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Abstract

A pictorial query specification technique that enables
the formulation of complex pictorial queries for brows-
ing through an image database is presented. Using our
technique, it is possible to specify which particular objects
should appear in the target images as well as how many
occurrences of each object arerequired. Moreover, itispos-
sibleto specify the minimumrequired certainty of matching
between query-image objects and database-image objects,
aswell asto impose spatial constraintsthat specify bounds
on the distance between objects and the relative direction
between aobjects. Each pictorial query is composed of one
or more query images. Each query image is constructed by
selecting the required query objects and positioning them
according to the desired spatial configuration. Boolean
combinationsof two or more query imagesare also possible
by use of AND and OR operators. A query image may be
negated in order to specify conditions that should not be
satisfied by the database images that are retrieved success-
fully. Several example queries are given that demonstrate
the expressive power of this query specification method.

1 Introduction

Consider adatabase of images each composed of severa
objects (or symbols). Supposethat wewishtofind al of the
images in the database that contain two particular objectsin
a specific spatia configuration with respect to each other.
One method to achieve this is by an SQL extension with
additiona predicates corresponding to spatia relationships.
One problem with this method is that the objects in the
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images must be preclassified so that the user can specify
them by some a phanumeric tag.

An dternative method is to specify the queries pictori-
ally. Thisisa more “natural” method that facilitates the
use of more complex constraints based on theimplicit char-
acteristics of the pictoria query (i.e., the particular objects
in the pictoria query and their spatial arrangement). There
are, however, several difficulties associated with pictorial
query specifications. First of all, pictorial queries are inher-
ently ambiguous which gives rise to severa questions. In
particular, what criteriashould be used in order to determine
that an object in adatabase image isthe same as aparticular
object inthe query image (termed matching ambiguity)? In
addition, when query images are composed of several ob-
jects, are we looking for images that contain al of these
objects, or would we be satisfied with any subset of these
objects (termed contextual ambiguity)? Finaly, is the spa-
tial arrangement of the query objects of significance? For
example, if one object in the query image is placed above
and within 30 units of another object, what database images
satisfy thisquery? One possibility isthat only database im-
ages with exactly the same spatia configuration satisfy the
guery. However, the intent may be that only the distance
must be the same, or maybe that any configuration may
suffice (termed spatial ambiguity). Another difficulty with
pictoria queries is that they are not always as expressive
as textua queries in terms of specifying combinations of
conditions and negative conditions. For example, how do
we specify pictorialy images that contain beaches but do
not contain camping sites within 3 miles of these beaches?

There have been a number of studies of pictorial queries
in recent years. These have been mainly in the domain
of gpatial and image databases [10]. Most of the image
database research has dealt either with global image match-
ing based on color and texture features (e.g., [5, 7]) or with
the ambiguity associated with matching one query-image
object to another(e.g., [1]). These methods do not address



the case of images that are composed of severa objectsand
their desired spatia configuration. In other words, these
methods only address the problem of matching ambiguity
and do not deal with contextual and spatial ambiguity at all.

There has aso been some work on the specification of
topological and directional relations among query objects
(eg.[3,4,6,9]). Thefocusof thiswork hasbeen on defining
spatial relations between abjects and efficiently computing
them when the objects are stored in a database. These
studies only deal with tagged images (images in which the
objects have already been recognized and tagged with their
semantic meaning). Therefore, they do not addresstheissue
of matching ambiguity. Furthermore, it is always assumed
that the goal is to match as many query-image objects to
database-image objects as possible, and, in most cases, it is
also assumed that the relative locations of the objects must
be exactly as specified by the query image or as closeto that
as possible (eg., [4]). A limited form of spatia ambiguity
is alowed in pictorial queries based on the 2D-string and
itsvariants[3]. However, theissue of the distance between
objectsisnot addressed by any of thesemethods(e.g., [3, 6]).
In addition, it is assumed that the database images must
contain al objectsin the query image. Thus, the question
of contextual and spatial ambiguity in its full extent is not
considered. Furthermore, none of these methods provide
Boolean combinations or negations of query images.

This paper presents a pictorial query specification tech-
nique that we have developed that addresses the issue of
matching, contextual, and spatial ambiguity inherent in pic-
torial queries. Itisorganized asfollows. Section 2 describes
the user interface for specifying pictorial queriesin an ex-
ample application as well as the process that we use for
matching query-image objects to database-image objectsin
this application. In Section 3 we show how to resolve the
matching, contextual, and spatiadl ambiguities inherent in
pictoria queries. Section 4 shows how individua picto-
rial queries are combined to form compound queries aong
with examples of their use. Section 5 contains concluding
remarks.

2 Exampleof aPictorial Query Specification

In our approach, a pictorial query is composed of one
or more query images. Each query image is constructed
by selecting the symbols that should appear in the database
images from a menu of symbols and by positioning these
symbolsso that the desired spatia constraintshold. 1n addi-
tion, theuser must specify theimagesimilarity level required
to satisfy the matching, contextual, and spatia constraints
between the query image and the required database images.
Theindividual query imagesmay becomposed viaAND and
OR operators. In addition, a query image can be negated
with the NOT operator in order to specify conditions that

should not be satisfied by the database images that are re-
trieved successfully. In the case of the conjunction of query
images where the same symbol appears in both query im-
ages, the user may specify whether the two query-symbols
must match (i.e., be bound to) the sameinstance of the sym-
bol inthe databaseimage, or whether two different instances
areallowed (i.e., theinstances may be different but need not
be s0)®. In order to bind two query-symbols to the same
database symbol, the user selects the symbol for the second
guery imagefrom thefirst query image, rather than sel ecting
it from the menu of symbols.

We have implemented this pictoria query specification
as a query interface for a map image database system that
we have developed [8] named MARCO (denoting MAp
Retrieval by COntent). Theinput to MARCO areraster im-
ages of separate map layers (map layer images) and raster
images of map composites (the maps that result from com-
posing the separate map layers). Map layer images are
processed in order to extract contextua cues from the map
layer that can be used to index the composite images. This
process utilizes the symbolic knowledge found in the leg-
end of the map to drive geographic symbol recognition. In
particular, we focused on symbol layers which contain geo-
graphic symbolsthat represent campsites, hotels, etc.

Thisinput process requires some user interventionin or-
der to build an initial training set. Once this is done, the
current training set library isused to assign candidate classi-
ficationsto each symbol using aweighted bounded several -
nearest neighbor classifier [2]. A certainty value (between
0 and 1) is attached to each classification indicating how
certain this classification is. In cases where there is more
than one possibleclassification, all candidate classifications
are returned by the classifier with their associated certainty
valueand stored in the database. Classificationisbased ona
set of featuresthat describe the symbol’sshape. thereby en-
abling us to resolve the matching ambiguity (i.e., to match
guery-image symbols to database-image symbols). How-
ever, for other applications we could use different features
for this purpose.

Figure 1 shows the pictoria query builder used by
MARCO. The user wants to retrieve al database images
that contain a hotel @) within 6 miles of abeach & and do
not have an airport & within 1 mile of the beach & (see
Figure 2 for a description of the symbols used in this query
and intherest of thispaper). Furthermore, the certainty that
the database-image symbolsarein fact a hotel @), beach &,
and airport @ is > 0.5. The symbols are “dragged and
dropped” from the menu of symbols displayed in the bot-
tom of the window. The query builder constructs this menu
of symbolsdirectly from the database which stores one ex-
ample of each symbol relevant for the application at hand.

1Bindingisirrelevant in the case of disjunction of query images, since
only one part of the clause needsto hold for the query to be satisfied.
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Figure 1. Pictorial query construction tool:
The user has constructed a query to “retrieve
images that contain a hotel @) within 6 miles
of a beach & and do not have an airport &
within 1 mile of the beach &.”

These example symbols are taken from the legend of the
map in our example application. Alternatively, provisions
exist for the user to import examples of symbols directly.
Thus, theinterface can automatically adjust to adifferent set
of symbols. We use a color coding scheme to denote that
two query-image symbols are bound to the same instance
in the database image. That is, two symbols that have the
same non-black color are bound, whereas black symbolsare
not bound. For example, in the query in Figure 1, the two
beach & symbolsare blue, and thusthey are bound. That is,
the same instance of the database-image beach & symbol
must be matched to the query-image beach & symbolsin
both clauses of the pictorial query. Matching, contextual,
and spatial similarity levels are set via menu buttons “set
mgl”, “set cd”, and “set s9”, respectively (see Figures 3—- 4
for the corresponding menus).

@ airport < fishing site @ camping site
gas staton & beach @ hotel
® cafe’ @® firstaid % site of interest
(& restaurant & museum

() wild card

{ picnic site open field

(P post office —~ railroad == two-lane road

"™ scenicview ### Jocalroad =——= one-lane road

Figure 2. Semantic meanings of symbols.

1 - all symbols, and no others
42 - 3ll symbols, and maybe others

3 - any of the sumbols. but no others
“4 - any of the symbols. and maybe others ||

Figure 3. Menu for setting contextual similar-
ity level (csl).

= osetsst |

“1 — exact same location

2 — within same distances. same directions
3 - any distances. same directions

#4 — within same distances, any direction

5 — no spatial constraints |

Figure 4. Menu for setting spatial similarity
level (ssl).

3 Resolving Matching, Contextual, and Spa-
tial Ambiguity

In this section we describe how the matching, contex-
tual, and spatial ambiguity inherent in pictorial queriesis
resolved by explicitly specifying the required level of Sim-
ilarity between query image QI and database image DI in
these three domains. We define similarity using the follow-
ing definitions. A symbol s is agroup of connected pixels
that together have a common semantic meaning. A class
C' isagroup of symbols that al have the same semantic
meaning.

3.1 Matching Similarity

Matching similarity specifies how close amatch between
a symbol s; inthe query image QI and a symbol s, in the
database image DI is required in order to consider them to
be the same. The matching similarity level md is anumber
between 0 and 1 that specifiesalower bound on the certainty
that two symbols are from the same class. In other words,
if the certainty that s1 and s, are from the same class > mdl,
then 51 and s, will be considered a match.

3.2 Contextual Similarity

Contextual similarity specifies how well the content of
database image DI matches that of query image QI (e.g., do
all of the symbolsin QI appear in DI?). We make use of
four levels of contextual similarity (e.g., Figure5):

1. Each symbol in QI has a distinct matching symbol in
DI, and each symbol in DI has a matching symbol in



1. Every symbol in QI has a
distinct matching symbol in *@ e *@ e
DI, and every symbol in DI &
has a matching symbol in QI | | =1 * @
Ql DI
2. Every symbol in Ql has a PN
distinct matching symbol in : e * ®
DI (DI may contain ® *
additional symbols from csl=2 ® @
any class) al oI
3. Every symbol in DI has a *
matching symbol in QI * e *
csl=3 @
Ql DI
4. Atleast one symbolin QI
has a matching symbol in DI * e ® ®
(DI may contain additional ® e
symbols from any class) csl=4 (&)
Ql DI

Figure 5. Contextual similarity levels (csl).

Ql.

2. Each symbol in QI hasadistinct matching symbol in DI
(DI may contain additiona symbolsfrom any class).

3. Each symbol in DI hasamatching symbol in QI.

4. Atleast one symbol in QI hasamatching symbol in DI
(DI may contain additional symbolsfrom any class).

3.3 Spatial Similarity

Spatial similarity specifies how good amatch isrequired
in terms of the relative locations and orientation of the
matching symbols between the query and database image.
To define spatial similarity levels, we need to distinguish
between various spatial symbol types. In our application,
a symbol may correspond to a point (e.g., a museum ),
aline (e.g., aloca road «#x), or a polygon (e.g., an open
field #&=). The location of a symbol loc(s) is defined as
follows:

the (z, y) coordinates of

the center of gravity of s,

the (z, y) coordinates of

the end pointsof s,

the (z, y) coordinates of

the upper-left and bottom-
right corners of the minimum
bounding rectangle of s whose
sides are parallel to the axes,

when s isapoint

when s isaline

when s isapolygon

Thedistance between two symbols dist(s1, s2) isdefined
as the Euclidean distance between s; and s». dist(s1, s2) =
0 when the two symbolsintersect (e.g., aline symbol inter-
sects apolygon symbal). dist(s1,s2) = —oo if one symbol
istotally enclosed inthe other (e.g., alinesymbol isinsidea
polygon symbol). For example, the distance between aline
{3 and a polygon p; represented by its minimum bounding
rectangle r; is defined as follows:

0, when {1 intersects 1
—0, when /; isinside r;
dist(l1,ly),wherel> isthe  otherwise

edge of r;closest to Iy

Let rel(s1, s2) denote the relative position of symbol s;

1. Matching symbols are
in the same location e e
®
ssl=1
Ql DI
2. Same relative position of
matching symbols and e e
distance between symbols @&
in DI > L and <= distance ssl=2
between matching symbols
in QI (L=0 by default) Ql DI
3. Same relative position of
matching symbols but e &
distance between matching
symbols may vary ssl=3 ®
Ql DI
4. Relative position of matching
symbols varies but distance
between symbols in e @
DI > L and <= distance =4 ®@ e
between matching symbols =
in QI (L=0 by default) Ql DI
5. Distance and relative position @
between matching symbols e
may vary (no spatial constraints
y vary (no sp ) ® e
ssl=5
Ql DI

Figure 6. Spatial similarity levels (ssl).

with respect to symbol s;. In our implementation, the
function rel(s1, s2) can take on one of the following val-
ues. N,NWW,SW,SSEE,NE,C where NW,SE are the
four cardina directions, NW,NE,SW,SE are the diago-
nal directions, and C denotes coincidence. The defini-
tion of rel(s1, s2) isin terms of loc(s1) and loc(s2), and
varies depending on the types of the argument symbols.
For example, assuming an origin in the upper-1eft corner,
for point symbols. (locy(s;) < locy(si) A locy(s;) <
locy(s;)) = NW(s;,s;). Whenever the two symbols co-
incide, rel(s1,s2) = C.



We make use of five levels of spatid similarity (eg.,
Figure 6). They differ in the degree of freedom intherela
tive location of matching symbolsin the two images. The
spatial similarity level enables specification of the required
database images in terms of minimum and maximum dis-
tance between symbols, and their relative directions.

1. The matching symbols of QI and DI are in the exact
same locationsin both images.

2. The relative position of the matching symbols of QI
and DI is the same, and the distance between them
is bounded from below by some given vaue . and
bounded from above by the distance between the sym-
bolsin Ql. By default . = 0. If L = 0, then 0 <
dist(s;, s;) < dist(sy, s1) (i.e, itisarangesearch). If
L = dist(sg, s1), then dist(s;, s;) = dist(sg, s1) (i.e,
itisan exact distance search).

3. The relative position of the matching symbols of QI
and DI isthe same, but the distance between them may
vary.

4. Therdativeposition of thematching symbolsof QI and
DI may vary, but thedistance between them isbounded
from bel ow by some given value . and bounded from
above by the distance between the symbolsin QI. By
default L = 0.

5. Thelocation of the matching symbols, the distance be-
tween them, and the relative position of these symbols
may vary (i.e., no spatial constraints).

3.4 Total Image Similarity

Thetotal similarity between QI and DI isdefined by com-
biningthe three similarity factors. For example, D/ =g523
Q1 specifiesthat the matching, contextual, and spatial simi-
larity of thetwoimagesisat levels0.5, 2, and 3, respectively.
That is, for each symbol in QI there is a matching symbol
with a certainty > 0.5 from the same class in DI, the lo-
cation of the symbols and the distance between them may
vary, but the inter-symbol spatial rel ationship between them
isthesame. In generd, if DI =p41c01550 QI andif ' is
the set of al the symbols of DI that match some symbol
in QI with acertainty > msl, then the set of classes of the
symbolsof S’ isasubset of the set of classes of the symbols
of QI. Also, for every pair of symbols s; and s, € 57,
the spatial constraints dictated by ssi and the positions of
the matching symbolsin Q)7 hold. In other words, the spa-
tial constraints must simultaneously hold between al of the
matching symbols that appear in both query and database
images.

@ ety
= ]
* @
csl=1 @ csl=2
ssl=5 ssl=5

1

Q2

Figure 7. Examples of different contextual
similarity levels. The question mark(?]symbol
denotes awild card (i.e., any symbol matches

it).

3.5 Example Queries varying csl

Figure 7 demonstrates the use of different contextua
similarity levels for query specification. In al of these
gueries we assume that ssl = 5 (i.e., no spatial constraints
are imposed). We do not specify md in these or any other
example queriessinceitsuseisstraightforward and does not
require further illustration. Query Q1 requests al images
that contain asiteof interest %, apicnic site), arailroatk=-,
and no other symbols. Query Q2 requests al images that
contain apicnicsite(), alocal road«#:: and at | east one other
arbitrary symbol (wild card (?), there may be more). Query
Q3 requests al images that contain asite of interest X, or a
scenic view =, or apicnic site @), or an open field &z (an
image may contain al four) but no other symbols. Query
Q4 requests all images that contain asite of interest Xk, or a
picnic site{r), or aone-laneroad—, or atwo-laneroad=—=
(an image may contain one or al of them as well as other
symbols).

3.6 Example Queries varying ssl

Figure8 demonstratesthe use of different spatial similar-
ity levels for query specification. Inal of these queries we
assume csl = 2 (i.e., every symbol in the query image has
a digtinct matching symbol in the database image). Query
Q1 requests al images that contain apicnic site @ within 1
mile of an open field #&=. Query Q2 requestsimageswith a
hotel@) and any arbitrary symbol (wild card(?)) within1 mile
and southeast of the hotel @). Query Q3 requests all images
that contain an airport@ northwest of abeach&. Query Q4
requestsimages that contain apicnic site@ within 1 mile of
aone-lane road = and within 3 miles of ascenic view =,




csl=2 csl=2
ssl=4 ssl=2 ssl=3
Q1 Q2 Q3
@@= & .
3. ‘ ."Ab‘ ©
Q5% i
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Figure 8. Examples of different spatial simi-
larity levels. “csl” denotes contextual sim-
ilarity level, “ssl” denotes spatial similarity
level. The question mark (2] symbol denotes
awild card (i.e., any symbol matches it).

and requires that the scenic view = be within 4 miles of the
one-laneroad —. Query Q5 requestsimagesthat contain a
post office(p) within 2 miles of of two one-lane roads— that
intersect. Note that the dotted lines with the distance |abel
that appear inthe query imagesin Figure 8 are only used to
denote the distance between symbolsin the figure; they are
not actually part of the query image. The query image only
containssymbols. The distance (and relative directions) be-
tween the symbolsis specified implicitly in the query image
QI by the actua distance (and relative direction) between
the symbolsin QI provided that the spatial similarity level
specifies that they are to be taken into account in computing
the response to the query.

4 Compound Queriesand Negation

So far we have described how to construct an individual
guery image and resolve the matching, contextual, and spa-
tial ambiguity by specifyingmdl, cdl, and ssl. Now we show
how to add expressive power to our pictorial specifications
via compound queries and negation. A pictoria specifica-
tion may be composed of several query images. The query
images can be joined with AND and OR operators. 1n addi-
tion, a query image can be negated with the NOT operator.
The semantic meaning of these operatorsis as follows:

[DI = NOT (QI)] = ~(DI = QI)

In the case of the conjunction of query images where
the same symbol appears in both query images, the user
may specify whether the two query-symbols must match
the same instance of the symbol in the database image, or
whether two different instances are allowed (termed object
binding). In order to bind two query-symbols to the same
database symbol, the user selects the symbol for the second
guery imagefrom thefirst query image, rather than selecting
it from the menu of symbols.

e ®

6@ AND ®

csl=4
s§=5

csl
sd

2
4

Figure 9. “Display images with a hotel @
within 6 miles of a beach & and with a cafe ®
or arestaurant ®".
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Figure 10. “Display images with a camping
site @ within 5 miles of a fishing site < OR
with a hotel @ within 10 miles of a fishing
site < AND with an airport @& northeast of
and within 7 miles of the fishing site «a".

Compound queries can be used to specify more complex
gueries. In particular, two separate query images with dif-
ferent values of cd and ssl can be combined viathe AND
operator to specify aquery with spatia constraints between
some symbols, but with no spatial constraintsbetween other
symbols. For example, consider the query in Figure9 which
requests “all images with a hotel @ within 6 miles of a
beach & and with a cafe ) or arestaurant &". No spatial
constraints are specified for the restaurant (® and cafe ®)
symbols; however, the hotel @) must be within 6 miles of a
beach &. Notice that each query image component has a
different cd value associated withiit. Thus, thefirst compo-
nent requests images contai ning both symbols, whereas the
second component requests images containing either sym-
bol. Compound queries can also be used to specify more
than one acceptable spatia constraint. For example, the
query “display all images with a camping site @ within 5
miles of a particular fishing site < OR with a hotel @)
within 10 miles of the same fishing site <« AND with



an airport @ northeast of and within 7 miles of the same
fishing site <" can be specified as shown in Figure 10.
Recall that we use a color coding scheme to denote that two
guery-image symbols are bound to the same instance in the
database image (i.e, the fishing site < in this example).
That is, two symbolsthat have the same non-black color are
bound, whereas black symbols are not bound.

® ® ®
NOT NOT NOT e
csl=2 csl=4 @ csl=2
ssl=5 ssl=5 ssl=5
Q1 Q2 Q3
Figure 11. Examples of negation. Q1: “im-

ages with no hotel @"; Q2: “images that do
not have both a beach & and a hotel @"; Q3:
“images that do not have a beach & or do
not have a hotel @&".

® ®

AND
NOT

csl=2
ssl=5

csl=2
ssl=5

Figure 12. “Display images with a beach &
but with no hotel @".

S e

AND -1
NOT '

csl=2
ssl=4

csl=2
ssl=5

Figure 14. “Display images with a camping
site @ further than 1 mile from a beach &".

both positive and negative conditions as is the case for the
guery in Figure 12 which requests “images that do have a
beach &, but do not have a hotel @)". Compound queries
with symbol binding and negation can be used to specify
more than one spatia condition for the same symbol as is
the case for the query in Figure 13 which requests “all im-
ages with ahotel @ within 6 miles of abeach& and withno
first aid station @ within 0.5 mileof thebeach&”. Ancther
application of compound queries with symbol binding and
negation is to to specify distance constraintsin terms of an
upper bound. For example, the query in Figure 14 requests
“all images with a camping site @ further than 1 mile from
abeach @".

e
®

®

Figure 15. A pictorial query to “ display im-
ages that contain a beach & and at least two
hotels @)".

csl=2
ssl=5
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Figure 13. “Display images with a hotel @)
within 6 miles of a beach & and with no first
aid station @ within 0.5 mile of the beach &".

Negation of queries can be used in order to specify con-
ditions that should not be satisfied by the database images
that are retrieved successfully. Figure 11 demonstrates how
negation can be used to express retrieval of images that do
not contain a particular symbol, apair of symbols, or one of
two symbols. Query Q1 requests “images with no hotel @)”,
Query Q2 requests“images that do not have both abeach &
and a hotel @, while query Q3 reguests “images that do
not have a beach & or do not have ahotel @)”. Negationin
conjunction with compound queries can be used to specify

@

csl=2
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csl=2
ssl=4
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Figure 16. A pictorial query to “display im-
ages with two different local roads s within
2 miles of amuseum ).

In the example queries that we have seen o far thereis
only oneinstance of each symbol in each query image. Our
pictoria specification method does however allow multiple
instances of each symbol. Thisisuseful in order to specify
the number of occurrences of a particular symbol that are
required in atarget database image. According to the defi-
nition of cd (see Figure5), if cd isset to 1 or 2, then every



symbol in QI has adistinct matching symbol in DI. Thus, if
there are two instances of asymbol in Ql, and cd issetto 1
or 2, then there must be at least two instances of thissymbol
in DI for it to satisfy the query. For example, the query
in Figure 15 requests “images that contain abeach & and
at least two hotels @)”. Another use of compound queries
with multiple instances of symbols is to impose the con-
straint that two query-image symbols from the same class
must be matched to two different instances of this symbol
in the database image. This is demonstrated by the query
in Figure 16, which requests “al images with two different
local roads == within 2 miles of amuseum @".

5 Concluding Remarks

A pictoria query specification technique that enablesthe
formulation of complex pictoria queriesfor imagedatabases
has been described. Using this technique, it is possible to
specify which objects should appear in the target images as
well as how many occurrences of each object are required.
Moreover, spatial constraints can be imposed that specify
bounds on the distance between objects, aswell astherela
tive direction or orientation between objects.

While it is possible to express rather complex queries
using our method, there are some conditionsthat cannot be
specified. In particular, we cannot specify conditions in-
volving the location of certain events between objects. For
example, in Figure 8, we showed how to specify the condi-
tion “post office(F) within 2 miles of two one-laneroads—
that intersect”. However, we cannot specify that we want
the post office (F) to be within 2 miles of the point where
thesetwo one-laneroads— intersect. In addition, although
we take the extent of objects into account in distance and
rel ative position computations, we do not consider the size
or direction of the object itself. For example, we cannot
specify “an open field whose area is at least 1 square
mile” or “alocal road = that goes from north to south”.
Finally, we cannot qualify objects in terms of non-spatia
conditions. For example, we would like to specify “hotels
whose priceisless than $80 per night”. Incorporating these
features into our pictorial query specification method is a
subject for future research.
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