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Abstract. An algorithm for performing online clustering on the GPU
is proposed which makes heavy use of the atomic operations available on
the GPU. The algorithm can cluster multiple documents in parallel in
way that can saturate all the parallel threads on the GPU. The algorithm
takes advantage of atomic operations available on the GPU in order to
cluster multiple documents at the same time. The algorithm results in
up to 3X speedup using a real time news document data set as well as on
randomly generated data compared to a baseline algorithm on the GPU
that clusters only one document at a time.
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1 Introduction

Our work on indexing spatial and temporal data [1, 4–6] and similarity search-
ing [3, 7, 9] in the serial domain as well as in a distributed domain [10] and on
GPUs [2] has led us to work on indexing textual representations of spatial data
found in documents such as news articles [11] and tweets [8] to be accessed using
a map query interface. A key piece of technology that makes all these systems
work is an online clustering algorithm that takes news articles and noisy tweets
as input streams and aggregates them into news topics. As news articles and
Tweets enter our system as an input stream, we assign them to news clusters,
which is a one-shot process, meaning that once an article is added to a cluster, it
remains there forever. We will never revisit or recluster the news article, which is
desirable because articles and Tweets are coming at a high throughput rate, and
we need a fast and efficient clustering system that maintains good quality clus-
tering output. In other words, our clustering algorithm is an online algorithm,
and the additional constraints imposed on this problem add new complexity. Our
clustering algorithm is different from traditional document clustering algorithms
(such as the ones used by Google News) as we do not have access to the entire
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data set at the start of the algorithm. In particular, our online clustering algo-
rithm is a leader-follower type algorithm [8, 11], which means that our similarity
function takes into account both content as well as the publishing time.

The focus of this paper is on developing clustering methods that are both
online in nature as well as being able to take advantage of the parallelism and
computational intensity afforded by Graphical Processing units in order to keep
pace with the rate of arrival of these news articles. To cope with the high rate of
our input stream and the need to process the input quickly in one shot, requires
the mapping of the online clustering algorithm to the GPU in order to achieve a
reasonable speed-up versus a CPU only implementation. Our clustering imple-
mentation uses the vector space model to represent documents, and makes use
of the popular TF-IDF (term frequency inverse document frequency) method
for computing term weights. We use the Euclidean dot product as our similarly
metric between document vectors and cluster vectors. Online clustering is a chal-
lenging problem for the GPU because it is bandwidth intensive as opposed to
being only computationally intensive. Fast document clustering requires main-
taining an index on the clusters associated with every term in the document
corpus. This allows for fast pruning of clusters that have no terms in common
with a given document. This index is large and must be stored in GPU memory.
The index is highly dynamic, and new parallel algorithms must be developed to
update the index in an efficient manner. Another challenge that we face is how
to evenly assign computations to each thread, as the work associated with each
document to be clustered is extremely variable. Finally, other challenges emerge
when the entire corpus cannot fit into GPU main memory.

Online document clustering takes as its input a list of document vectors,
ordered by time. A document vector consists of a list of K terms and their asso-
ciated weights. The generation of terms and their weights from the document text
may vary, but the TF-IDF (term frequency-inverse document frequency) method
is popular for clustering applications [12]. The assumption is that the resulting
document vector is a good overall representation of the original document. We
note that the dimensionality of the document vectors is very high (potentially
infinite), since a document could potentially contain any word (term). We also
note that the vectors are sparse in the sense that most term weights have a zero
value. We assume that any term not explicitly present in a particular document
vector has a weight of zero. Document vectors are normalized. In addition, clus-
ters are represented as a list of weighted terms. At any given time, a cluster’s
term vector is equal to the average of all the document vector’s contained by
the cluster. Cluster term vectors are truncated to the top K terms (those con-
taining the highest term weights) and then are normalized. The objective of the
algorithm is to partition the set of document vectors into a set of clusters, each
cluster containing only those documents, which are similar to each other with
respect to some metric. For this paper, we consider the Euclidean dot product
as the similarity metric, as it has been shown to provide good results with the
TF-IDF metric [12]. The similarity between a cluster and a document is defined
as the dot product between their term vectors.
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The rest of the paper is organized as follows: Section 2 presents a sequen-
tial algorithm for online clustering. Section 3 describes a PRAM algorithm for
par-allel online clustering one document at a time using a CRCW programming
model. Section 4 presents a practical implementation of a parallel online clus-
tering algorithm, which clusters mutiple documents at a time suitable for the
CUDA parallel computing architecture [13]. Experimental results are presented
in Section 5. Concluding remarks are provided in Section 6.

2 Sequential Clustering on the GPU

We first present a simple algorithm to cluster documents on the GPU one doc-
ument a time. This algorithm also serves as a baseline for our main algorithm
that will be presented later that can cluster multiple documents at the same
time. The basic sequential online clustering algorithm takes as input a list of n
document vectors, as well as a clustering threshold T ranging between 0 and 1.
Below is a high level overview of the algorithm.

For each document D (ranging from 0 to n− 1)
Choose the cluster C most similar to D
if similarity(C, D) > T then

Add document D to cluster C
Recompute C’s term vector

else
Create a new cluster consisting of only the document D

end

Algorithm 1: Sequential Clusterer 1 on the GPU

In the worst case, Algorithm 1 takes O(n2) dot products to cluster n doc-
uments as each document could end up forming its own cluster. However, the
sparseness of document vectors means that very few number of distance com-
putations are needed per document [2, 14]. Most document vectors have very
few terms in common with other document vectors. Therefore, for each term in
document vector D, we will have a limited number of clusters whose term vector
contains a non-zero weight for that term. By keeping a list of clusters for each
unique term seen by the clustering algorithm so far, we can reduce the number
of dot products needed per document to only those dot products that will be
non-zero. Let D[t] represent the weight of term t for document D (the weight
associated with t in D’s term vector). Similarly, let C[t] represent the weight of
term t for cluster C. We can avoid unnecessary work within dot products by keep-
ing the term weight in each term list with its corresponding cluster. For instance,
the term list for term t is: TermList[t] = (C1, C1[t]), (C2, C2[t]), · · · (Cp, Cp[t]).

This indicates that cluster Ci contains a non-zero weight for term t. Adding
the weight information to the term list allows us to compute only the non-zero
partial dot products between documents and clusters efficiently, since we have no
need to look up t’s weight in Ci’s term vector. We describe a sequential algorithm
on the GPU in Algorithm 2 which makes use of the TermList data structure.
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TermList ← Set of empty lists
for each document D (ranging from 0 to n− 1) do

Candidates ← Empty Set
Results ← Array of size D, initialized to all 0
for each term t in D’s term vector do

for each (Ci, Ci[t]) in TermList[ t ] do
Results[ Ci ] = Results[ Ci ] + Ci[t] * D[t]
if Candidates does not contain Ci then

Add Ci to Candidates

end
end

end
Choose the cluster C in Candidates with the max(Results[C] )
if similarity(C, D) > T then

for each term t in C’s term vector do
Remove C’s entry (C,C[t]) from TermList[t]

end
Add document D to cluster C and recompute C’s term vector

else
Create a new cluster C consisting of only the document D

end
end

Algorithm 2: Sequential Clusterer 2 on the GPU

Note that we use D both to refer to the document and its term vector.

We calculate the approximate running time cost of Algorithm 2 as follows.
Recall that K is the number of terms kept in each of the document and cluster
term vectors. Let L represent the average number of clusters that contain any
given term t at any specific time in the clustering algorithm. This indicates that
to cluster any given document D, we have roughly K ∗ L partial dot product
computations. We also have at most K ∗ L insertions into the Candidates set,
each taking O(1) time using a hash set implementation. We have at most K
deletion and K insertions from lists of size L, in order to update the TermList
data structure. Assuming an array data structure for each TermList[t], we have
O(1) insertion and O(L) deletion for each term, and the run-time of the algo-
rithm is given by O(n ∗ K ∗ L). We note that although L is highly dependent
on the dataset, it is expected to be far less than n. The memory required for
Algorithm 2 is O(m ∗K), where m is the total number of clusters at the end of
the algorithm.

3 Parallel Clustering of a Single Document

We first consider the case of parallelizing the work associated with clustering
a single document, while still clustering each of the n documents sequentially.
Later we will discuss the case of processing multiple documents in parallel, and
its effects on the clustering output.

Our goal is to parallelize as much of sequential clusterer’s document loop as
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TermList ← Set of empty lists
for each document D (ranging from 0 to n− 1) do

Partials ← Array initialized to all 0
Let t1, t2, · · · tK be the terms in D’s term vector
S ← (t1 × TermList[t1]) ∪ · · · (tK × TermList[tK ])
for each (ti, Ci, C[ti]) in S parallel do

Partials[ThreadID] = (Ci, D[ti] ∗ C[ti])

end
Run parallel sort on Partials, sorting by Ci

Run parallel summation on Partials (adding similar Ci)
Run parallel max on Partials to produce best candidate cluster C
if similarity(C, D) > T then

for each term t in C’s term vector do
Remove C’s entry (C,C[t]) from TermList[t]

end
Add document D to cluster C and recompute C’s term vector

else
Create a new cluster C consisting of only the document D

end
Add document terms in C to TermList

end

Algorithm 3: Parallel Clusterer Algorithm 1 on the GPU

possible. We first note that the dot product operations are highly parallelizable.
All the partial dot product operations for a given document can be done in par-
allel. We can then run a parallel sorting operation with the cluster as the sorting
key. Finally, we run a parallel summation operation to gather the completed dot
products for each cluster, followed by a parallel maximum operation to choose
the cluster with best similarity to D. After the best cluster C has been chosen,
we must update our TermList data structure to reflect the changes to C’s term
vector. We first delete the old TermList entries of C by assigning a different
processor to look at each entry of TermList[t], for every term t in C. Processors
that find their entry (Ci, Ci[t]) swap in the last value of the TermList[t] to com-
pact that list (assuming an array implementation). Inserting the new (Ci, Ci[t])
values can be done trivially by assigning K processors to add the new (Ci, Ci[t])
to the end of their respective lists.

We now present a high level parallel algorithm for clustering in Algorithm 3.
We introduce the parallel keyword to indicate that the contents of a loop are
performed in parallel. We also introduce a value ThreadID which is available to
each thread within a parallel loop. For h threads, the values of ThreadID range
between 0 and h− 1 inclusively. Assume that each parallel thread is assigned a
unique ThreadID value. We use a PRAM architecture using the CRCW (Con-
current read-concurrent write) model [15] to analyze the run-time of parallel
algorithms even though the GPU has a less restrictive computation model.

We can estimate the running time of Algorithm 3 as follows. For each doc-
ument, we can compute the partial dot products in O(1) time by using K * L
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processors (we ignore the complication here of assigning ThreadIDs to proces-
sors). Parallel sort is known to be logarithmic [14], and so this takes O(log(K∗L))
time. Parallel summation of Partials can be done in O(log(K ∗ L)) time, and
the parallel max operation also takes O(log(K ∗L)) time. Finally, the TermList
maintenance operations take O(1) time each. The running time for the algorithm
is O(n ∗ log(K ∗ L)). The memory require for Algorithm 3 is again O(m ∗K).

We now discuss the process of assigning ThreadIDs to processors for Algo-
rithm 3’s partial dot product computation. Recall that we have specified L as the
average size of TermList[t] for any given term t. This is useful for analyzing run-
ning time, but the sizes of TermList[t] will vary greatly when clustering a specific
document, which complicates the ThreadID assignment. Our goal is to decide on
a specific (ti, Ci, C[ti]) to associate with every ThreadID. This requires deciding
on one specific element of each TermList[t] for each ThreadID. Let TermList[t][j]
refer to the j-th element of term list for term t. Let size (TermList[t] ) represent
the number of elements currently in the term list for t.

Let t1, t2 · · · tK be the terms in D′s term vector
TermSizes ← size(TermList[t1]) · · · size(TermList[tK ])
PrefixSums ← the prefix sums of TermSizes
Binary search on PrefixSums to find the smallest u s.t., ThreadID <
PrefixSums[u]
C = TermList[tu][ PrefixSums[u] - ThreadID - 1 ]
Partials[ThreadID] = (C, D[tu] * C[tu])

Algorithm 4: Thread assignment

We note that PrefixSums[i − 1] indicates how many threads should be as-
signed to term lists 1 up to i − 1. This means that the term u assigned to a
given ThreadID is simply the first u such that ThreadID < PrefixSums[u]. The
value PrefixSums[u]- ThreadID - 1 gives us the index into TermList[u] in which
we are interested. Each binary search using Algorithm 4 takes O(log(K)) time.
Binary searches over global memory arrays can be inefficient. The performance
can be improved by using an additional temporary array and another PrefixSum,
which has much better locality and therefore processes data faster. While the
complexity of PrefixSum is O(log n), it does not change the overall running time
of Algorithm 3, since it is dominated by the cost of sorting. Finally, we note that
the parallel deletion that occurs in Algorithm 3 requires an identical ThreadID
configuration as the partial dot products. Each deletion thread will receive a
unique ThreadID, and must decide which TermList entry to examine. We can
use Algorithm 4 where t1, t2 · · · tK are the terms in C’s term vector, instead of
D’s. Again, the overall running time is unchanged.

4 Clustering Multiple Documents in Parallel

In this section we examine an algorithm for clustering multiple documents in
parallel. Assume that we wish to cluster Q documents in parallel. We define the
multiple document clustering algorithm below as Algorithm 5.

The main difference between the multiple document and single document
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while we have more documents to cluster do
Choose the next Q documents D1, D2, · · ·DQ

Choose clusters C1, C2, · · ·CQ such that Ci is the most similar cluster to Di

for i = 1 to Q do
if similarity(Ci, Di ) > T then

Add document Di to cluster Ci and recompute Ci’s term vector

end
end

end

Algorithm 5: Multiple Document Clusterer 1

algorithms is that we assign the best clusters to Q documents before updating
the cluster term vectors and the index. This can lead to poor clustering in some
cases, since, for example, document Di is never compared against the effects
of D1, D2 · · ·Di−1. Merging similar clusters at varying points in the algorithm
can possibly mitigate this effect. We assume that the effects of this problem are
minimal as long as Q is much less than n. We wish to extend Algorithm 3 to
cluster Q documents in parallel. We first note that computing the partial dot
products for Q documents can be done using Q parallel instances of the single
document version of the dot product computation. However, assigning Threa-
dIDs for multiple documents now requires reasoning about to which document
a thread belongs. This results in a binary search of a prefix sums array of size
K ∗ Q for each thread to assign work. Assume that tij refers to the j-th term
of document Di ( the j-th term of the i-th document that we are clustering in
parallel). Note that each entry contained in Partials now contains an extra ele-
ment, which indicates the document to which the partial dot product belongs.
Algorithm 6 guarantees however that similar Dq values will be contiguous within
Partials. This means that we can sort Q separate sub-lists in parallel (each of
size roughly K ∗ L).

TermSizes ← size(TermList[t11]) · · · size(TermList[t1K ]),
size(TermList[tQ1]) · · · size(TermList[tQK ])

PrefixSums ← prefix sums of TermSizes
Binary search to identify smallest u s.t. PrefixSums ← prefix sums of TermSizes
Binary search to identify smallest u s.t. ThreadID < PrefixSums[u]
q ← u/K
r ← u % K
C = TermList[tqr][PrefixSums[u] - ThreadID - 1 ]
Partials[ThreadID] = (Dq, C, D[tqr] ∗ C[tqr])

Algorithm 6: ThreadID Assignment 3

Once, we haven chosen the appropriate clusters C1, C2 · · ·CQ, we must up-
date the Term-List data structure to reflect the changes of the Q cluster term
vectors. We cannot simply perform these operations in parallel for all Q docu-
ments as in the single document case, since different clusters may have terms in
common. This means that they will update the same TermList[t] and interfere
with each other. To deal with this issue, we use the atomic addition operator
available in CUDA, while acknowledging that their frequent use can result in
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performance degradation. Parallel insertion of a term t, and an element to insert
x is given by: size = atomicAdd(TermList[t].size, 1 ) followed by TermList[t][size]
= x. Each thread that attempts to insert into a given TermList[t] will receive a
unique slot to receive its element. After all insertions have been completed, the
new size for TermList[t] is the new size of the list. The parallel deletion algorithm
is a little more involved and is given below as Algorithm 7.

TermList[t].deleteNumber = 0
TermList[t].deletePriority = 0
TermList[t].newSize = TermList[t].size
atomicAdd(TermList[t].deleteNumber, 1 )
atomicAdd(TermList[t].deletePriority, 1 )
atomicAdd(TermList[t].newSize, -1 )
for i = 0 upto TermList[t].size - 1 parallel do

TermList[t][i].deleted = FALSE
if TermList[t][i] == x then

TermList[t][i].deleted = TRUE
if i ≥ TermList[t].size - TermList[t].deleteNumber then

Return
end
priority = atomicAdd(TermList[t][i].deletePriority, -1 )
numSkip = TermList[t].deleteNumber - TermList[t].priority
j = elements from end of TermList[t] s.t., TermList[t].deleted is FALSE
TermList[t][i] = TermList[t][x]

end
TermList[t].size = TermList[t].newSize

end

Algorithm 7: AtomicDeletion(t, x)

The basic idea behind Algorithm 7 is to assign a priority to each thread that
finds an element to delete. Based on this priority, the thread picks the correct
element near the end of the list to move into the hole created by the deleted ele-
ment. This algorithm assumes each parallel call to AtomicDeletion has a unique
(t, x) (no call has both the same t and x as another call). This is a valid as-
sumption, since we can prune Ci values that are duplicates prior to running the
AtomicDeletion, as the result of including them is the same as that when we
don’t include them.

Due to space limitations, the details of the Multiple Document Clusterer 2
are provided in [16]. The running time of this algorithm is given by O((n/Q) ∗
max(log(K ∗L), Q)), while the memory requirement is O(max(m∗K),K ∗L∗Q).

5 Experimental Results

First, we evaluated the performance of Algorithm 2 on a real world dataset,
which consists of news documents from a span of 90 days taken from a wide
variety of news sources. The result is shown in Figure 1a. The documents are
ordered by the time of publication. Each news document contains 20 terms in
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its term vector (K = 20). Our implementation is written in C++ and compiled
using g++ (GCC) version 4.1.2 with the −O3 optimization flag. We tested our
implementation on a GeForce GTX 280, which has 240 cores and 1 GB of global
memory. The CPU was an AMD 3GHz processor with 4 cores. It can be seen
that the algorithm takes about 50 seconds to cluster 250k documents.

Fig. 1. Running time of a) Sequential Algorithm 2 b) Multiple Clusterer 2 for different
thresholds and data sizes

Next, we performed clustering of more than one document at a time using the
Multiple Document Clusterer 2 algorithm. Figure 1b is the result for Q = 1024
(1024 documents done in parallel). It can be seen that the algorithm takes only
15 seconds to cluster 250k documents. In contrast the Sequential Clusterer on
the GPU takes only 50 seconds denoting a 3X speed up by performing clustering
in parallel. Furthermore, we note that the best speedup is achieved using the
highest clustering threshold. This is expected as a higher clustering threshold
means there will be more clusters, and therefore more cluster candidates per
document (more non-zero partial dot products).

Fig. 2. Running time of Multiple Clusterer 2 for different values of Q

Finally, we compare the running times of the CUDA Clusterer for three dif-
ferent values of Q (16, 128, and 1024) using a threshold of 0.7. We observe from
Figure 2 that there is a significant performance improvement in increasing the
value of Q from 16 to 128. However, increasing the value of Q more does not
result in significant reduction of running time. This indicates that the GPU’s
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threads have saturated when the number of documents is above 16. Note how-
ever that setting a large value of Q does not seem to have a detrimental effect
on the running time of the algorithm.

6 Concluding Remarks

In this paper we have described a parallel algorithm for online document cluster-
ing. We have shown that 3X speedups can be achieved when clustering multiple
documents at the same time instead of one at a time. Future work will focus on
incorporating the algorithm into our NewsStand and TwitterStand production
systems and developing a variant of the algorithm that makes limited use of
atomic operations.
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