Refresh (HRRR) weather product, which offers 3km of spa-
tial resolution for a smaller geographic region, yet still ex-
perimental by the NOAA. The introduction of a browsing
capability similar to what is available in the spatial domain
(e.g., [17, 35]) is also of interest.
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