EFFICIENT PROCESSING OF SPATIAL QUERIES IN
LINE SEGMENT DATABASES*

Erik G. Hoel} Hanan Samet
Statistical Research Division Computer Science Department
Bureau of the Census Center for Automation Research

Washington, DC 20233 Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742

Abstract

A study is performed of the issues arising in the efficient processing of spatial
queries in large spatial databases. The domain is restricted to line segment databases
such as those found in transportation networks and polygonal maps. Three classes
of queries are identified. Those that deal with the line segments themselves, those
that involve both the line segments and the space from which they are drawn (e.g.,
proximity queries), and those that involve attributes of the line segments. Handling
the three types of queries requires that the line segments be stored implicitly us-
ing a bucketing approach on the space from which they are drawn. A number of
bucketing approaches are examined and the PMR quadtree is chosen as the most
suitable representation. Its storage and execution time requirements are evaluated
in the context of finding the nearest line segment to a given point. This operation
is shown to take time proportional to the splitting threshold (similar to the bucket
capacity) and is independent of the density of the data. The evaluation uses the
road networks in the data of the U.S. Bureau of the Census.

Keywords and phrases: large spatial databases, spatial queries, spatial access meth-
ods, bucketing methods, lines, spatial indexing, spatial data structures, hierarchical
data structures, geographic information systems, PMR quadtrees

*This work was supported in part by the Bureau of the Census under Joint Sta-
tistical Agreement 88-21 and the National Science Foundation under Grant IRI-90-
17393.

TAlso with the Center for Automation Research at the University of Maryland.

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.238

1 INTRODUCTION

Spatial data consists of points, lines, regions, rectangles, surfaces, volumes, and even data
of higher dimension which includes time (e.g., [Same90a, Same90b]). Spatial databases
permit the storage of spatial information about objects (e.g., [Buch90]). In many standard
database applications it is useful to add spatial attributes to describe different objects in
the database such as the extent of a given river (e.g., does the Missouri River pass through
the state of Missouri?), what is the boundary of St.Mary’s county?, etc. In general, spatial
information can be stored either explicitly or implicitly.

The conventional approach to dealing with spatial data is to store it explicitly. This
is usually quite easy to do since a database management system is just a collection of
records, where each record has many fields. In particular, we simply add a field to the
record that deals with the desired item of spatial information. This approach is fine if we
know a priori the type of spatial information that we wish to extract from our database.
Unfortunately, this is not often the case, as usually we cannot predict the nature of the
user’s query.

In contrast, the implicit approach stores the spatial data in a way that enables it to
be used to respond to the queries. In such a case, the issue of representation becomes
more important since its utility depends to a large extent on the nature of the queries. In
this paper we concentrate on the implicit approach.

We focus on a database consisting of a large collection of line segments such as that
used in the Bureau of the Census TIGER/Line file [Bure89] for representing the roads and
other geographic features in the US. The underlying representation of the data stored in
such a database depends on the nature of the queries that are expected to be posed.

This paper is organized as follows. We first study the issues that must be considered
in choosing a representation for a large collection of line segments. This depends on
the nature of the queries involving them, and on the type of spatial operations that
must be performed to answer them. The queries must include the ability to find nearest
line segments (i.e., proximity queries) as well as access their attributes. This requires
a data structure that sorts the line segments and we select the PMR quadtree as our
representation. The rest of the paper shows how the PMR quadtree can be used to respond
to our spatial queries and evaluates its performance (in terms of storage and execution
time) in dealing with the TIGER/Line files. The evaluation is in terms of a query that
takes a point and finds its nearest line segment. Conclusions are drawn with respect to
possible improvements, and avenues for future research are suggested.

2 SPATIAL INDEXING

Each record in a database management system can be conceptualized as a point in a
multidimensional space. This analogy is used by many researchers (e.g., [Hinr83, Oren84,
Jaga90]) to deal with spatial data as well by use of suitable transformations that map
the spatial object into a point (termed a representative point) in either the same (e.g.,

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.239

[Jaga90]), lower (e.g., [Oren84]), or higher (e.g., [Hinr83]) dimensional spaces.

Unfortunately, this analogy is not always appropriate for spatial data. One problem is
that the dimensionality of the representative point may be too high [Oren89]. One solution
is to approximate the spatial object by reducing the dimensionality of the representative
point. Another more serious problem, and the one we focus on in this paper, is that use
of these transformations does not preserve proximity. It is our belief that spatial data
must be sorted. We are not unique in this view. However, what separates our work from
that of others is that we also take the extent of a spatial object into account.

To see the drawback of just mapping spatial data into points in another space, con-
sider the representation of a database of line segments (e.g., [Jaga90]). We use the term
polygonal map to refer to such a line segment database, consisting of vertices and edges, re-
gardless of whether or not the line segments are connected to each other. Such a database
can arise in a network of roads, power lines, rail lines, etc. Using a representative point,
each line segment can be represented by its endpoints’. This means that each line seg-
ment is represented by a tuple of four items (i.e., a pair of x coordinates and a pair of
y coordinates). Thus, in effect, we have constructed a mapping from a two-dimensional
space (i.e., the space from which the lines are drawn) to a four-dimensional space (i.e.,
the space containing the representative point corresponding to the line).

This mapping is fine for storage purposes. However, it is not ideal for spatial operations
involving search. For example, suppose we want to detect if two lines are near each other,
or, alternatively, to find the nearest line to a given point or line. This is difficult to do in
the four-dimensional space since proximity in the two-dimensional space from which the
lines are drawn is not necessarily preserved in the four-dimensional space into which the
lines are mapped. In other words, although the two lines may be very close to each other,
the Euclidean distance between their representative points may be quite large.

Thus we need different representations for spatial data. We believe that data struc-
tures based on spatial occupancy provide the best solution to these problems. Spatial
occupancy methods are based on the decomposition of the space from which the data is
drawn (e.g., the two-dimensional space containing the lines) into regions called buckets.
Spatial occupancy methods are also known as bucketing methods. Traditionally, bucket-
ing methods such as the grid file [Niev84], BANG file [Free87], LSD trees [Henr89], buddy
trees [Seeg90], etc. have always been applied to the transformed data. In contrast, we
are interested in bucketing methods that are applied to the space from which the data is
drawn (i.e., two-dimensions in the case of a collection of line segments). Moreover, our
interest is in bucketing methods that are designed specifically for the spatial data type
that is being stored (e.g., a collection line segments), whereas the traditional approach is
to tailor the transformation to the spatial data type.

There are four principal approaches to decomposing the space from which the data
is drawn. One approach buckets the data based on the concept of a minimum bounding
(or enclosing) rectangle. In this case, objects are grouped (hopefully by proximity) into

LOf course, there are other representations as well, but they suffer from similar problems. We shall
use this example in the rest of our discussion.

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.240

hierarchies, and then stored in another structure such as a B-tree [ComeT79]. The R-tree
(e.g., [Gutt84]) is an example of this approach. The drawback of these methods is that
they do not result in a disjoint decomposition of space. The problem is that an object is
only associated with one bounding rectangle, yet the area that it spans may be included
in several bounding rectangles. This means that when we wish to determine which object
is associated with a particular point in the two-dimensional space from which the objects
are drawn, we may have to search the entire database.

The other approaches are based on a decomposition of space into disjoint cells, which
are mapped into buckets. Their common property is that the objects are decomposed
into disjoint subobjects such that each of the subobjects is associated with a different
cell. They differ in the degree of regularity imposed by their underlying decomposition
rules and by the way in which the cells are aggregated. The price paid for the non-
disjointness is that in order to determine the area covered by a particular object, we have
to retrieve all the cells that it occupies.

The first method based on disjointness partitions the objects into arbitrary disjoint
subobjects and then groups the subobjects in another structure such as a B-tree. The
partition and the subsequent groupings are such that the bounding rectangles are disjoint
at each level of the structure. The RT-tree [Ston86, Falo87] and the cell tree [Giint87] are
examples of this approach. They differ in the data with which they deal. The R*-tree
deals with collections of rectangles while the cell tree deals with convex polyhedra.

Methods such as the RT-tree and the cell tree have the drawback that the decom-
position is data-dependent. This means that it is difficult to perform tasks that require
composition of different operations and data sets (e.g., set-theoretic operations). In con-
trast, the remaining two methods, while also yielding a disjoint decomposition, have a
greater degree of data-independence. They are based on a regular decomposition. We can
either decompose the space into blocks of uniform size (e.g., the uniform grid [Fran84]) or
adapt the decomposition to the distribution of the data (e.g., a quadtree-based approach
[Tamm82, Same85, Nels86, Nels87, Oren89]). In the former case, all the blocks are of the
same size. In the latter case, the widths of the blocks are restricted to be powers of two,
and their positions are also restricted.

The uniform grid is ideal for uniformly distributed data, while quadtree-based ap-
proaches are suited for arbitrarily distributed data. In the case of uniformly distributed
data, quadtree-based approaches degenerate to a uniform grid, albeit they have a higher
overhead. Both the uniform grid and the quadtree-based approaches lend themselves to
set-theoretic operations and thus they are ideal for tasks which require the composition of
different operations and data sets. In general, since spatial data is not usually uniformly
distributed, the quadtree-based approaches seem to be the most flexible and therefore are
the ones that we focus on in the rest of this paper.

These methods are characterized as employing spatial indexing because with each
block we only store information with respect to whether or not it is occupied by the
object or part of the object. This information is usually in the form of a pointer to a
descriptor of the object. For example, in the case of a collection of line segments in the
uniform grid of Figure 1, the shaded block only records the fact that a line segment crosses

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.241

Figure 1. Uniform grid for a collection of line segments.

it or passes through it. The part of the line segment that passes through the block (or
terminates within it) is termed a ¢-edge. Each g-edge in the block is represented by a
pointer to a record containing the endpoints of the line segment of which the g-edge is a
part [Nels86]. This pointer is really nothing more than a spatial index and hence the use
of this term to characterize this approach. Thus no information is associated with the
shaded block as to what part of the line (i.e., g-edge) crosses it. This information can be
obtained by clipping [Fole90] the original line segment to the block. This is important for
often we do not have the necessary precision to compute these intersection points anyway.

3 QUERIES ON LINE SEGMENT DATABASES

Queries on line segment databases fall into three classes. The first class consists of queries
about the line segments themselves. With the exception of the points that lie on the
line segments, these queries do not involve any points in the space from which the line
segments are drawn (i.e., the space that they occupy). Some examples of the first class

include [Jaga90]:

1. Find all the line segments that intersect a given point or set of points.
2. Find all the line segments that have a given set of endpoints.

3. Find all the line segments that intersect a given line segment.
4

. Find all the line segments that are coincident with a given line segment.

Answering queries in the first class only requires that we have knowledge about the line
segments themselves. Thus representation techniques that transform the line segments
into points in another space are often adequate to answer them. For example, each line
segment can be represented by a point in a four-dimensional space consisting of the values
of the x and y coordinates of its endpoints. It can also be represented as a point in a
two-dimensional space consisting of its slope and appropriate intercept value. A variant
of this approach is taken by Jagadish [Jaga90] in conjunction with an LSD tree [Henr89].

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.242

The second class is broader than the first class in that it involves both the line segments
and all points in the space from which the line segments are drawn. This means that
proximity queries are allowed. Some examples of the second class include:

1. Find the nearest line segment to a given point.

2. Find all the line segments within a given distance from a given point (also known as
a window query or a range query).

Answering queries in the second class is greatly facilitated when the line segments are
sorted. Representation techniques that transform the line segments into points in another
space are inadequate to answer them since they do not preserve the proximity in the space
from which the line segments are drawn. However, the bucketing methods are fine for
these queries.

The third class consists of queries that involve attributes of the line segments. In
particular, once we have a database of line segments, it is natural to associate a type with
them (e.g., road, railway line, power line, telephone line, river, etc.). The line segments
can also be aggregated into higher level units such as roads, transportation networks,
polygons, etc. For example, consider a decomposition of a state map into counties where
each county consists of one or more polygons. Attributes give rise to more complex queries
which involve more than just finding the nearest neighbor. Given our initial assumption
that spatial data is stored implicitly means that we must also have the ability to extract
polygons given a line segment or a point. Some examples of the third class include:

1. Given a point, find the closest line segment of a particular type. An additional
optional argument can indicate a maximum distance so as to constrain the search.

2. Given a point, find the minimum enclosing polygon whose constituent line segments
are all of a specified type.

3. Given a point, find all the polygons that are incident on it.

These queries have much applicability. For example, query 1 can be used with school
district boundaries. In this case, once we have located the nearest school boundary it is
a simple matter to find the location of the nearest school. Moreover, we assume that the
identity of the two adjacent schools is stored with each boundary segment. As another
example, query 2 can be used to determine the extent of two-dimensional regions by just
giving a point within them. Query 1 can be varied by asking for a pruned polygon — i.e.,
one in which all line segments that lie inside the polygon are removed, such as a cul de
sac.

The bucketing approach coupled with a procedure to extract a polygon given a line
segment is useful in answering queries in the third class. Extracting a polygon involves
locating an edge and the side associated with the desired region. Once this is done,
we simply access one of the endpoints, examine the incident edges, and then identify the
appropriate next edge to follow. In the rest of this paper we study the use and performance
of the PMR quadtree, an adaptive bucketing method [Nels86, Nels87], in answering queries
in the second and third classes.

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.243

4 PMR QUADTREES

The simplest representation of line data such as that comprising a polygonal map is in
the form of vectors which are usually specified in the form of lists of pairs of x and y
coordinate values corresponding to their start and endpoints. The vectors are usually
ordered by their connectivity. Given a random point in space, it is very difficult to find
the nearest line to it using such a representation. The problem is that the lines are not
sorted. Nevertheless, the vector representation is used in many commercial systems (e.g.,
ARC/INFO [Peuq90]) on account of its compactness.

In contrast, we adaptively sort the line segments into buckets of varying size. There is a
one-to-one correspondence between buckets and blocks in the two-dimensional space from
which the line segments are drawn. There are a number of approaches to this problem
[Same90a]. They differ by being either vertex based or edge based. Their implementations
make use of the same basic data structure. All are built by applying the same principle
of repeatedly breaking up the collection of vertices and edges (making up the polygonal
map) into groups of four blocks of equal size (termed brothers) until obtaining a subset
that is sufficiently simple so that it can be organized by some other data structure. This
is achieved by successively weakening the definition of what constitutes a legal block,
thereby enabling more information to be stored in each bucket.

Ab
9/\h/a e
/\d I

\\C/

A

Figure 2: PM; quadtree for the collection of line segments of Figure 1.

The PM quadtrees of Samet and Webber [Same85] are vertex-based. We illustrate the
PM; quadtree. It is based on a decomposition rule stipulating that partitioning occurs
as long as a block contains more than one line segment unless the line segments are all
incident at the same vertex which is also in the same block (e.g., Figure 2). A similar
representation has been devised for three-dimensional polyhedral data, where the decom-
position criteria are such that no block contains more than one face, edge, or vertex unless
the faces all meet at the same vertex or are adjacent to the same edge (see [Same90a] for
more details).

The PMR quadtree [Nels86, Nels87] is an edge-based variant of the PM quadtree (see
also edge-EXCELL [Tamm8l1]). It makes use of a probabilistic splitting rule. A block is
permitted to contain a variable number of line segments. The PMR quadtree is constructed

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.244

by inserting them one-by-one into an initially empty structure consisting of one block.
Each line segment is inserted into all of the blocks that it intersects or occupies in its
entirety. During this process, the occupancy of each affected block is checked to see if the
insertion causes it to exceed a predetermined splitting threshold. If the splitting threshold
is exceeded, then the block is split once, and only once, into four blocks of equal size. The
rationale is to avoid splitting a node many times when there are a few very close lines in a
block. In this manner, we avoid pathologically bad cases. For more details, see [Nels86].

A line segment is deleted from a PMR quadtree by removing it from all the blocks that
it intersects or occupies in its entirety. During this process, the occupancy of the block
and its siblings (the ones that were created when its predecessor was split) is checked
to see if the deletion causes the total number of line segments in them to be less than
the predetermined splitting threshold. If the splitting threshold exceeds the occupancy
of the block and its siblings, then they are merged and the merging process is recursively
reapplied to the resulting block and its siblings. Notice the asymmetry between the
splitting and merging rules.

(@) ﬁ/A\b (b)

(€)

(©) (d)

e

Figure 3: PMR quadtree for the collection of line segments of Figure 1. (a) - (e) illustrate
snapshots of the construction process with the final PMR quadtree given in (e).

Figure 3(e) is an example of a PMR quadtree corresponding to a set of 9 edges labeled
a—t inserted in increasing order. Observe that the shape of the PMR quadtree for a given
polygonal map is not unique; instead it depends on the order in which the lines are inserted
into it. In contrast, the shape of the PM; quadtree is unique. Figure 3(a)—(e) shows some
of the steps in the process of building the PMR quadtree of Figure 3(e). This structure
assumes that the splitting threshold value is two. In each part of Figure 3(a)—(e), the
line segment that caused the subdivision is denoted by a thick line, while the gray regions
indicate the blocks where a subdivision has taken place. The insertion of line segments
¢, €, g, h, and ¢ cause the subdivisions in parts a, b, ¢, d, and e, respectively, of Figure
3. The insertion of line segment ¢ causes three blocks to be subdivided (i.e., the SE block
in the SW quadrant, the SE quadrant, and the SW block in the NE quadrant). The final
result is shown in Figure 3(e). Note the difference from the PM; quadtree in Figure 2 —
i.e., the block containing point P in Figure 3(e) is decomposed in the PM; quadtree while
the NE block of the SW quadrant is not decomposed in the PMR quadtree.

We prefer, and use, the PMR quadtree as it results in far fewer subdivisions than the

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.245

PM; quadtree because in the PMR quadtree there is no need to subdivide in order to
separate line segments that are very “close” or whose vertices are very “close,” which
is the case for the PM; quadtree. This is important since four blocks are created at
each subdivision step. Thus when many subdivision steps occur, many empty blocks are
created and thus the storage requirements of the PMR quadtree are considerably lower
than those of the PM; quadtree. Generally, as the splitting threshold is increased, the
storage requirements of the PMR quadtree decrease while the time necessary to perform
operations on it will increase (see Section 6). Another advantage of the PMR quadtree over
the PM; quadtree is that by virtue of being edge based, it can easily deal with nonplanar
graphs.

It is interesting to point out that although a bucket can contain more line segments
than the splitting threshold, this is not a problem. In fact, it can be shown [Same90a]
that the maximum number of line segments in a bucket is bounded by the sum of the
splitting threshold and the depth of the block (i.e., the number of times the original space
has been decomposed to yield this block).

The PMR quadtree (and also the PM; quadtree) can be easily adapted to deal with
fragments that result from set-theoretic operations such as union and intersection so that
there is no data degradation when fragments of line segments are subsequently recom-
bined. This is a direct consequence of spatial indexing — i.e., each block contains a
descriptor of the object that is associated with it rather than the actual part of the object
that occupies the block. The result is a consistent representation of line fragments since
they are stored exactly and, thus, they can be deleted and reinserted without worrying
about errors arising from the roundoffs introduced by approximating their intersection
with the borders of the blocks through which they pass.

5 ALGORITHM TO FIND THE NEAREST LINE
SEGMENT TO A POINT

Users of spatial databases frequently require the determination of the nearest object to a
specified point or object. In computer graphics this is known as a “pick” operation where
the query point or object corresponds to the location of a pointing device such as a cursor
or a mouse. The utility of this operation becomes apparent when we observe that users
of graphical interfaces often find it difficult to position a pointing device directly on top
of an object such as a line segment for the purpose of selecting it.

We examine the problem of finding the nearest line segment to a point P. The “near-
est” line segment is the one whose Euclidean distance to P is minimal. The collection of
line segments is represented using a PMR quadtree. The first step in our algorithm is to
locate the smallest block that contains P. We use the term base region to describe this
block. Two items are worthy of note. First, the base region can be empty (e.g., the sw
block in the SW quadrant in Figure 3(e)). Second, it should be clear that the nearest line
segment to P need not be in the base region. For example, in Figure 3(e) line segment
h is closer to query point P than line segments d and : which both pass through the

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.246

base region. Thus, in order to determine the nearest line segment to a query point, it is
not sufficient to merely search the base region or its three brothers. In particular, when
distance is measured using the Fuclidean distance metric (as it is here), we find that in
the worst-case, we must examine blocks that are not immediately adjacent to the base
region.

1] 2] 3
L
8 4
a P
7 6 5
b
C d

Figure 4. Blocks comprising the search region for finding the nearest line segment.

We use a four stage search process illustrated by Figure 4. Assume that the splitting
threshold is k& and that P is the query point. Let L be the location of a very small line
segment, represented here as a point. The darkest gray area is the base region while the
medium gray area includes the three brothers of the base region. In the worst case, P and
L are found at opposite corners of the diagonally adjacent brothers. We know that there
must exist at least k£ line segments in the union of the four brother blocks as otherwise
(i.e., if there were less than k line segments) the four brothers would have been merged
together to form a single block. As there must exist more than k line segments in the
union of the base region and the three other brothers, we know that there also must exist
a line segment whose distance to the specified point is less than or equal to the length of
the diagonal across the four brothers?.

Therefore, we see that the maximum value of the search radius is equal to the length
of the diagonal across the block corresponding to the parent of the base region. By using
this maximal distance as a radius, we form a circular search region centered at P. This
constrains the search region to be cross-shaped where the interior is the subject of the
first three stages, while the exterior is the focus of the fourth stage.

The first stage examines the block containing the query point (i.e., the base region)
to determine the closest line if one exists here. If such a line exists, then the distance to
it serves as the initial search radius (we use this term in our analysis of the experimental
results in Section 6). In the second stage, we examine the brothers of the base region to
see if they contain a closer line segment. If no line segment was found in the first stage,
then the distance to the first line segment found in this stage serves as the initial search

?This constraint is not true when we are dealing with queries of the third class. In particular, if
the splitting criteria are independent of the type of line segment, then the nearest line segment in the
constraining search region may not necessarily be the one we are seeking. Such queries are a subject of
future work.

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.247

radius. In the third stage we examine the blocks of size equal to (or greater than) the
parent block, say T', of the base region that are immediately adjacent to T'. There are at
most eight such blocks and at most seven of them need to be examined (e.g., blocks 1, 2,
and 4-8 in Figure 4). Stage four searches at most four additional blocks of size equal to
(or greater than) T, if necessary (e.g., blocks a, b, ¢, and d in Figure 4).

Of course, not all four stages are executed in their entirety nor are all of the blocks
examined. As line segments are found, the maximum search radius value is adjusted and
used as a filter to avoid needless searches in many of the blocks. Given an area of s for
the base region, in the worst case, we must search entirely or partially a total of twelve
regions of size equal to that of the parent block where the total search area is equal to
87s (i.e., m(2¢/s + s)?).

The execution time of the algorithm is proportional to the value of the splitting thresh-
old and is independent of image resolution and complexity. There are several ways to
obtain this result. One approach is to make use of the same techniques that were em-
ployed to analyze algorithms for operations on region quadtrees that made use of neighbor
finding (e.g., [Same90b]). This requires an appropriate image model.

An alternative analysis is as follows. Assume that the line segments are uniformly
distributed over the entire map region. In the absence of severe clustering, the degree of
subdivision for two regions of the same size will be roughly equivalent. As can be seen
from Figure 4, the maximal search radius will result in examining at most 32 blocks of size
equal to the base region. If we assume that each block will contain /2 line segments on
the average, then we can reasonably expect that fewer than 32 - /2 line segments will be
considered as the closest possible line segment. Therefore, the average case computational
complexity of the algorithm is O(k).

6 EXPERIMENTAL RESULTS

Experiments were run using TIGER/Line file maps (see Figure 5 for an example map).
All tests were executed on a Sun SparcStation 1+ (roughly 16 MIPs). The collections
of line segments comprising the maps were stored in a PMR quadtree within the QUILT
geographic information system developed at the University of Maryland [Shaf90]. In
QUILT, the PMR quadtree is implemented using a pointerless quadtree. This representation
is designed for large databases that are disk resident and this is the way we conducted
our experiments. The implementation uses a linear quadtree where the blocks are sorted
using bit interleaving or a z-order (e.g., [Trop81, Oren84]) and then stored in a B-tree. The
maximum level of decomposition of each map is fourteen (i.e., the line segment database
was normalized to lie in a 2'* x 2! region).

We were interested in answering the following questions:
o What is the relationship between map segment density and the search times for
finding the nearest line segment?

o What is the average execution time for our implementation of the algorithm to find

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.248

Figure 5: Washington D.C.

the nearest line segment?

o What is the effect of changing the value of the splitting threshold on the execution
time of the algorithm to find the nearest line segment?

o What is the effect of changing the value of the splitting threshold on the storage
requirements of the PMR quadtree?

In order to obtain this information, we gathered data on the average execution time per
query, the average number of segments that were tested as candidates for the closest line
segment, the initial search radius value (i.e., the distance between the query point and the
nearest line segment found in its parent block), and the ratio of the initial search radius
value to the maximal possible search radius (i.e., the length of the diagonal across the
parent block). The effects of varying the splitting threshold on the storage requirements
of the PMR quadtree and on the execution time of the nearest neighbor algorithm were
also tabulated. Of secondary interest to these four questions, was a desire to obtain some
knowledge about actual line segment data and how the PMR quadtree handles it. Data
was collected on the total number of line segments, number of blocks, and the expected
number of g-edges in each block.

Our initial tests were done using random test points that were uniformly distributed.
This resulted in a high proportion of the query points being located ‘outside’ of the county
boundaries. An extreme example was the San Francisco map where over 95% of the area
represented by the PMR quadtree is void of line segments (essentially regions that do not
lie within the county boundaries). Thus, a large majority of all uniformly distributed
random query points were located outside of the county boundaries. This, of course,
caused inflated estimates of the average execution times as the initial search radii were
frequently very large.

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.249

In an attempt to more accurately correlate the query points with the data density (i.e.,
regions with high concentrations of line segments are more likely to be queried than sparse
regions), we used a two stage process to generate our query points. We first generated the
PMR quadtree block at random using a uniform distribution based on the total number
of blocks—not their size. Next, having obtained a random block, we generated a query
point at random within the block. In this case, we did draw the coordinates of the query
point from a uniform distribution. For each of the listed maps, we ran 5,000 test queries.

Tables 1 and 2 contain a summary of our results by county and city. The data was
generated from a PMR quadtree with a splitting threshold of eight. The q-edges in each
block were examined sequentially—they were not sorted. The figures in parentheses are
standard deviations. For most of the maps we have two entries because the spatial and
nonspatial information in TIGER/Line maps is contained in two files for each governmental
entity such as a county or a city. The first is called the Basic Data Record and it contains
a single data record for each unique feature segment. A basic data record might represent
a physically curved street. The shape of the street within the basic data record is approx-
imated as a single line segment. The second file is called the Shape Coordinate Points and
it contains additional coordinate points that lie between the two original endpoints of the
basic data record. This allows the shape of the street to be more accurately represented,
if necessary. We used both of these files in our tests. The first file is identified in the
tables by appending the suffix a to the name of the map, while the second file is identified
by the suffix 3.

quadtree statistics average per query
seq g-edges cpu segment 1nit srch ratio of max
County count | blocks | per block seconds comparisons radius search radius
Arlington, VA | o || 7237 | 3616 1.69 0.0149 (0.0045) | 33.07 (7.90) | 74.54 | 0.1586 (0.021)
B 8333 4117 4.60 0.0147 (0.0036) 33.04 (8.40) 68.78 0.1628 (0.015)
Carroll, MD o 8893 5011 4.66 0.0150 (0.0050) 29.67 (6.57) 66.39 0.1660 (0.023)
B 13861 7084 4.45 0.0154 (0.0047) 32.09 (7.17) 59.01 0.1659 (0.023)
Howard, MD o 10381 5434 4.43 0.0141 (0.0032) 30.62 (5.32) 48.64 0.1648 (0.016)
B 16387 7975 4.43 0.0151 (0.0043) 32.19 (6.92) 41.42 0.1667 (0.014)
Harford, MD o 12142 6403 4.63 0.0146 (0.0023) 31.56 (4.76) 52.54 0.1671 (0.017)
B 19897 9745 4.44 0.0161 (0.0044) 32.43 (6.71) 45.98 0.1724 (0.020)
Marin, CA o 18452 9931 4.53 0.0147 (0.0043) 32.36 (5.18) 27.29 0.1669 (0.013)

Table 1: Nearest line segment performance by county

From Tables 1 and 2 we see that the average number of line segment comparisons for
each query varies between 29.67 and 37.22 for all of the line maps. In relative terms,
for each map, our search for the nearest line segment only examines between 0.16% and
1.33% of the total number of line segments. As the number of line segment comparisons is
relatively constant across all maps, we found that the larger the number of line segments
in the map, the smaller the percentage of line segments in the map that need to be
considered as possible closest line segments.

The average execution times range from 0.0141 and 0.0185 seconds across all of the
maps. The execution time does not appear to be correlated with the initial search radius
value. However, the initial search radius value is very dependent on the density of the

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.250

quadtree statistics average per query
seq g-edges cpu segment 1nit srch ratio of max
City count | blocks | per block seconds comparisons radius search radius
Charlottesville, VA o 2412 1207 4.65 0.0145 (0.0029) 32.29 (6.68) 160.22 0.1603 (0.013)
B 2942 1426 4.53 0.0143 (0.0037) 31.99 (6.94) 147.54 0.1595 (0.021)
Petersburg, VA o 2920 1480 4.68 0.0148 (0.0034) 32.49 (5.80) 131.87 0.1665 (0.024)
B 3597 1759 4.59 0.0149 (0.0029) 32.03 (8.31) 109.51 0.1625 (0.020)
Alexandria, VA o 3769 1864 4.65 0.0143 (0.0033) 32.93 (7.57) 102.30 0.1613 (0.021)
B 4829 2314 4.58 0.0148 (0.0035) 33.66 (7.39) 98.24 0.1621 (0.019)
Richmond, VA o 13222 6499 4.74 0.0155 (0.0036) 34.98 (7.46) 56.28 0.1618 (0.024)
B 15146 7306 4.68 0.0154 (0.0040) 34.80 (6.93) 51.26 0.1575 (0.017)
Washington, DC | « || 15994 | 7918 1.83 0.0156 (0.0044) | 34.37 (7.79) | 54.22 | 0.1587 (0.022)
B 18321 8857 4.77 0.0147 (0.0041) 34.01 (8.00) 49.98 0.1605 (0.025)
San Francisco, CA o 16069 8182 4.85 0.0185 (0.0037) 37.22 (8.41) 11.47 0.1630 (0.012)
B 18898 9622 4.79 0.0165 (0.0035) 36.52 (8.38) 12.63 0.1639 (0.093)

Table 2: Nearest line segment performance by city

line segments in the map. In particular, we observe that the San Francisco map has by
far the smallest initial search radius value, while the Charlottesville map has the largest
initial search radius value. This was not surprising once we examined the maps and saw
that San Francisco had the largest segment density of all the maps under consideration,
while Charlottesville had the smallest.

When considering the ratio of the initial search radius value to the maximum search
radius value, we found that there was very little variation across the maps (i.e., it varies
between 0.1575 and 0.1724). This means that the initial search radius value is very well
correlated with the size of the base region. Therefore, San Francisco has a small initial
search radius value because it has many small blocks. Thus we see a good, but somewhat
surprising, result that a larger initial search radius value does not harm the performance
of the search since the surrounding blocks that we will search are also usually larger.
Therefore, the average search behavior will be the same for all maps, regardless of the
initial search radius value.

Figure 6 shows the execution times of the five city maps as a function of the splitting
threshold. Instead of using absolute quantities, we use ratios with respect to the storage
requirements for a splitting threshold of eight (it is shown as a unit value). The per-
formance ratios are on the vertical axis, while the splitting thresholds and the city map
names are on the two horizontal axes. Observe that as the splitting threshold decreases,
the time necessary to determine the nearest line segment also decreases. It should be clear
that the relationship between the splitting thresholds and the execution times appears
to be nearly linear. This provides empirical confirmation of our earlier analysis that the
algorithm to find the nearest line segment in a PMR quadtree is O(k), where k is the
splitting threshold. This relationship is not surprising as, in essence, we are exchanging
storage for execution speed. In particular, as the splitting threshold decreases, fewer line
segments are found in each block, and therefore less time is spent sequentially applying
an operation to each segment in the block under consideration.

Figure 7 shows the storage requirements of five city maps as a function of the splitting

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.251

Woashington D.C.

Richmond

10

12 Charlottesville

Figure 6: Nearest line segment execution time ratios for city maps by splitting threshold.

threshold. Again, instead of using absolute quantities, we use ratios with respect to the
storage requirements for a splitting threshold of eight (it is shown as a unit value). The
performance ratios are on the vertical axis, while the splitting thresholds and the city
map names are on the two horizontal axes. We see clearly that as the splitting threshold
decreases, the amount of storage necessary increases dramatically for each of the five
maps. A splitting threshold of two requires at least twice as much storage for each map
as was needed with a splitting threshold of eight. We also note that the proportional rate
of increase in storage is slightly larger for the larger maps although it is difficult to see
in the figure. In essence, we are observing that as the splitting threshold decreases, the
number of blocks in the PMR quadtree is increasing because the capacity of the block is
decreasing. In addition, line segments that span several blocks are inserted into more of
the smaller blocks than when the threshold values were larger thereby obviating the need
to split the blocks, which means that the blocks are larger.

The above results confirm our analysis that the execution time of the algorithm to find
the nearest line segment is proportional to the splitting threshold. This is plainly evident
from Figure 6. Tables 1 and 2 also support this analysis since neither the execution time
nor the number of segment comparisons vary greatly across the different maps. The only
outlier was San Francisco. This was easily explained once we saw its map since it has a
tremendous amount of empty area and is not contiguous.

In our analysis we also assumed that each block would contain O(k/2) line segments.
This assumption is supported by Tables 1 and 2 where for a splitting threshold of eight, the
average block in our test maps contained between 4.43 and 4.85 line segments. In fact, we
also found that only rarely did the occupancy of a block exceed the value of the splitting
threshold. In particular, for all the maps that we tested, with a splitting threshold of
eight, less than 0.5% of the blocks contained more g-edges than the splitting threshold
and the maximum that we observed was eleven. Recall that the theoretical maximum

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.252

12 Charlottesville

Figure 7: Storage requirement ratios for city maps by splitting threshold.

number of line segments in a block is equal to the sum of the splitting threshold and the
depth of the block (i.e., 8+14=21 in our case).

7 CONCLUDING REMARKS

We have seen that efficient processing of spatial queries is an important problem in the
implementation of spatial databases. Although our objects consisted only of line segments
and the problem of finding the nearest line segment, the issue has wide applicability.
Future work should examine additional queries. Unfortunately, it is difficult to identify
them. This will not be discussed further here.

Our representation makes use of a bucketing approach which sorts the line segments
with respect to the space from which they are drawn. We used an adaptive approach in
contrast to a uniform grid where all the buckets are of the same size. We feel that this
yields superior performance especially in empty regions since they are aggregated and
hence the number of such regions that are visited is considerably lower than is the case
with a uniform grid. Data such as the San Francisco map reinforces this view.

An obvious issue involves a more detailed examination of the effects of the bucket
capacity (or more precisely the splitting threshold) on the storage and execution time
requirements of the algorithms. Is there an ideal splitting threshold? Is there some
obvious relationship between the resolution of the data (i.e., the maximum number of
allowable subdivision steps), splitting threshold, and the volume of the data? Some of
our other studies have shown that as the value of the splitting threshold is increased by
several orders of magnitude (e.g., above 200), the execution time rises dramatically. This
is a direct result of the fact that we do not sort the line segments within each bucket.

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991. 253

When the splitting threshold value is relatively small (e.g., under twelve), this is not a
serious issue since sequential search is efficient. However, as the splitting threshold value
is increased, the fact that each access to a bucket requires that it be searched sequentially
is inefficient. We need to factor out the effect of sorting, or lack of it, in measurements
that involve larger splitting threshold values. Of course, the issue of how to sort the line
segments within the block is a problem in its own right.

Another issue involves the measurement of the performance of spatial algorithms. We
need to investigate models for spatial data and then analyze the storage and execution
time costs for them. The difficulty lies in making the models realistic so that the spatial
objects that are generated by them have a distribution similar to that found in real data.
For example, our experience has been that random line segments cannot be generated
by simply choosing the coordinate of each endpoint from a uniform distribution [Jaga90].
Such an approach ignores the connectivity that is so often found in polygonal maps.
An interesting area for further investigation is the possible use of geometric probability
[Sant76] to generate the test data. However, once again, we must not ignore connectivity.

Similarly, we must develop appropriate models for generating the data necessary to
measure the performance of the queries. This is different from the test spatial data
discussed above. For example, when computing the nearest line segment to a point, we
saw the futility of choosing the query points at random from a uniform distribution.
In particular, such an approach will be biased towards generating query points in large
empty regions. Qur point is that the distribution of the actual spatial data should be
used to test it—not some illusory distribution. This is the approach we followed in testing
the computation of the nearest line segment to a given point. Recall that query points
were generated using a two stage process. We first generated the block at random from a
uniform distribution based on the number of blocks—mnot their size. Next, having obtained
a random block, we generated a query point at random within the block. In this case we
did draw the coordinates of the query point from a uniform distribution.

The generation of the block address at random is important. If we don’t do this, then
tests would reveal that a uniform grid data structure would be superior to a PMR quadtree
which is fine if the actual data were uniformly distributed. However, as we saw from our
test data, this is usually not the case (e.g., the San Francisco map).

The algorithms employed to respond to the queries also suggest avenues for future
research. All of our proximity queries have measured distance in terms of the Euclidean
metric. The Euclidean metric, although commonly used, has two drawbacks. First, its
computation is time-consuming since a square root operation must be calculated. Second,
by virtue of its locus being a circle, for a given distance value, the Euclidean metric causes
more neighboring buckets to be examined than would a metric that is more attuned to
the rectangular shape of the buckets (e.g., the Chessboard metric which is also known as
the maximum value metric and whose locus is a square). Two interesting questions arise.
First, for dense data, how often is the “approximate” closest line segment (obtained by
using the Chessboard metric) different from the “true” closest line segment (obtained by
using the Euclidean metric)? Second, what is the extra cost in using the Euclidean metric
over the Chessboard metric?

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991. 254

References

[Bure89]

[Buch90]

[ComeT9]

[Falo87]

[Fole90]
[Fran84]
[Free87]

[Glint87]

[Gutt84]

[Henr89]

[Hinr83]

[Jaga90]

[Nels86]

[Nels87]

Bureau of the Census, TIGER/Line precensus files: 1990 technical documenta-
tion, Bureau of the Census, Washington, DC, 1989.

A. Buchmann, O. Gunther, T.R. Smith, and Y.-F. Wang, eds., Design and
Implementation of Large Spatial Databases, Lecture Notes in Computer Science

No. 409, Springer-Verlag, Berlin, 1990,

D. Comer, The ubiquitous B-tree, ACM Computing Surveys 11, 2(June 1979),
121-137.

C. Faloutsos, T. Sellis, and N. Roussopoulos, Analysis of object oriented spatial
access methods, Proceedings of the SIGMOD Conference, San Francisco, May
1987, 426-439.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice, Second Edition, Addison-Wesley, Reading, MA, 1990.

W. R. Franklin, Adaptive grids for geometric operations, Cartographica 21,
2&3(Summer & Autumn 1984), 160-167.

M. Freeston, The BANG file: a new kind of grid file, Proceedings of the SIGMOD
Conference, San Francisco, May 1987, 260-269.

O. Gunther, Efficient structures for geometric data management, Ph.D. dis-
sertation, UCB/ERL M87/77, Flectronics Research Laboratory, College of
Engineering, University of California at Berkeley, Berkeley, CA, 1987 (Lecture
Notes in Computer Science 337, Springer-Verlag, Berlin, 1988).

A. Guttman, R-trees: a dynamic index structure for spatial searching, Pro-

ceedings of the SIGMOD Conference, Boston, June 1984, 47-57.

A. Henrich, H. W. Six, and P. Widmayer, The LSD tree: spatial access to
multidimensional point and non-point data, Proceedings of the Fifteenth In-

ternational Conference on Very Large Data Bases, P. M. G. Apers and G.
Wiederhold, eds., Amsterdam, August 1989, 45-53.

K. Hinrichs and J. Nievergelt, The grid file: a data structure designed to
support proximity queries on spatial objects, Proceedings of the WG'83 (In-
ternational Workshop on Graphtheoretic Concepts in Computer Science), M.
Nagl and J. Perl, eds., Trauner Verlag, Linz, Austria, 1983, 100-113.

H. V. Jagadish, On indexing line segments, Proceedings of the Sizteenth Inter-
national Conference on Very Large Data Bases, D. MclLeod, R. Sacks-Davis,
and H. Schek, eds., Brisbane, Australia, August 1990, 614-625.

R. C. Nelson and H. Samet, A consistent hierarchical representation for vector
data, Computer Graphics 20, 4(August 1986), 197-206 (also Proceedings of the
SIGGRAPH’86 Conference, Dallas, August 1986).

R. C. Nelson and H. Samet, A population analysis for hierarchical data struc-
tures, Proceedings of the SIGMOD Conference, San Francisco, May 1987, 270-
277.

In Proc. of the 2nd Symp. on Large Spatial Databases (SSD’91), Ziirich, Aug. 1991.255

[Niev84]

[Oren89]

[Oren84]

[Peuq90]

[Same90al

[Same90b]

[Same85]

[Sant76]

[Shafo0]

[Seeg90]

[Ston86]

[Tamm81]

[Tamm82]

[Trop81]

J. Nievergelt, H. Hinterberger, and K. C. Sevcik, The grid file: an adaptable,
symmetric multikey file structure, ACM Transactions on Database Systems 9,

I(March 1984), 38-71.

J. A. Orenstein, Redundancy in spatial databases, Proceedings of the SIGMOD
Conference, Portland, OR, June 1989, 294-305.

J. A. Orenstein and T. H. Merrett, A class of data structures for associative

searching, Proceedings of the Third ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, Waterloo, Canada, April 1984, 181-190.

D. J. Peuquet and D. F. Marble, ARC/INFO: An example of a contemporary
geographic information system, in Introductory Readings In Geographic Infor-
mation Systems, D. F. Peuquet and D. F. Marble, eds., Taylor & Francis,
London, 1990, 90-99.

H. Samet, The Design and Analysis of Spatial Data Structures, Addison-
Wesley, Reading, MA, 1990.

H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS, Addison-Wesley, Reading, MA, 1990.

H. Samet and R. E. Webber, Storing a collection of polygons using quadtrees,
ACM Transactions on Graphics 4, 3(July 1985), 182-222.

L. A. Santalo, Integral geometry and geometric probability, in Encyclopedia of
Mathematics and its Applications, G. C. Rota, ed., Addison-Wesley, Reading,
MA, 1976.

C. A. Shaffer, H. Samet, and R. C. Nelson, QUILT: a geographic information
system based on quadtrees, International Journal of Geographical Information

Systems 4, 2(April-June 1990), 103-131.

B. Seeger and H. P. Kriegel, The buddy-tree: an efficient and robust access
method for spatial data base systems, Proceedings of the Sixteenth Interna-
tional Conference on Very Large Data Bases, D. McLeod, R. Sacks-Davis, and
H. Schek, eds., Brisbane, Australia, August 1990, 590-601.

M. Stonebraker, T. Sellis, and E. Hanson, An analysis of rule indexing im-
plementations in data base systems, Proceedings of the First International

Conference on Frpert Database Systems, Charleston, SC, April 1986, 353—-364.

M. Tamminen, The EXCELL method for efficient geometric access to data, Acta
Polytechnica Scandinavica, Mathematics and Computer Science Series No. 34,

Helsinki, Finland, 1981.

M. Tamminen, Efficient spatial access to a data base, Proceedings of the SIG-
MOD Conference, Orlando, June 1982, 47-57.

H. Tropt and H. Herzog, Multidimensional range search in dynamically bal-
anced trees, Angewandte Informatik 23, 2(February 1981), T1-77.

