
Progress in Image Analysis and Processing III, pp. 233-240, World Scienti�c, Singapore, 1994. 1AUTOMATIC INTERPRETATION OF FLOOR PLANS USINGSPATIAL INDEXING�HANAN SAMETAYA SOFFERComputer Science Department andCenter for Automation Research andInstitute for Advanced Computer ScienceUniversity of Maryland at College ParkCollege Park, Maryland 20742E-mail: hjs@umiacs.umd.edu, aya@umiacs.umd.eduABSTRACTA system is presented that classi�es objects in raw images using statistical patternrecognition and spatial indexing. The system is given a training set containing sam-ples of feature vectors of objects that may be found in the images. This method ofclassi�cation was applied to automatic interpretation of 
oor plans. A number ofdata structures are suggested for storing the training set. Of these, the adaptive k-dtree was found to be a highly e�cient storage mechanism, and provided recognitionrates of 98% and higher. Storing the training set as feature ranges per class also gavevery high recognition rates, at the cost of a relatively small number of comparisons.1 IntroductionThe successful use of image databases requires a means of indexing based on some of the objectsfound in the images. In the vast majority of systems it is up to the user to identify these objectsto the system. It is clear that this mechanism must be automated. In many applications, theset of objects that may appear in the image are known a priori. Furthermore, the geometricshapes of these objects are relatively primitive thereby simplifying the task of object recognitionin these images (e.g. OCR). Pattern recognition techniques are frequently used to identify theobjects. They assign a physical object or an event to one of several prespeci�ed classes. Patternsare recognized based on some features or measurements made on the pattern. In the statisticalapproach (reviewed in section 2), a pattern is represented in terms of n features or properties andviewed as a point in n-dimensional space. The features are selected in such a way that patternvectors belonging to di�erent classes will occupy di�erent regions of this feature space. Samplepatterns from each class are given (termed a training set) and stored in a sample library. Thislibrary is then used to classify an unknown pattern as a member of one of the prespeci�ed classes.The nearest neighbor metric is the method most widely used for this classi�cation.The larger the training set, and the more features used to discriminate among the shapes, thebetter is the achievable recognition rate. However, such an improvement in the recognition ratewill result in a degradation of the execution time. It is thus important to devise a method to prunethe search space, and to have the classi�er compare a minimal number of stored feature vectors tothe one being classi�ed. This paper presents such a method for storing and searching the library.The method is based on spatial indexing of the feature vectors. Using this method a relativelysmall number of comparisons will be made, while achieving an excellent recognition rate. We haveapplied this method to the automatic interpretation of 
oor plans. The results of our experimentsare described in Section 4. Other methods that have been used to reduce the computation timeinclude pruning the training set by eliminating patterns that do not help in the classi�cation1.�The support of the National Science Foundation under Grant IRI-9017393, and the National Aeronautics andSpace Administration under Grant NGT-30130 is gratefully acknowledged.



Progress in Image Analysis and Processing III, pp. 233-240, World Scienti�c, Singapore, 1994. 2Fukunaga and Narendra 3 describe a branch and bound algorithm for computing the k-nearestneighbors. Further algorithmic improvement of this method is presented by Kamgar-Parsi andKanal ?. Miclet and Dabouz7 propose an algorithm to �nd an \approximate" nearest neighbor.2 A Statistical Pattern Recognition SystemThere are two main phases in a statistical pattern recognition system. In the �rst phase, termedthe training phase, the system is initialized with sample feature vectors for each class, termed thetraining set. These samples are stored in a library. In the second phase, termed the classi�cationphase, the sample library is used to classify unknown patterns detected in an input image. Eachphase is divided into four stages with the �rst three stages common to both phases.Stage I consists of image acquisition. Stage II is a preprocessing stage where various imageprocessing techniques are applied to enhance the image. The image is then segmented into itsconstituent elements. This may be achieved, for example, by a connected component labelingalgorithm. Each connected component is considered a pattern, and is passed to stage III. StageIII performs feature extraction. The features that have been identi�ed as those that will bestdiscriminate between the classes are computed for each pattern detected in stage II. The featurevector pattern representation is composed and passed onto the next stage.In stage IV of the training phase, a classi�cation is attached to each pattern associating it withone of the possible classes, or assigning it to the unde�ned class. These sample feature vectorsalong with their classi�cations are built into the training set library. In stage IV of the classi�cationphase, the class of the library pattern that best matches that of the unknown pattern is assignedto it. Using the nearest neighbor approach, the distance between the stored vectors and that of theinput vector serves as the similarity measure. If no sample pattern is found within a prespeci�edmaximum distance, then the pattern is classi�ed as unde�ned. The most well-known similaritymeasure is the weighted Euclidean distance. The features that are known to be more reliable thanothers are given a greater weight when computing this similarity measure. It is given byDE =vuut NXi=1 wi(FLi � F Ii )2where FLi is the ith feature of the library vector, F Ii is the ith feature of the input vector, and wiis the ith weighting factor.3 Building and Searching the Training Set LibraryA crucial issue in the design of a statistical pattern recognition system is how to store and searchthe library of elements of the training set e�ciently. To ensure a reasonable recognition rate, thesystem must be able to store a large number of elements.Below we present three di�erent storage and search strategies. The �rst is a simple list withno ordering of the feature vectors. It is searched using an exhaustive search. This is the methodused by most classi�ers both in research and in industry. It is presented here mainly for the sakeof comparison with the other methods. The second is an adaptive k-d tree2. An algorithm thate�ciently �nds the nearest neighbor to a given point in such a tree is used to �nd the closestmatch. The third groups the elements of the training set into their respective classes, and storesa range of the possible values for each feature in the feature vector . An exhaustive search is usedfor the class range list, but there are much fewer elements in this list, so it is not as costly as the�rst method.3.1 Library Stored as an Unordered ListIn the training phase, the list of sample feature vectors along with their corresponding classi�cationscan be represented as an unordered list, where the elements appear in the same order as they are



Progress in Image Analysis and Processing III, pp. 233-240, World Scienti�c, Singapore, 1994. 3found in the input. In the classi�cation phase, this list is searched exhaustively. That is, for eachunknown pattern, the Euclidean distance between it and every object in the library is computed.The class associated with the object with the smallest distance is assigned to the unknown region.This method guarantees the best possible recognition rate for a given training set and selectedfeatures. It has the worst execution time of the three methods presented here. Its execution timeis always (i.e. the best, worst, and average) O(J � I), where J is the number of samples in thelibrary, and I is the number of features in the feature vector.3.2 Library Stored as points in an Adaptive k-d TreeRealizing that a feature vector is a point in n-dimensional space, we can use methods borrowedfrom computational geometry and spatial data structures to spatially sort the training set. Thedata structure that we use is the adaptive k-d tree2. This is a variant of a binary search tree withtwo pieces of information stored at each node: a dimension number d indicating the discriminatingdimension, and a discriminating value v which is usually the median value of dimension d of theset of points stored below this node. The discriminating dimension is chosen to be the dimensionfor which the range of values of is a maximum. The range is measured as the distance from theminimum to the maximum values normalized with respect to the median of the observed values.All observed points with values less than or equal to the discriminating value are inserted in theleft subtree, and all points with values greater than the discriminating value are inserted in theright subtree. This process is continued recursively until only a few points are left in the set,at which time they are stored in what is termed a bucket (usually represented by a linked list).Figure 1 shows an example of a set of points in 2-space with the corresponding adaptive 2-d tree.The list of feature vectors of the training set is stored in the adaptive k-d tree using the algorithmdescribed above. The leaf nodes will contain the feature vector values along with the associatedclassi�cation.In order to determine the leaf node to which a point belongs, the tree only needs to be descended.At each node, the value of the point's dth component is compared to that of the discriminator vstored in that node. If it is less than or equal to v, then the procedure is recursively applied to theleft child of the node. If it is greater than v, then the procedure is recursively applied to the rightchild of the node. The procedure stops when a leaf node is reached. The number of comparisonsinvolved is equal to the depth of the tree, which is log2 NL , where N is the number of points in thetree, and L is the maximum number of points stored in each leaf node.In the classi�cation phase, we use an algorithm based on this search strategy to �nd the nearestneighbor of a given feature vector. The simplest approach is to �nd the leaf node that would containthis point, say q. The nearest neighbor is then chosen from the points stored in this node. Thecomputation time of this method is O(log2 JL + L � I), where J is the number of samples in thelibrary, L is the number of samples in each leaf node, and I is the number of features in the featurevector (hence we have an adaptive k-d tree over a I-dimensional space). However, following thisprocedure may not yield the nearest neighbor. For example in Figure 1, using this algorithm, thenearest neighbor of point (60,25) would be the object at (85,15), thus it would be classi�ed as arange. Yet, clearly point (50,10) is closer to it, and it should be classi�ed as a window.In order to improve the recognition rate, we applied a more sophisticated algorithm. Thealgorithm ? is based on the observation that once the nearest neighbor in the leaf node thatwas reached by descending the tree is found, the only other nodes that need to be searched for apossibly closer neighbor, are the nodes that correspond to neighboring boxes that are within theradius of the nearest point found so far. For example in Figure 1, when searching for the point(60,25), only the buckets adjacent to the one containing point (85,15) (i.e. the buckets containing(50,10), (50,45), and (25,35)) need to be searched. The number of additional leaf nodes that needto be searched using this algorithm is relatively small because the adaptive k-d tree acts as a sorton the space.In order to implement this algorithm, a small addition to the search algorithm outlined above is
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(10,48) (50,45)(50,10)Figure 1: Adaptive k-d tree: (a) set of points in 2-space, (b) 2-d tree.needed. When backing up during the tree traversal, the distance to the hyperrectangle representedby the nodes' brother is computed. If this distance is smaller than the minimumdistance found sofar, then recursively apply the search procedure to this node. Note, that since a node and its brotheronly di�er by one coordinate, we only need to compute the di�erence between that one coordinateof the discriminating point and the search point in order to compute the distance between thesearch point and the hyperrectangle represented by the nodes' brother. Thus, backtracking onlycosts one operation that is independent of the dimension of space represented by the k-d tree.The performance of this algorithm can be improved by noticing that many times the hyperrect-angle represented by a node is much larger than the hyperrectangle de�ned by the points that areactually stored in the node. By storing the maximum and minimum of each coordinate among thepoints stored in the hyperrectangle, we can signi�cantly improve the pruning of the search space.The only change in the algorithm is that when backing up, during the tree traversal, the distanceto the hyperrectangle represented by the actual points stored in the nodes' brother is computed,rather than the distance to the hyperrectangle represented by the node itself. As a result of thischange, the number of additional nodes that are searched is reduced signi�cantly. Note however,that in this case we do need a full distance computation, i.e the cost of each computation is pro-portional to the dimension of space represented by the k-d tree. In addition, since we need to storethe maximumand minimumof each coordinate among the points stored in the hyperrectangle, thespace required to store the k-d tree increases signi�cantly.Observing these de�ciencies in this version of the algorithm, a third variation is suggested. Inthis case we only store the minimum and maximum value of the discriminating coordinate, and



Progress in Image Analysis and Processing III, pp. 233-240, World Scienti�c, Singapore, 1994. 5again compute the distance only using this coordinate. The decrease in the number of additionalnodes searched is not as great as in the case of the full computation, but the additional storagerequirements, and the cost of computing the distance between the point and the hyperrectangle isdecreased signi�cantly. Note that using this algorithm we are still guaranteed to �nd the nearestneighbor, since we under estimate the distance to the hyperrectangle, and thus we will searchat least every node searched by the second algorithm. (see Section 4.2 for empirical results andcomparison of the algorithms in the case of automatic interpretation of 
oor plans).3.3 Library Stored as a Set of RangesIn this storage method, the training set samples are grouped into their respective classes. Foreach class and for each feature, the lowest and the highest value are stored. This de�nes a set ofn-dimensional hyperrectangles, where n is the number of features. Given a vector that needs tobe classi�ed, we �nd which hyperrectangle contains this pointy. If no such hyperrectangle exists,then we �nd the nearest one using the following distance metric:DHE =vuut NXi=1 wi �Dist(FLilow ; FLihigh; F Ii )2where wi is the ith weighting factor, FLilow is the low value of the ith feature of the library rangeset, FLihigh is the high value of the ith feature of the library range set, and F Ii is the ith feature ofthe input vector. Dist is de�ned asDist(low; high; val) = 8<: 0 if low � val � highlow � val if val < lowval � high if val > highUsing this method the size of the library is reduced to the number of classes rather than thenumber of elements in the training set, resulting in much smaller storage requirements. To �nd thenearest hyperrectangle to a given point q we use an exhaustive search. That is, DHE is computedfor each class in the library and q. The class with the minimum distance is assigned to q. Thetime to classify a point using this method is thus O(K � I) where K is the number of classes in thelibrary, and I is the number of features in the feature vector. The number of classes is generallymuch smaller than the number of training samples, and thus this method results in improved timeperformance along with smaller storage requirements compared to those of the unordered list withan exhaustive search. It is also possible to use spatial indexing by representing the hyperrectanglesas points in a higher dimensional space or by an MX-CIF tree6 to further enhance this method.This is a subject for further research.4 Experimental StudyThe storage and classi�cation techniques described in the previous section were applied to theautomatic interpretation of 
oor plans. The input to the system was a binary image of a 
oorplan, created using a very primitive drawing package that provides line and curve drawing. Someexample classes in the 
oor plan image are windows, rooms, bath tubs, toilets, and beds. SeeFigure 2 for an example of a 
oor plan that was used as a test case. Once the classi�cation ofthe objects in the 
oor plans is achieved, the 
oor plans may be stored in an image database in amuch more informative way than if they were stored as raw images. Along with the classi�cation,the system also returns the coordinates of the locations of the objects. The objects may now bestored along with information about the spatial relationship between them. This information maythen be used to index the 
oor plans and to answer meaningful queries on this database.yWe assume that the hyperrectangles do not overlap since the features discriminate between the classes and thusthe ranges should be disjoint.
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Figure 2: An example 
oor plan used as a test case for our system.4.1 Feature ExtractionThe image was segmented using a connected component labeling algorithm. Region numbers wereassigned to each component. The output of this stage is an image in which every pixel has its regionnumber as its value. Khoros8, an integrated software development environment for informationprocessing and visualization, was used for this stage and for the feature extraction stage.Next the feature vector for each region found in the previous stage was computed. The outputof this stage consists of a list of the feature vectors for each region, along with the region's centroid.For the training phase of the system, we manually tagged a classi�cation for each region that wasidenti�ed. This list was then passed to the next stage where the data structure was built. For ourapplication, we used �ve features: �rst invariant moment5, eccentricity9, circularity4, percent ofbounding box, and percent of total image.4.2 ResultsWe experimented with each of the three data structures described in the previous section. Theunordered list was used as a basis for determining the best recognition rate that we could achieveusing our training set, the discriminating features that we had selected, and the nearest neighborclassi�cation method. There were 11 di�erent classes in the 
oor plans. Our training set consistedof 130 sample points. We used this training set to classify 200 objects. Both the training and thetest objects were extracted from 
oor plans. The objects in the 
oor plan (i.e. toilets, windows,etc.) were drawn with di�erent scales and orientation (e.g. rotation) in each 
oor plan.For the adaptive k-d tree we experimented with the three versions of the nearest neighborsearch described in Section 3.2. We refer to them as algorithms A, B, and C respectively. We alsovaried the bucket size in our study. We used 1, 2, 4, and 8 points per bucket. Table 1 summarizesour results for the three algorithms. Two comparison percentages are presented in this table. The�rst only takes into account the comparisons performed while descending the tree. This gives usa good indication of how well the algorithm pruned the search space. The second comparisonpercentage takes into account the comparisons required to compute the distance to neighboringhyperrectangles when backtracking, thus giving us an indication of the true cost of the algorithm.The percentage of comparisons made are relative to the results when using unordered lists. Usingthe class range method (Section 3.3) we had a recognition rate of 98%. Using this method, one
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13.43 17.72 14.28 17.33 16.2 18.24 18.74 20.17

5.82 17.6 7.24 16.82 9.78 14.22 19.73

12.84 16.91 13.4 16.32 15.33 17.33 18.17 19.59

Table 1: Results of 
oor plan interpretation using adaptive k-d trees.comparison is made for every class rather than for every training feature vector. Thus since thereare 11 classes, the percent of comparisons made compared to the unordered list method was 8.5%.As expected, our experimental results indicate that using spatial indexing to store and searchthe training set resulted in making a relatively low number of comparisons, while maintaining highrecognition rates. For all three algorithms, we achieved the best results with only 2 points perbucket. Although a small number of points per bucket results in a deeper tree, the number ofcomparisons performed while descending the tree is less crucial, since usage of a k-d tree meansthat only one feature is compared at each node. When taking into account the total numberof comparisons, the best method was found to be algorithm C with 2 points per bucket. Itis interesting to note the signi�cantly small number of tree descending comparisons used withalgorithm B, indicating that a very good pruning of the search space was achieved, but at arelatively high cost which is incurred during backtracking, since a full distance calculation is neededrather than just along one dimension as in algorithm C. Thus there was overall only a smallimprovement over algorithm A (i.e comparable results). Further research is needed to determinewhether a better compromise than algorithm C can be found. Another interesting result that weobserved is that with eight points per bucket and a search strategy that �nds the nearest neighborwithin the bucket to which the query point belongs, the recognition rate was 85% with only 7.4%comparisons compared to an exhaustive search.



Progress in Image Analysis and Processing III, pp. 233-240, World Scienti�c, Singapore, 1994. 85 ConclusionA number of issues remain to be addressed in order to use our method as a means of intelligentlyextracting meaningful data from raw images and storing this data in an image database. Theimages that were used as test cases were very clean. We need to experiment with images that havesome noise in them. The features used to discriminate among the classes, and the weights assignedto these features were selected using rather ad-hoc methods. We need to devise methods to do thisin a more systematic way. Finally, the use of contextual data to aid in the classi�cation problemmust be explored. Contextual data is heavily relied upon in OCR systems. Similarmethods may beused in the interpretation of documents that are graphical in nature such as 
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