
while ll 6= ERROR do

tcl  tuple of ctcl corresponding to ll.tid c

r

if distance (tcl.location, ts.location) < 2 and c

d

tcl.image id = ts.image id then

pi  tuple t of physical images

such that t.image id = ts.image id c

af

+ c

r

Display pi.raw, Print cl.semantics

ll  next tuple of ctcl loc intersecting R c

sn

Plan P4

I

Search using alphanumeric indices on class for all air�eld tuples and all beach tuples.

cda  �rst tuple t of cl semant such that t.semantics >= "airfield" c

af

ca  tuple of classes corresponding to cda.tid c

r

cdb  �rst tuple t of cl semant such that t.semantics >= "beach" c

af

cb  tuple of classes corresponding to cdb.tid c

r

lca  �rst tuple t of li cl such that t.class >= ca.name c

af

while lca 6= ERROR and lca.class = ca.name do

lia  tuple of logical images corresponding to lca.tid c

r

lcb  �rst tuple t of li cl such that t.class >= cb.name c

af

while lcb 6= ERROR and lcb.class = cb.name do

lib  tuple of logical images corresponding to lcb.tid c

r

if lia.location(y) > lib.location(y) and

lib.image id = lia.image id then

pi  tuple t of physical images

such that t.image id = lia.image id c

af

+ c

r

Display pi.raw

lcb  next tuple of li cl in alphabetic order c

an

lca  next tuple of li cl in alphabetic order c

an

Plan P4

P

Search the air�eld and the beach partitions sequentially .

cda  �rst tuple t of cl semant such that t.semantics >= "airfield" c

af

ca  tuple of classes corresponding to cda.tid c

r

cdb  �rst tuple t of cl semant such that t.semantics >= "beach" c

af

cb  tuple of classes corresponding to cdb.tid c

r

cta  get rel name(ca.name) c

nc

ctb  get rel name(cb.name) c

nc

for all tuples ta of cta (access each tuple sequentially) c

s

for all tuples tb of ctb (access each tuple sequentially) c

s

if ta.location(y) > tb.location(y) and c

d

ta.image id = tb.image id then

pi  tuple t of physical images

such that t.image id = ta.image id c

af

+ c

r

Display pi.raw
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ctp  get rel name(cp.name) c

nc

for all tuples tp of ctp (access each tuple sequentially) c

s

R  10� 10 rectangle with lower left corner at

(tp:location(x)� 5; tp:location(y)� 5)

ll  �rst tuple t of cts loc such that t.location intersects R c

sf

while ll 6= ERROR do

ts  tuple of cts corresponding to ll.tid c

r

if distance (tp.location, ts.location) < 5 and c

d

tp.image id = ts.image id then

pi  tuple t of physical images

such that t.image id = tp.image id c

af

+ c

r

Display pi.raw

ll  next tuple of cts loc intersecting R c

sn

Plan P3

I

Search for site of interest tuples using an alphanumeric index on class and search for

points in the given range using a spatial index on location.

cds  �rst tuple t of cl semant such that t.semantics >= "site of interest" c

af

cs  tuple of classes corresponding to cds.tid c

r

lc  �rst tuple t of li cl such that t.class >= cs.name c

af

while lc 6= ERROR and lc.class = cs.name do

lis  tuple of logical images corresponding to lc.tid c

r

R  4� 4 rectangle with lower left corner at

(lis:location(x)� 2; lis:location(y)� 2)

ll  �rst tuple t of li loc such that t.location intersects R c

sf

while ll 6= ERROR do

lic  tuple of logical images corresponding to ll.tid c

r

if distance (lic.location, lis.location) < 2 and c

d

lic.image id = lis.image id then

pi  tuple t of physical images

such that t.image id = lic.image id c

af

+ c

r

cd  tuple t of classes such that t.name = lic.class c

af

+ c

r

Display pi.raw, Print cd.semantics

ll  next tuple of li loc intersecting R c

sn

lc  next tuple of li cl in alphabetic order c

an

Plan P3

P

Search the site of interest partition sequentially, search all other partitions using the

spatial index on location.

cds  �rst tuple t of cl semant such that t.semantics >= "site of interest" c

af

cs  tuple of classes corresponding to cds.tid c

r

cts  get rel name(cs.name) c

nc

for all tuples cl of classes (access each tuple sequentially) c

s

ctcl  get rel name(cl.name) c

nc

for all tuples ts of cts (access each tuple sequentially) c

s

R  4� 4 rectangle with lower left corner at

(ts:location(x)� 2; ts:location(y)� 2)

ll  �rst tuple t of ctcl loc such that t.location intersects R c

sf
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Plan P2A

P

: Search both the picnic and scenic view partitions sequentially.

cds  �rst tuple t of cl semant such that t.semantics >= "scenic view" c

af

cs  tuple of classes corresponding to cds.tid c

r

cdp  �rst tuple t of cl semant such that t.semantics >= "picnic" c

af

cp  tuple of classes corresponding to cdp.tid c

r

cts  get rel name(cs.name) c

nc

ctp  get rel name(cp.name) c

nc

for all tuples tp of ctp (access each tuple sequentially) c

s

for all tuples ts of cts (access each tuple sequentially) c

s

if distance (tp.location, ts.location) < 5 and c

d

tp.image id = ls.image id then

pi  tuple t of physical images

such that t.image id = tp.image id c

af

+ c

r

Display pi.raw

Plan P2B

I

: Search for picnic tuples using an alphanumeric index on class and search for scenic

view tuples using a spatial index on location.

cds  �rst tuple t of cl semant such that t.semantics >= "scenic view" c

af

cs  tuple of classes corresponding to cds.tid c

r

cdp  �rst tuple t of cl semant such that t.semantics >= "picnic" c

af

cp  tuple of classes corresponding to cdp.tid c

r

lc  �rst tuple t of li cl such that t.class >= cp.name c

af

while lc 6= ERROR and lc.class = cp.name do

lip  tuple of logical images corresponding to lc.tid c

r

R  10� 10 rectangle with lower left corner at

(lip:location(x)� 5; lip:location(y)� 5)

ll  �rst tuple t of li loc such that t.location intersects R c

sf

while ll 6= ERROR do

lis  tuple of logical images corresponding to ll.tid c

r

if lis.class = cs.name then

if distance (lis.location, lip.location) < 5 and c

d

lis.image id = lip.image id then

pi  tuple t of physical images

such that t.image id = lip.image id c

af

+ c

r

Display pi.raw

ll  next tuple of li loc intersecting R c

sn

lc  next tuple of li cl in alphabetic order c

an

Plan P2B

P

: Search picnic partition sequentially, search scenic view partition using the spatial

index on location for the scenic view partition.

cds  �rst tuple t of cl semant such that t.semantics >= "scenic view" c

af

cs  tuple of classes corresponding to cds.tid c

r

cdp  �rst tuple t of cl semant such that t.semantics >= "picnic" c

a

f

cp  tuple of classes corresponding to cdp.tid c

r

cts  get rel name(cs.name) c

nc

24



Appendix A Sample Plans

The letters in italic at the end of each line represent the cost of executing this line in terms of the

constants de�ned in Figure 12. Notice that the cost of the \display" operation is not included since

it is not considered part of processing the query. It is only a mechanism to output the answer to

the query and is always the same regardless of the selected execution plan. In addition, no cost is

associated with operations that compare two values (e.g., =; <).

Plan P1

I

: Search using an alphanumeric index on class.

cd  �rst tuple t of cl semant such that t.semantics >= "scenic view" c

af

c  tuple of classes corresponding to cd.tid c

r

lc  �rst tuple t of li cl such that t.class >= c.name c

af

while lc 6= ERROR and lc.class = c.name do

li  tuple of logical images corresponding to lc.tid c

r

pi  tuple t of physical images such that t.image id = li.image id c

af

+ c

r

Display pi.raw

lc  next tuple of li cl in alphabetic order c

an

Plan P1

P

: Search the scenic view partition sequentially.

cd  �rst tuple t of cl semant such that t.semantics >= "scenic view" c

af

c  tuple of classes corresponding to cd.tid c

r

ct  get rel name(c.name) c

nc

for all tuples t of ct (access each tuple sequentially) c

s

pi  tuple tp of physical images such that tp.image id = t.image id c

af

+ c

r

Display pi.raw

Plan P2A

I

: Search using alphanumeric indices on class for all picnic tuples and all scenic view

tuples.

cds  �rst tuple t of cl semant such that t.semantics >= "scenic view" c

af

cs  tuple of classes corresponding to cds.tid c

r

cdp  �rst tuple t of cl semant such that t.semantics >= "picnic" c

af

cp  tuple of classes corresponding to cdp.tid c

r

lcp  �rst tuple t of li cl such that t.class >= cp.name c

af

while lcp 6= ERROR and lcp.class = cp.name do

lip  tuple of logical images corresponding to lcp.tid c

r

lcs  �rst tuple t of li cl such that t.class >= cs.name c

af

while lcs 6= ERROR and lcs.class = cs.name do

lis  tuple of logical images corresponding to lcs.tid c

r

if distance (lis.location, lip.location) < 5 and c

d

lis.image id = lip.image id then

pi  tuple t of physical images

such that t.image id = lis.image id c

af

+ c

r

Display pi.raw

lcs  next tuple of li cl (after lcs) in alphabetic order c

an

lcp  next tuple of li cl (after lcp) in alphabetic order c

an
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Two di�erent data organizations (integrated and partitioned) for storing logical images in re-

lational tables were proposed. They di�er in the way that the logical images are stored. Sample

queries and execution plans to answer these queries were described for both organizations. Analyt-

ical as well as empirical cost analyses of these execution plans were given and the partitioned data

organization proved to be the most e�cient for queries that consist of both contextual and spatial

speci�cations. On the other hand, the integrated organization proved to be better for purely spatial

speci�cations. Both organizations gave similar results for queries that consist of purely contextual

speci�cation.

The data set used for our experiments was not very large. A more realistic data set for this sample

application would most likely have a much larger number of images and as a result a much larger

number of tuples in each relation. We currently have only scanned one small portion of the map of

Finland in order to test our ideas. Acquiring more data and testing on a larger data set is subject

of future research. The fact that even on a relatively small data set, a signi�cant improvement in

execution time was achieved by use of spatial indexing and data partitioning is very encouraging.

On a larger data set the e�ect of our methods should be even more pronounced.

Our de�nition of the class of images that we can handle is rather strict. Some of these restrictions

can be relaxed. In particular, the requirement that there exists a function f which when given a

symbol s and a class C returns a value between 0 and 1 indicating the certainty that s belongs to

C can be omitted. In this case, we can store the feature vectors in the database rather than the

classi�cations. More elaborate indexing methods would then be required to respond to queries such

as those presented in this paper. This is also a subject of future research. All of the examples and

experiments in this paper were from the map domain. However, images from many other interest-

ing applications fall into the category of symbolic images. These include CAD/CAM, engineering

drawings, 
oor plans, and more. Hence, the methods that we describe in this paper are applicable

to them as well. Note that we have used similar methods for the interpretation of 
oor plans [19].
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Plan P2B does make use of a spatial index and here we see a signi�cant di�erence between the

partitioned and integrated organizations. In particular, the partitioned organization performs much

better than the integrated organization. This is due to the signi�cantly smaller number of spatial

\�nd next" and \random access by tid" operations in the partitioned organization. In addition, plan

P2B performs signi�cantly better than plan P2A both in the integrated and partitioned organiza-

tions. As expected, using the spatial index improves the performance of such queries signi�cantly.

On the other hand, in the case of plan P3, the integrated organization performs much better than

the partitioned organization. This is due mainly to the signi�cantly larger number of spatial \�nd

�rst" operations that are required in the partitioned organization since a spatial search is performed

on each partition separately.

6.3 Discussion

In an image database, we may assume that the most prevalent operation is the retrieval of images.

Images will usually be inserted in batches and should be stored in such a way that they can be

retrieved e�ciently. Update operations are very uncommon. The di�erence in the time required

to respond to queries such as Q1{Q4 is the most important factor in choosing how to organize the

data. As we have seen, the type of queries that are expected can also in
uence this choice. If

most queries consist of only contextual speci�cations (i.e., retrieving images that contain a given

object), then the additional complexity in writing plans required by the partitioned organization

is probably not worthwhile. On the other hand, if most queries consist of both contextual and

spatial speci�cations, then the signi�cant improvement in the time required to answer such queries

outweighs the overhead associated with the partitioned organization. Our results also show that

for both data organizations, plans that use a spatial index perform much better than plans that do

not make use of such an index. In the case of queries that consist of mostly spatial speci�cations,

the partitioned organization proved to be a hindrance. The problem is that if the query does not

specify which objects are required, then the computation needs to be repeated on each partition

thereby resulting in very poor results. If these queries are predominant in the application, then the

integrated organization should be chosen.

In our example application most queries consist of both contextual and spatial speci�cations.

Thus, the partitioned organization is probably the most desirable. However, if queries such as Q3

are also expected, then some sort of hybrid approach may be necessary.

7 Concluding Remarks

Methods for integrating symbolic images into the framework of a conventional database management

system (DBMS) have been described. Both the pattern recognition and indexing aspects of the

problem have been addressed. By limiting ourselves to symbolic images, the task of object recognition

was simpli�ed, thereby enabling us to utilize well-known methods used in document processing in

order to perform object extraction. The emphasis is on extracting both contextual and spatial

information from the raw images. The logical image representation that we have de�ned preserves

this information. Methods for storing and indexing logical images as tuples in a relation have been

presented. Indices are constructed on both the contextual and the spatial data, thereby enabling

e�cient retrieval of images based on contextual as well as spatial speci�cations.
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Relation name Integrated Partitioned

classes 2.6 2.6

cl semant 1.9 1.9

physical images 46.1 46.1

pi imid 11.0 11.0

pi ll 38.6 38.6

logical images / total CL class 95.3 47.2

li cl / total CL cert 124.5 58.6

li loc / total CL loc 94.3 128.27

total all relations 414.3 334.27

Figure 14: Sizes (in Kilobytes) of the relational tables in the integrated and parti-

tioned data organizations.

from the relation name in all partitions. However, since the total di�erence in storage space is not

very large, it should not play an important role in considering which organization is better.

6.2 Image Retrieval Results

Figure 15 displays various measures describing the execution time, the number of I/O operations,

and the number of basic database operations (as de�ned in Section 5.3) that were required to

process queries Q1{Q4. The performance of plans P1, P2A, and P4 are almost identical using the

P1 P2A P2B P3 P4

Measure Integ. Part. Integ. Part. Integ. Part. Integ. Part. Integ. Part.

time in user mode 1.02 1.05 38.71 41.95 24.49 15.21 7.40 97.67 18.63 21.13

time in system mode 0.59 0.55 10.30 4.28 12.10 7.39 3.36 47.36 7.83 3.05

total time 1.61 1.60 49.01 46.23 36.59 22.60 10.76 145.03 26.46 24.18

# of input operations 42 19 51 21 63 23 57 129 52 19

# of output operations 12 15 1138 1151 18 24 352 7721 18 24

# of page faults 127 117 167 108 173 134 169 239 151 102

# alphanumeric �nd �rst 189 188 27 26 27 26 164 82 37 36

# alphanumeric �nd next 187 0 15793 0 187 0 57 0 10830 0

# sequential access 0 187 0 15708 0 187 0 1276 0 10738

# random access by tid 375 188 15630 26 1635 64 308 171 10746 36

# spatial �nd �rst 0 0 0 0 187 187 56 1254 0 0

# spatial �nd next 0 0 0 0 1423 52 166 166 0 0

# geometric computations 0 0 15521 15521 52 52 166 166 5050 5050

Figure 15: Execution performance measures for plans P1{P4

two organizations with a slight advantage for the partitioned organization. All these plans only use

alphanumeric indices; they do not use the spatial index. For these plans, the slight advantage of

the partitioned organization is due to the absence of a need for an index on class. Thus, there is

no need for dereferencing operations in order to access the tuples of the logical images relation.

This can be seen in Figure 15 by the larger number of \random access by tid" operations in the

integrated organization compared to the number of these operations in the partitioned organization.

19



the logical images) were input to SAND and inserted into relations as de�ned in Section 4. SAND

provides a programming environment where query execution plans can be created either manually

or automatically. This programming environment is interfaced to Tcl (short for Tool Command

Language), an interpreted scripting language developed by Ousterhout [15]. At the moment, the

automatic creation of query evaluation plans is performed through a very primitive algorithm. Thus,

we chose to create our plans manually. These plans are tcl script �les. We created plans for each

one of the queries listed in Section 5.1 following the strategies outlined in Section 5.2. These plans

were executed on a Sparc 10 running UNIX, and statistics regarding the execution were recorded.

We only report results for the database storage and retrieval performance here. For experimental

results of the conversion process see [20].

6.1 Image Insertion Results

Figure 13 displays various measures describing the execution time and the number of I/O operations

that were required when inserting the logical images into the relations. These results are only for

inserting the data into the database. They do not include the time required for converting from

physical to logical images, which is a time consuming process (i.e., it took approximately 4 hours

for our data set). Time in user mode corresponds to the CPU time spent executing application

Measure Integrated Partitioned

time in user mode 4:39 6:51

time in system mode 1:23 1:34

total time 6:02 8:25

# of input operations 184 213

# of output operations 29,527 29,421

# of page faults 190 228

Figure 13: Image insertion times (min:sec) and number of I/O operations in the

integrated and partitioned organizations.

code. Time in system mode corresponds to the CPU time spent processing system calls. (These are

values that are reported by the UNIX time operation). Total time is the sum of these two quanti-

ties. Inserting the data into the partitioned organization is slightly slower than for the integrated

organization. The reason for this is that some additional time is required in order to determine the

particular partition (i.e., relation) that a given logical image tuple belongs too. That relation is then

opened for insertion. In contrast, in the integrated organization all tuples are inserted into the same

relation. However, since the di�erence in insertion time is relatively small, it should not play an

important role in considering which organization is better.

Figure 14 gives the sizes of the various relations in the two organizations. The classes relation

and physical images relations along with their indices are identical in both organizations. Thus,

their sizes are the same. The total space required for the logical images relation and its indices

in the partitioned organization is 25% less than that required for the relations of the integrated

organization (234K vs. 314K, respectively). This is because the class is stored for each tuple both

in the logical images and the li cl relations. On the other hand, in the partitioned organization,

the class name is only stored once for each class in the classes relation. The class name is derived
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site of interest whose location was the center of this circular range. This is the number of results

reported when responding to query 3. N

classes

denotes the number of tuples in relation classes.
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For query 3, the integrated organization is clearly the one to use. The spatial index on location is

used to retrieve exactly those tuples that are within the speci�ed range. Since the class of the tuple

was not used as a quali�er, there is no need for any further processing of these tuples. However, in

the partitioned organization, each of the partitions needs to be searched separately. The number

of spatial window queries is multiplied by the number of di�erent classes in the application thereby

resulting in a very ine�cient computation.

Equations 9 and 10 estimate the cost of responding to query 4 using the integrated and partitioned

organizations, respectively. Note that the plan for this query is very similar to plan A for query 2

in the case of both the integrated and partitioned data organizations. Observe that in this case, the

alternative plan B is not even considered since the spatial range speci�ed by the condition \north

of" is very large. Thus, its selectivity is small and it is not worthwhile to perform a spatial search.

N

rslt

4

denotes the number of air�eld tuples that are north of beach tuples and in the same image.
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The main di�erence between these two cost estimates is that in the integrated organization, the

index is scanned sequentially, whereas in the partitioned organization, the relation corresponding

to the scenic view partition is scanned sequentially (as is the case of query 1). As a result, once

again, there are considerably more random access operations in the integrated organization than in

the partitioned organization. Notice that there is no cost associated with the \north of" operation

as it is just a comparison of two numbers.

6 Experimental Study

The system was tested on the red sign layer of the GT

3

map of Finland. This map is one of a

series of 19 GT maps that cover the whole area of Finland. The red sign layer contains geographic

symbols that mostly denote tourist sites. The map was scanned at 240dpi. The layer was split into

425 tiles of size 512� 512. For the purpose of our experiment, each one of these tiles was considered

as an image. See Figure 5 for an example image. The initial training set was created by giving one

example symbol of each class as taken from the legend of the map. There were 22 classes in the

map. The images were input in random order to the image database via the image conversion system

outlined in Section 3. The �rst 50 tiles were processed in user veri�cation mode. At that point,

the training set contained 100 instances of symbols and the current recognition rate was determined

su�cient. The remaining images were processed automatically. The results of this conversion (i.e.,
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The main di�erence between these two cost estimates is in the number of spatial next operations

and the number of random access operations. In the integrated organization, all tuples t of any

class in rectangle R

2

are retrieved from the spatial index. The class of t is then retrieved from

the logical images relation to see if it corresponds to a \scenic view". This requires a random

access operation for each tuple in R

2

. In addition, the result of the spatial query is larger. In the

partitioned organization, only tuples of type \scenic view" are retrieved by the spatial index. Thus,

there is no need for an additional random access to check the class of the tuple, and the result of

the spatial query is smaller. The plan for the partitioned organization can be further improved by

applying a spatial join operation to the two relations scenic class and pi class corresponding

to \scenic view" and \picnic", respectively. This operation uses techniques aimed at computing

joins between collections of objects based on attributes corresponding to the space occupied by the

individual object. The overall idea is that the join can be e�ciently computed by traversing both

indices in parallel in such a way as to avoid comparing tuples which cannot satisfy the join condition.

This operation has not been implemented in SAND yet. Once it is added, plan P2B

P

will be revised

accordingly.

It is interesting to compare the costs of answering query 2 for one particular organization using

the two di�erent plans. For the integrated organization, we compare equations 3 and 5. In plan

A, both relations are scanned sequentially via the alphanumeric index li cl. For each picnic tuple,

each scenic view tuple is checked to determine whether or not it is within the speci�ed range. Thus,

the total number of distance computations is N

pic

�N

sv

. In addition, the same number of random

access operations are also required in order to get the locations from the logical images relations.

In plan B, the spatial index is used and thus only tuples that are within the speci�ed range need to

be examined. The cost of this is the overhead involved in using the spatial index. In this case, this

cost is N

pic

spatial �nd operations, and N

pic

�N

InR

2

spatial next operations. The total number of

distance computations is N

pic

�N

sv InR

2

. Whether plan A or plan B is better depends on the size of

the data set and on the size of the speci�ed spatial range. Assuming a relatively large data set and a

relatively small spatial range (i.e., that the number of tuples in the spatial range is much smaller than

the total number of tuples in the data set), plan B should prove to be much more e�cient than plan

A. Similar observations can be made about the partitioned organization by comparing equations 4

and 6. Once the spatial join operation is implemented, as mentioned above, the di�erence will be

even larger.

Equations 7 and 8 estimate the cost of responding to query 3 using the integrated and partitioned

organizations, respectively. Note that the plan for this query is very similar to plan B for query 2 in

the case of both the integrated and partitioned data organizations. A plan similar to that of plan A

for query 2 is not reasonable as there is no condition on an alphanumeric attribute. In other words,

the only reasonable plan is to search using the spatial index. N

InR

3

denotes the number of tuples

in the search rectangles of query 3 (R

3

). N

InC

3

denotes the number of tuples in the circular range

speci�ed in query 3 (C

3

). N

rslt

3

denotes those tuples of N

InC

3

that are in the same image as the
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Name Meaning

c

s

average time to access a tuple in sequential order

c

r

average time to access a tuple by tid (random order)

c

af

average time to perform a \�nd �rst" operation on an alphanumeric index

c

an

average time to perform a \�nd next" operation on an alphanumeric index

c

sf

average time to perform a \�nd �rst in window" operation on a spatial index

c

sn

average time to perform a \�nd next in window" operation on a spatial index

c

d

average time to perform a distance computation

c

nc

average time to perform class name to relation name conversion

Figure 12: List of constants used in the cost analysis.

Equations 1 and 2 estimate the cost of responding to query 1 using the integrated and partitioned

organizations, respectively. The costs are computed based on the detailed plans given in Appendix A.
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One di�erence between these two cost estimates is that in the integrated organization, there is

one more alphanumeric �nd operation than in the partitioned organization. It is required in order

to �nd the �rst scenic view tuple in the index. In addition, one more random access is required

for each scenic view tuple in order to get the image id from the logical images relation. The

other di�erence is that there are N

sv

alphanumeric next operations in the integrated organization

compared with N

sv

sequential access operations in the partitioned organizations. The reason for this

is that in the partitioned organization, the relation is scanned directly, whereas in the integrated

organization the index is scanned.

Equations 3 and 4 estimate the cost of responding to query 2 with plan A using the integrated and

partitioned organizations, respectively. N

InR

2

denotes the number of tuples in the search rectangles

of query 2 (R

2

). N

sv InR

2

denotes the number scenic view tuples in R

2

. N

sv InC

2

denotes the number

of scenic view tuples in the circular range speci�ed in query 2 (C

2

). N

rslt

2

denotes those tuples of

N

sv InC

2

that are in the same image as the picnic site whose location was the center of this circular

range. This is the number of results reported when responding to query 2.
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The main di�erence between these two cost estimates is that in the integrated organization the

index is scanned sequentially, whereas in the partitioned organization the relation corresponding to

the scenic view partition is scanned sequentially (as is the case of query 1). As a result, once more

there are considerably more random access operations in the integrated organization than in the

partitioned organization.

Equations 5 and 6 estimate the cost of responding to query 2 with plan B using the integrated

and partitioned organizations, respectively.
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get all tuples of logical images which correspond to "site of interest"

(use index li cl)

for each such tuple t

get all points in a 4� 4 mile rectangular region around t.location

for each one of these points p

if p is within 2 miles of the \site of interest" point and in the same image then

display the corresponding physical image and output the class name of the point

Plan P3

P

Search the site of interest partition sequentially, search all other partitions using the

spatial index on location.

for each partition p

for each tuple t1 of relation corresponding to "site of interest" partition

get all points in a 4� 4 mile rectangular region around t1.location in partition p

for each one of these points p

if p is within 2 miles of the \site of interest" point and in the same image then

display the corresponding physical image and output the class name of the point

Query Q4: display all images that contain an air�eld north of a beach

Plan P4

I

Search using alphanumeric indices on class for all air�eld tuples and all beach tuples.

get all tuples of logical images which correspond to "airfield" (use index li cl)

for each such tuple t1

get all tuples of logical images which correspond to "beach" (use index li cl)

for each such tuple t2

if t1's y coordinate > t2's y coordinate and they are in the same image then

display the corresponding physical image

Plan P4

P

Search the air�eld and the beach partitions sequentially .

for each tuple t1 of relation corresponding to "airfield" partition

for each tuple t2 of relation corresponding to "beach" partition

if t1's y coordinate > t2's y coordinate and they are in the same image then

display the corresponding physical image

5.3 Cost Analysis

In order to estimate the costs of each plan, we must make some assumptions about the data

distribution and the costs of the various operations. Table 12 contains a list of basic operations

that are used in processing queries, along with a constant value that denotes the the cost of this

operation. Notice that the cost of the \display" operation is not included since it is not considered

part of processing the query. It is only a mechanism to output the answer to the query and is always

the same regardless of the selected execution plan. Let N

pic

, N

sv

, N

soi

, N

air

, and N

bch

denote the

number of tuples for which semantics is \picnic", \scenic view", \site of interest", \air�eld", and

\beach", respectively.
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get all tuples of logical images which correspond to "picnic" (use index li cl)

for each such tuple t1

get all tuples of logical images which correspond to "scenic view"

(use index li cl)

for each such tuple t2

if distance between t1 and t2 < 5 miles and they are in the same image then

display corresponding physical image

Plan P2B

I

Search for picnic tuples using an alphanumeric index on class and search for scenic

view tuples using a spatial index on location.

get all tuples of logical images which correspond to "picnic" (use index li cl)

for each such tuple t

get all points in a 10� 10 mile rectangular region around t.location

for each one of these points p

if p is a \scenic view" and within 5 miles of \picnic" point and in same image then

display the corresponding physical image

Plan P2A

P

Search both the picnic and scenic view partitions sequentially.

for each tuple t1 of relation corresponding to "picnic" partition

for each tuple t2 of relation corresponding to "scenic view" partition

if distance between t1.location and t2.location < 5 miles

and they are in the same image then

display the corresponding physical image

Plan P2B

P

Search the picnic partition sequentially, and search the scenic view partition using the

spatial index on location.

for each tuple t1 of relation corresponding to "picnic" partition

get all points in a 10� 10 mile rectangular region around t.location

in the relation corresponding to "scenic view" partition

for each one of these points p

if p is within 5 miles of the \picnic" point and in the same image then

display corresponding physical image

Notice that plan P2B, that takes advantage of the spatial index, uses the minimum bounding square

for the circular region of interest to specify the desired range to the spatial index. However, not all

tuples in this square will necessarily intersect the circular region. Thus, after retrieving all points in

the speci�ed square region, we still need to check if the point is within the required distance. This

is necessary because the builtin primitives supported by the spatial index used here are designed

to return all items that overlap a given rectangular window. If we had a primitive that enabled

retrieving a point based on its Euclidean distance from another point, then the extra check may not

be necessary. Such a primitive is currently under construction.

Query Q3: display all images with a site of interest, and output the semantics of anything within

2 miles of these sites of interest.

Plan P3

I

Search for site of interest tuples using an alphanumeric index on class and search for

points in given range using a spatial index on location.

13



display PI.raw

from logical_images LI1, logical_images LI2, classes C1,

classes C2, physical_images PI

where C1.semantics = "airfield" and C2.semantics = "beach"

and C1.name = LI1.class and C2.name = LI2.class

and north(LI1.location,LI2.location)

and LI1.image_id = LI2.image_id and LI1.image_id = PI.image_id;

display PI.raw

from air_class AC, beach_class BC, physical_images PI

where north(AC.location,BC.location)

and AC.image_id = BC.image_id and AC.image_id = PI.image_id;

The function north takes two geometric objects (such as two points in the example above) and

returns true if the �rst object is north of the second object.

5.2 Query Processing

The following plans outline how responses to queries Q1{Q4 are computed using the two data

organizations. These plans utilize the indexing structures available for each organization. Indices

on alphanumeric attributes are capable of locating the closest value greater than or equal to a given

string or number. Indices on spatial attributes are capable of returning all items that overlap (wholly

or partially) a given rectangular window. Direct addressing of a tuple within a relation is possible

by means of a tuple identi�er (or tid for short). All index structures have an implicit attribute that

stores this tid. The X

th

plan, labeled Px

I

, uses the integrated organization. The X

th

plan, labeled

Px

P

, uses the partitioned organization. Appendix A contains detailed plans for these queries.

Query Q1: display all images that contain a scenic view.

Plan P1

I

: Search using an alphanumeric index on class.

Get all tuples of logical images which correspond to "scenic view" (use index li cl)

For each such tuple t

display the physical image corresponding to t

Plan P1

P

Search the scenic view partition sequentially

For each tuple t of relation corresponding to "scenic view" partition

display the physical image corresponding to t

Query Q2: display all images that contain a scenic view within 5 miles of a picnic site.

We suggest two di�erent plans for this query. The �rst uses only alphanumeric indices, while the

second uses an alphanumeric index and a spatial index.

Plan P2A

I

Search picnic tuples and scenic view tuples using the alphanumeric index on class. For

each picnic tuple, check all scenic view tuples to determine which ones are within the speci�ed

distance.

12



name of a relation given the class name. get class returns the class name given a relation name.

Thus, there is no need for the user to know the names assigned by the system to these relations.

Query Q2: display all images that contain a scenic view within 5 miles of a picnic site.

display PI.raw

from logical_images LI1, logical_images LI2, classes C1,

classes C2, physical_images PI

where C1.semantics = "scenic view" and C2.semantics = "picnic site"

and C1.name = LI1.class and C2.name = LI2.class

and distance(LI1.location,LI2.location) < 5

and LI1.image_id = LI2.image_id and LI1.image_id = PI.image_id;

display PI.raw

from scenic_class SC, pi_class PIC, physical_images PI

where distance(SC.location,PIC.location) < 5

and SC.image_id = PIC.image_id and PIC.image_id = PI.image_id;

The function distance takes two geometric objects (such as two points in the example above) and

returns a 
oating point number representing the Euclidean distance between them.

Query Q3: display all images with a site of interest and output the semantics of anything within

2 miles of these sites of interest.

display PI.raw C2.semantics

from logical_images LI1, logical_images LI2, classes C1,

classes C2, physical_images PI

where C1.semantics = "site of interest" and C1.name = LI1.class

and distance(LI1.location,LI2.location) < 2

and LI1.image_id = LI2.image_id and LI1.image_id = PI.image_id

and C2.name = LI2.class;

display PI.raw C.semantics

from star_class SI, physical_images PI, X_class CL, classes C

where distance(SI.location,CL.location) < 2

and SI.image_id = CL.image_id and SI.image_id = PI.image_id

and C.name=CL.class;

X class is a variable that is assigned all possible relation names as derived from the class �eld of

the tuples of relation classes. This is done by cycling through the classes relation and repeating

this query using the partition that corresponds to each class.

Query Q4: display all images that contain an air�eld north of a beach.

11



create index CL_cert for CL_class (certainty);

create index CL_loc for CL_class (location);

Indices cl semant, cl name, pi imid, and pi ll are identical to those in the integrated organization.

Each instance of the class relation has an alphanumeric index on certainty and a spatial index

on location. The spatial index is used to deal with queries of the type \�nd all images with sites of

interest within 10 miles of a picnic area" by means of a spatial join operator. Figure 11 illustrates

the �le structures for the partitioned organization corresponding to �le structures used for text data.

5 Retrieving Images by Contents

As mentioned above, we distinguish between contextual information and spatial information found in

images. Similarly, we distinguish between query speci�cations that are purely contextual and those

that also contain spatial conditions. A contextual speci�cation de�nes the images to be retrieved in

terms of their contextual information (i.e., the objects found in the image). For example, suppose

we want to �nd all images that contain �shing sites or campgrounds. A spatial speci�cation further

constrains the required images by adding conditions regarding spatial information (i.e., the spatial

relations between the objects).

In order to describe the methods that we use for retrieving images by contents, we �rst present

some example queries. Next, we demonstrate the strategies used to process these queries. We

conclude by analyzing the expected costs of these strategies (termed plans) and compare the two

proposed data organizations (i.e., integrated and partitioned).

5.1 Example Queries

The example queries in this section are �rst speci�ed using natural language. This is followed by two

equivalent SQL-like queries. The �rst assumes an integrated organization and the second assumes a

partitioned organization.

Query Q1: display all images that contain a scenic view .

display PI.raw

from logical_images LI, classes C, physical_images PI

where C.semantics = "scenic view" and C.name = LI.class

and LI.image_id = PI.image_id;

display PI.raw

from scenic_class SC, physical_images PI

where SC.image_id = PI.image_id;

Notice that in order to write SQL-like queries for the partitioned organization, the names of the

relations corresponding to each partition must be known. This can easily be overcome by having the

system assign names to these relations. These names are derived from the class attribute of relation

classes. Two functions that perform this name conversion are provided. get rel name returns the

10



star class:

image id certainty location

image 1 0.99 (6332,1586)

image 1 0.99 (6540,1712)

image 1 1 (6474,1814)

P class:

image id certainty location

image 1 0.99 (6161,1546)

image 1 0.99 (6432,1622)

image 2 0.99 (6858,1771)

scenic class:

image id certainty location

image 1 0.99 (6630,1662)

image 2 0.72 (6803,1565)

pi class

image id certainty location

image 1 0.99 (6395,1741)

image 2 0.99 (6849,1756)

image 2 0.99 (6800,1807)

Figure 10: Examples instances of relations star class, P class, scenic class,

and pi class in the map domain. The tuples correspond to the symbols in the

images of Figures 5 and 6.

image_id   descriptor    lower_left    raw  

location    li_tid

location    li_tid

I1

I2

Im

location    li_tid

certainty    location   image_id

certainty    location   image_id

certainty    location   image_id

C1_loc

C2_loc

Cn_loc

C1_class

C2_class

Cn_class

physical_images

Figure 11: File structures for logical and physical images using the partitioned orga-

nization.

Constructing Indices

Indices are de�ned on the schemas of the partitioned organization as follows (in SQL-like notation):

create index cl_semant for classes (semantics);

create index cl_name for classes (name);

create index pi_imid for physical_images (image_id);

create index pi_ll for physical_images (lower_left);

for each class CL in application
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physical_images

C1

C1

C1

C2

C2

C2

Cn

Cn

Cn

I1

Im

I1

I2

Im

class   certainty   li_tid

I2

location    li_tid

li_loc:

(B-trre)

(PMR-tree)
 index on location

class   certainty   location  image_id

li_cl:  index on class

image_id   descriptor   lower_left  raw

logical_images

Figure 8: File structures for logical and physical images using the integrated orga-

nization.

4.2 Partitioned Organization

(create table classes (create table physical_images for each class CL in application

name CHAR[30], image_id INTEGER, (create table CL_class

semantics CHAR[50], descriptor CHAR[50], image_id INTEGER,

bitmap IMAGE); lower_left POINT, certainty FLOAT,

raw IMAGE); location POINT);

Figure 9: schemas for the relations classes, physical images, and CL class.

The schema de�nitions given in Figure 9 de�ne the relations in the partitioned organization. Both

the classes and physical images de�nitions are identical to those in the integrated organization.

The only di�erence between these two organizations is in the way the logical images are stored. In

the partitioned organization, there is one relation, CL class for each class CL in the application.

Each relation CL class contains the logical images tuples (C; certainty; (x; y)) for which C = CL.

This is equivalent to the result of a selection operation, class = CL, on relation logical images.

See Figure 10 for example instances of relations star class, P class, scenic class, and pi class

in the map domain for the images given in Figures 5 and 6.
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image id class certainty location

image 1 M 1 (6493,1544)

image 1 P 0.99 (6161,1546)

image 1 H 0.99 (6513,1566)

image 1 U 1 (6167,1583)

image 1 star 0.99 (6332,1586)

image 1 P 0.99 (6432,1622)

image 1 K 1 (6416,1636)

image 1 fish 1 (6411,1661)

image 1 scenic 0.99 (6630,1662)

image 1 square 1 (6422,1693)

image 1 star 0.99 (6540,1712)

image 1 pi 0.99 (6396,1741)

image 1 triangle 1 (6475,1784)

image 1 star 1 (6474,1814)

image 1 cross 0.79 (6291,1854)

image 1 box 0.74 (6357,1862)

image 1 inf 1 (6226,1937)

image 1 box 1 (6280,2011)

image 2 arrow 0.99 (6861,1544)

image 2 scenic 0.72 (6803,1565)

image 2 pi 0.99 (6849,1756)

image 2 R 0.71 (6849,1756)

image 2 P 0.99 (6858,1771)

image 2 H 0.99 (6827,1775)

image 2 U 0.79 (6827,1775)

image 2 pi 0.99 (6800,1807)

image 2 R 0.99 (6800,1807)

Figure 7: Example instance for the logical images relation in the map domain.

The tuples correspond to the symbols in the images of Figures 5 and 6.

alphanumeric index. It is used to search the logical images relation by class. It has a secondary

index on attribute certainty. Thus, tuples that have the same class name are ordered by certainty

value within this index. li loc is a spatial index on points. It is used to search the logical images

relation by location (i.e., to deal with spatial queries regarding the locations of the symbols in the

images such as distance and range queries). The spatial indices are implemented by a PMR quadtree

for points [12].

Observe that the �le structures resulting from the integrated organization are very similar to the

�le structures that are used by inverted �le methods for storing text [6]. An inverted �le consists of

two structures. A vocabulary list which is a sorted list of words found in the documents, and a posting

�le that indicates for each word the list of documents that contain this word along with information

regarding the position of the word in the document. The vocabulary list is actually an index on the

posting �le, and is used to locate the record of the posting �le corresponding to a given word on

disk. In our organization, the logical images relation corresponds to the posting �le. The index

li cl on this relation serves the purpose of the vocabulary list. The main di�erence is that since

we are dealing with 2-dimensional information rather than the 1-dimensional information inherent

in text databases, we need more elaborate methods to store and index the locational information.

In particular, just storing the location, as is usually done for text data, is insu�cient. Figure 8

illustrates the �le structures that are used for the integrated organization corresponding to similar

�le structures used for text data.
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Figure 5: Example image 1 (image 1). Figure 6: Example image 2 (image 2).

example instance of the physical images relation in the map domain.

The logical images relation stores the logical representation of the images. It has one tuple

for each candidate class output by the image input system for each valid symbol s in each image

I . The tuple has four �elds. The image id �eld is the integer identi�er given to I when it was

inserted into the database. It is the same as the image id �eld of the tuple representing I in the

physical images relation. The class and certainty �elds store the name of the class C to which

the image input system classi�ed s and the certainty that s 2 C. The location �eld stores the

(x; y) coordinate values of the center of gravity of s relative to the entire image. See Figure 7 for

an example instance of the logical images relation in the map domain for the images given in

Figures 5 and 6.

Constructing Indices

Indices are de�ned on the schemas of the integrated organization as follows (in SQL-like notation):

create index cl_semant for classes (semantics);

create index cl_name for classes (name);

create index pi_imid for physical_images (image_id);

create index pi_ll for physical_images (lower_left);

create index li_cl for logical_images (class certainty);

create index li_loc for logical_images (location);

cl semant and cl name are alphanumeric indices. They are used to search the classes relation by

semantics and name, respectively. The pi imid index is also alphanumeric. It is used to search

the physical images relation by image id. pi ll is a spatial index on points. It is used to search

the physical images relation by the coordinates of the lower left corner of the images. li cl is an
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class semantics bitmap

S       harbor

square    hotel

scenic    scenic view

T       customs

R       restaurant

P       post office

M       museum

K       cafe

waves    beach

triangle   camping site

B       filling station

arrow     holiday camp

cross     first aid station

fish     fishing site

H       service station

inf      tourist information

pi      picnic site

air      airfield

star     site of interest

box      youth hostel

U       sports institution

telephone  public telephone

Figure 3: Example instance for the classes relation in the map domain.

image id descriptor raw lower left

image 1 tile 003.012 of Finish road map Figure 5 (6144,1536)

image 2 tile 003.013 of Finish road map Figure 6 (6656,1536)

Figure 4: Example instance for the physical images relation in the map domain.

classes relation is populated using the same data that is used to create the initial training set

for the image input system (i.e., one example symbol for each class that may be present in the

application along with its name and semantic meaning). See Figure 3 for an example instance of

the classes relation in the map domain.

The physical images relation has one tuple per image I in the database. The image id �eld

is an integer identi�er given to the image I when it is inserted into the database. The descriptor

�eld stores an alphanumeric description of the image I that the user gives when inserting I . The

raw �eld stores the actual image I in its physical representation. It is an attribute of type IMAGE.

The lower left �eld stores an o�set value that locates the lower left corner of image I with respect

to the lower left corner of some larger image J . This is useful when a large image J is tiled, as in

our example map domain. This o�set value, in addition to the location of the symbol s in one of

the tile images I , will give the absolute location of s in the large image J . It is an attribute of type

POINT. Any other information that the user may wish to store about the images such as how they

were formed, camera angles, scale, etc. can be added as �elds of this relation. See Figure 4 for an
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recognition rate achieved is deemed adequate. At that point, the system can continue to process the

input images automatically.

The output of applying the conversion process to I

phys

is a logical image where the tuples are of

the form (C; certainty; (x; y)) where C 6= unde�ned, 0 < certainty � 1 indicating the certainty that

s 2 C, and (x; y) is the location of s in I

phys

. For each image, a set of such tuples is inserted into

a spatial database as described in the following section. In addition, the raw image I

phys

(i.e., the

image in its physical representation) is also stored.

4 Image Storage

Images and other information pertaining to the application are stored in relational tables. The

database system that we use for this purpose is SAND [1] (denoting spatial and non-spatial database)

developed at the University of Maryland. It is a home-grown extension to a relational database where

the tuples may correspond to geometric entities such as points, lines, polygons, etc. having attributes

which may be both of a locational (i.e., spatial) and non-locational nature. Both types of attributes

may be designated as indices of the relation. For indices built on locational attributes, SAND makes

use of suitable spatial data structures. Attributes of type image are used to store physical images.

Query processing and optimization is performed following the same guidelines of relational databases

extended with a suitable cost model for accessing spatial indices and performing spatial operations.

We propose two di�erent data organizations for storing the images in relational tables. These

two organizations di�er in the way that the logical images are stored. In the integrated organization,

all of the tuples of the logical images are stored in one relation. In the partitioned organization,

the tuples are partitioned into separate relations resulting in a one-to-one correspondence between

relations and classes of the application. For example, tuples (C; certainty; (x; y)) of a logical image

for which C = C

1

are stored in a relation corresponding to C

1

. The motivation for the partitioned

organization is that it enables e�cient use of spatial indices while processing spatial queries by using

a spatial join operator (e.g., [17]). For more details, see Section 5.

4.1 Integrated Organization

(create table classes (create table physical_images (create table logical_images

name CHAR[30], image_id INTEGER, image_id INTEGER,

semantics CHAR[50], descriptor CHAR[50], class CHAR[30],

bitmap IMAGE); lower_left POINT, certainty FLOAT,

raw IMAGE); location POINT);

Figure 2: schemas for the relations classes, physical images, and

logical images.

The schema de�nitions given in Figure 2 de�ne the relations in the integrated organization.

We use an SQL-like syntax. The classes relation has one tuple for each possible class in the

application. The name �eld stores the name of the class (e.g., star), the semantics �eld stores the

semantic meaning of the class in this application (e.g., site of interest). The bitmap �eld stores a

bitmap of an instance of a symbol representing this class. It is an attribute of type IMAGE. The

4



denoted by I

phys

. In the logical image representation, an image I is represented by a list of tuples,

one for each symbol s 2 I . The tuples are of the form: (C; certainty; (x; y)) where C 6=unde�ned,

(x; y) is the location of s in I , and 0 < certainty � 1 indicates the certainty that s 2 C.

3 Image Input

Conversion of input images from their physical to their logical representation is performed using

methods that are common in the �eld of document analysis [16]. These methods use various pattern

recognition techniques that assign a physical object or an event to one of several pre-speci�ed classes.

Patterns are recognized based on some features or measurements made on the pattern. A library

of features and their classi�cations, termed the training set library, is used to assign candidate

classi�cations to an input pattern according to some distance metric. Each candidate classi�cation

is given a certainty value that approximates the certainty of the correctness of this classi�cation.

MANAGEMENT

DATABASE

IMAGE

SEGMENTATION

PREPROCESSING FEATURE

EXTRACTION
AND

INPUT
IMAGE

Physical
Image

SYSTEM

Symbols

VERIFY

USER ?
BY

YES

NO

Modified Training Set Library

Training Set 
Initial

Library

System Generated Classifications

User Verified 
Classifications

MODIFICATION

LIBRARY

VERIFICATION

USER

CLASSIFICATION

OBJECT class,
certainty)

Set of:
Image:

Logical

(location,

INITIAL

CONSTRUCTION

TRAINING SET

Example

Figure 1: Image input system

We have adapted these methods to solve the problem of converting symbolic images from a

physical to logical representation. Figure 1 is a block diagram of the image input system that we

have developed for this purpose. It is driven by the symbolic information conveyed by the image.

That is, rather than trying to interpret everything in the image, it looks for those symbols that

are known to be of importance to the application. Any other symbol found in the image is labeled

as belonging to the unde�ned class. We only give a short overview of this system here. See [20]

for more details. A symbolic image I

phys

is input to the system in its physical representation. It

is converted into a logical image by classifying each symbol s found in I

phys

using the training set

library. An initial training set library is constructed by giving the system one example symbol for

each class that may be present in the application. In the map domain, the legend of the map may

be used for this purpose.

The system may work in two modes. In the user veri�cation mode, the user veri�es the classi�-

cations before they are input to the database. The training set is modi�ed to re
ect the corrections

that the user made for the erroneous classi�cations. In the automatic mode, the classi�cations are

generated by the system and input directly to the database. The user determines the mode in

which the system operates. In general, the system should operate in user veri�cation mode until the

3



conventional database management system (DBMS). In our application, we make use of a relational

DBMS although our ideas are applicable to other types of DBMS's as well. These methods o�er

solutions for both the pattern recognition and indexing aspects of the problem. We describe how

to incorporate the results of these methods into an existing spatial database based on the relational

model. Our emphasis is on extracting both contextual and spatial information from the raw images.

The logical image representation that we de�ne preserves this information. The logical images are

stored as tuples in a relation. Indices are constructed on both the contextual and the spatial data,

thus enabling e�cient retrieval of images based on contextual as well as spatial speci�cations. It

is our view that an image database must be able to process queries that have both contextual and

spatial speci�cations, in addition to any query that a traditional DBMS could answer.

We propose two di�erent data organizations for storing images in relational tables. They di�er

in the way that the logical images are stored. All of the examples and experiments in this paper

are from the map domain. However, images from many other interesting applications fall into the

category of symbolic images. These include CAD/CAM, engineering drawings, 
oor plans, and

more. Hence, the methods that we describe in this paper are applicable to them as well.

The rest of this paper is organized as follows. Section 2 presents some de�nitions as well as the

notation used. Section 3 outlines an image input system that is used to convert images from their

physical representation to their logical representation as they are input to the database. Section 4

describes how images are stored in a database management system including schema de�nitions and

example relations. Section 5 gives sample queries along with execution plans and cost estimates

for these plans. Section 6 describes our experimental study and results along with a quantitative

comparison of the two proposed data organizations. Section 7 contains concluding remarks.

2 De�nitions and Notations

Below we de�ne some terms and the notation used in the remainder of the paper. A general image is

a two-dimensional array of picture elements (termed pixels) p

0

; p

1

; : : : ; p

n

. Each pixel is represented

by its x and y coordinate values. A binary image is a general image where each pixel has one of

two possible values (usually 0 and 1). One value is considered the foreground and the other the

background. A general image is converted into a binary image by means of a threshold operation.

A symbol is a group of connected pixels that together have some common semantic meaning. In a

given application, symbols will be divided into valid symbols and invalid symbols. A valid symbol

is a symbol whose semantic meaning is relevant in the given application. An invalid symbol is a

symbol whose semantic meaning is irrelevant in the given application. A class is a group of symbols

all of which have the same semantic meaning. All invalid symbols belong to a special class called

the unde�ned class.

A symbolic image is a general image I for which the following conditions hold: 1) Each foreground

pixel p

i

in I belongs to some symbol. 2) The set of possible classes C

1

; C

2

; : : : ; C

n

for the application

is �nite and is known a priori. 3) Each symbol belongs to some class. 4) There exists a function f

which when given a symbol s and a class C returns a value between 0 and 1 indicating the certainty

that s belongs to C.

Images can be represented in one of two ways. In the physical image representation, an image is

represented by a two-dimensional array of pixel values. The physical representation of an image is
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1 Introduction

Images (or pictures) serve as an integral part in many computer applications. Examples of such

applications include CAD/CAM (computer aided design and manufacturing) software, document

processing, medical imaging, GIS (geographic information systems), computer vision systems, o�ce

automation systems, etc. All of these applications store various types of images and require some

means of managing them. The emerging �eld of image databases deals with this problem [9]. Several

such databases have been described in the literature [4, 5, 10, 13, 14, 18]. One of the major require-

ments of an image database system is the ability to retrieve images based on queries that describe

the contents of the required image(s), termed retrieval by contents. An example query is \�nd all

images containing camping sites within 3 miles of �shing sites".

In order to support retrieval by contents, the images should be interpreted to some degree when

they are inserted into the database. This process is referred to as converting an image from a physical

representation to a logical representation. The logical representation may be a textual description

of the image, a list of objects found in the image, a collection of features describing the objects in

the image, a hierarchical description of the image, etc. It is desirable that the logical representation

also preserve the spatial information inherent in the image (i.e., the spatial relation between the

objects found in the image). We refer to the information regarding the objects found in an image as

contextual information, and to the information regarding the spatial relation between these objects

as spatial information. Both the logical and the physical representation of the image are usually

stored in the database. An index mechanism based on the logical representation can then be used

to retrieve images based on both contextual and spatial information in an e�cient way.

In many commercial image database systems, the user provides the logical representation in the

form of keywords. These keywords are used to search the database for speci�c images based on their

contents using traditional alphanumeric search techniques. There has been some work in recent years

on automatic conversion of images from a physical representation to a logical representation. This is

also referred to as automatic image indexing [2]. Most of this work has concentrated on the pattern

recognition aspect of the problem [7] and on constructing e�cient indexing structures [3, 8, 11].

However, it is not clear how to integrate the results of these e�orts into a standard database system

that can also support the traditional database operations in addition to those speci�c to images.

Furthermore, most of these techniques do not preserve all of the spatial information found in the

images.

In our work, we have chosen to focus on images in which the set of objects that may appear are

known a priori. In addition, the geometric shapes of these objects are relatively primitive and they

convey symbolic information. For example, in the map domain, the information found is mainly

symbolic rather than an accurate graphical description of the region covered by the map. Thus,

the width of a line representing a road has little to do with its true width. Instead, most often it

is determined by the nature of the road (i.e., highway, freeway, rural road, etc.). Many graphical

symbols are used to indicate the location of various sites such as hospitals, post o�ces, recreation

areas, scenic areas etc. We call this class of images symbolic images. Other similar terms found in the

literature are graphical documents, technical documents, and line drawings. By limiting ourselves to

symbolic images, the task of object recognition is simpli�ed, and we can utilize well-known methods

used in document processing.

In this paper, we present methods for integrating symbolic images into the framework of a
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Abstract

A method is presented for integrating images into the framework of a conventional database man-

agement system (DBMS). It is applicable to a class of images termed symbolic images in which the

set of objects that may appear are known a priori. The geometric shapes of the objects are relatively

primitive and they convey symbolic information. Both the pattern recognition and indexing aspects

of the problem are addressed. The emphasis is on extracting both contextual and spatial informa-

tion from the raw images. A logical image representation that preserves this information is de�ned.

Methods for storing and indexing logical images as tuples in a relation are presented. Indices are

constructed for both the contextual and the spatial data, thereby enabling e�cient retrieval of images

based on contextual as well as spatial speci�cations. Two di�erent data organizations (integrated

and partitioned) for storing logical images in relational tables are proposed. They di�er in the way

that the logical images are stored. Sample queries and execution plans to respond to these queries

are described for both organizations. Analytical as well as empirical cost analyses of these execution

plans are given. A quantitative comparison of the two data organizations is presented.
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