
Integrating Symbolic Images into a Multimedia Database System

using Classi�cation and Abstraction Approaches

Aya So�er �

Computer Science Department and

Center for Automation Research and

Institute for Advanced Computer Science

University of Maryland at College Park

College Park, Maryland 20742

E-mail: aya@umiacs.umd.edu

Hanan Samet y

Computer Science Department and

Center for Automation Research and

Institute for Advanced Computer Science

University of Maryland at College Park

College Park, Maryland 20742

E-mail: hjs@umiacs.umd.edu

December 23, 1999

Abstract

Symbolic images are composed of a �nite set of symbols that have a semantic meaning.

Examples of symbolic images include maps (where the semantic meaning of the symbols is given

in the legend), engineering drawings, and
oor plans. Two approaches for supporting queries

on symbolic-image databases that are based on image content are studied. The classi�cation

approach preprocesses all symbolic images and attaches a semantic classi�cation and an associated

certainty factor to each object that it �nds in the image. The abstraction approach describes each

object in the symbolic image by using a vector consisting of the values of some of its features

(e.g., shape, genus, etc.). The approaches di�er in the way in which responses to queries are

computed. In the classi�cation approach, images are retrieved on the basis of whether or not

they contain objects that have the same classi�cation as the objects in the query. On the other

hand, in the abstraction approach retrieval is on the basis of similarity of feature vector values

of these objects.

Methods of integrating these two approaches into a relational multimedia database manage-

ment system so that symbolic images can be stored and retrieved based on their content are

described. Schema de�nitions and indices that support query speci�cations involving spatial as

well as contextual constraints are presented. Spatial constraints may be based on both locational

information (e.g., distance) and relational information (e.g., north of). Di�erent strategies for

image retrieval for a number of typical queries using these approaches are described. Estimated

costs are derived for these strategies. Results are reported of a comparative study of the two

approaches in terms of image insertion time, storage space, retrieval accuracy, and retrieval time.

Categories: symbolic-image databases, multimedia databases, retrieval by content, spatial databases,
image indexing, query optimization

�The support of the National Science Foundation under Grant CDA-950-3994 is gratefully acknowledged.
yThe support of the National Science Foundation under Grant IRI-97-12715 is gratefully acknowledged.

1

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 1

1 Introduction

Symbolic images are composed of a �nite set of symbols that have a semantic meaning. Examples of
symbolic images include maps (where the semantic meaning of the symbols is given in the legend),
engineering drawings, and
oor plans. There are two approaches for integrating symbolic images into
a multimedia database so that they can be retrieved based on content (e.g., �nding all campgrounds
within 3 miles of a beach in a database of map images that contain tourist symbols). These two
approaches di�er in the time at which the content of the image1 is classi�ed. One approach, termed
the classi�cation approach, preprocesses all images and attaches a semantic classi�cation and an
associated certainty factor to each object that it �nds in the images. The certainty factor enables
more than one possible classi�cation for each object in the images in the database. For example,
all symbols that are likely to be restaurants, campgrounds, etc, are labeled with their semantic
meaning (i.e., that they are restaurants, campgrounds, etc. in contrast to being something else
or even being invalid symbols). Images are retrieved from the multimedia database on the basis
of containing objects that have the same classi�cation as the objects speci�ed by the query. An
alternative approach, termed the abstraction approach, attempts to �nd some description of the
objects in terms of properties of their visual representation (e.g., shape, length, connectivity, genus,
etc.), termed a feature vector, and then retrieves images from the database that contain objects
whose feature vectors match, or are close to, that of the feature vector of the objects speci�ed by
the query.

In essence, in the abstraction approach we are delaying the classi�cation of the objects in the
images until execution time. Therefore, the tolerance with which the objects in the database images
match those that are requested in the query can be varied for each query. In contrast, in the
classi�cation approach this tolerance must be decided when the objects of each image are classi�ed
(i.e., at the time the database is populated with the images). Some additional tolerance can still be
achieved at retrieval time by permitting the retrieval of images that contain objects whose matching
classi�cations have smaller (larger) certainty values.

In this paper we demonstrate the use of the classi�cation and abstraction approach in a database
system that stores symbolic images. We show how they can be integrated into a relational database
management system and discuss the issues that are involved. This includes query processing strate-
gies to take advantage of the presence of relevant indices (i.e, on the classes and the spatial locations
of the objects). We also report the results of a performance comparison of the execution time needed
to respond to a number of di�erent queries using a database of map images containing tourist sym-
bols that is organized using these two approaches. Although, the main conceptual di�erence between
the two approaches is in the time at which the classi�cation is made, the two approaches also di�er
in numerous performance aspects (e.g., image insertion time, storage space, retrieval accuracy, and
retrieval time).

The main contribution of this paper a detailed presentation of all the necessary steps required
to integrate symbolic images into a database system using these two approaches. In addition, we
provide a comprehensive comparison of the classi�cation and abstraction approaches by applying
both of them to the same application domain. Although methods using similar approaches have been
described separately (e.g., [2, 8, 25]), to the best of our knowledge they have never been applied
simultaneously to one dataset so that such a comparison could be conducted. Furthermore, the
method that we present for integrating symbolic images into a database system enables queries

1In the interest of brevity, we use the more general term image although we mean a symbolic image unless there is

some possibility for misinterpreting our discussion.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 2

involving spatial constraints that include distance between objects. In most previous work (e.g., [7,
20, 34]), the relation between objects could only be described in terms of relative locations between
objects (i.e., left of, north of, etc.). Finally, as part of the comparison we discuss query execution plan
generation and evaluation for a mixture of spatial and non-spatial queries. This is an important topic
in itself which has not received much attention. While query optimization for relational databases
has been studied extensively (e.g. [33]) and some work exists regarding query optimization for object-
oriented databases (e.g. [40]), the issue of query optimization in a spatial database has hardly been
studied. Note that our system performs automatic image input and classi�cation and thus we also
demonstrate how to deal with uncertainty in the classi�cation process and how to test the system
in terms of accuracy.

The rest of this paper is organized as follows. Section 2 lays out the background for this problem
and discusses related work. Section 3 outlines the image input methodologies that are used to
convert images from a physical representation to a logical representation as they are input to the
symbolic-image database. Section 4 describes how images are stored in a database management
system including schema de�nitions and example relations. Section 5 gives sample queries along
with execution plans and estimated costs for each approach. Section 6 describes our experimental
study and the results of a quantitative comparison of the two proposed approaches for integrating
symbolic images into a database. Section 7 contains concluding remarks.

2 Background and Related work

In order to support retrieval by content in symbolic-image databases, the images should be inter-
preted to some degree when they are inserted into the database. This process is referred to as
converting an image from a physical representation to a logical representation. It is desirable that
the logical representation also preserve the spatial information inherent in the image (i.e., the spatial
relation between the objects found in the image). We refer to the information regarding the contents
of the image in terms of the objects found in it as contextual information, and to the information
regarding the location of the objects and the spatial relation between these objects as locational-
spatial information and relational-spatial information, respectively. An index mechanism based on
the logical representation can then be used to retrieve images based on both contextual and spatial
(locational and relational) information in an e�cient way.

Very few commercial systems support retrieval by image content. The INFORMIX-Universal
Server [17] supports DataBlade modules that enable adding custom data types for supporting non-
traditional kinds of data, such as full text, images, video, spatial data, and time series. The Dat-
aBlade concept is based on Illustra object relational database [43]. In particular, Informix o�ers
the Virage [44] Visual Information Retrieval (VIR) DataBlade Module for managing images in its
database server. VIR de�nes images by four important attributes-color, composition, structure,
and texture. These attributes are quantitative measurements that can be used to compare images
based upon their visual characteristics. IBM's UltiMedia Manager o�ers content-based image query
(based on QBIC [25] technology) in conjunction with standard search. Excalibur Technologies' [42]
Visual RetrievalWare product is a comprehensive application development software which provides
content-based, high-performance retrieval for multiple types of digital visual media. Content-based
image search is performed based on composition, color, and contrast. In all of these systems, im-
age content means similarity in terms of global feature similarity between a query image and the
database images. Thus they do not deal with semantic-like features and spatial constraints.

Numerous prototype research image database management systems (IDMS) have been reported

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 3

in recent years that address the issue of how to index tagged images (images in which the objects have
already been recognized and associated with their semantic meaning) in order to support retrieval
by image content [2, 6, 9, 13, 14, 19, 27]. These systems do not specify how these tagged images
were created. They assume either manual tagging or some unspeci�ed (and most likely non-existing)
automatic process that performs this function. Therefore, they do not deal with the uncertainty
and errors that are involved in truly automatic image input procedures. Furthermore, these systems
are mainly concerned with the relative spatial relationship between the objects in the images (i.e.,
relational-spatial information). They do not deal with locational-spatial information (e.g., distance
between objects).

The most common data structure used in these systems is the 2-D string and its variants [7, 20].
Distance is not preserved at all in 2-D strings. Thus, only a limited subset of spatial queries
that do not deal with distances between objects can be handled. A framework which supports
querying on spatial arrangements of objects, is presented in [4]. It enables comparing objects which
may be arbitrary regions without replacing the regions by a centroid or bounding rectangle as is
usually done. Distance between objects is not accounted for in this method either. Another data
structure called the spatial orientation graph is introduced in [13] and used for spatial similarity
based retrieval of symbolic images. This method can handle slope between objects, however it
cannot handle distances. In [34] a method for similarity based retrieval of pictures using indices on
spatial relationships is described. This method can only deal with relational-spatial information, it
can not handle locational-spatial information. Furthermore, the relationship between objects needs
to be explicitly de�ned using one of a set of prede�ned relations (e.g., left of, overlap, inside, etc.).
In order to allow queries involving other relationships that are not part of this prede�ned set such
as \diagonal of" or \close to", the logical image representation of all images stored in the database
would need to be modi�ed.

Other prototype research IDMS's treat the image as a whole, and index the images based mainly
on color and texture. QBIC [25], Photobook [29], and FINDIT [41] are examples of systems that
use such methods. In these systems, images can be retrieved on the basis of similarity to a query
image as a whole. There is no notion of an image that is composed of several objects. Thus the issue
of spatial information is not considered in these systems. In some cases [3, 10, 22, 35], the images
are segmented into regions either automatically or semi-automatically and some queries involving
spatial constraints specifying the desired arrangement of these regions can be performed. A few
systems [18, 23] try to recognize individual objects in an image. These systems do not, however,
address the issues of spatial relationship between the objects and e�cient indexing. Some issues
that deal with storing spatial information in a relational database have been discussed as part of
the SEQUOIA 2000 project [39]. However, this work did not address the image interpretation and
contextual indexing aspects involved in integrating images (rather than just spatial data) into a
DBMS.

In contrast, our approach combines indexing on spatial information (both locational and rela-
tional) as well as permitting retrieval on the basis of contextual (i.e., semantic) information. The
conversion from the physical to the logical representation is part of the system, and the database
can accommodate uncertainty in the conversion process. The method that we use for storing and
indexing spatial information is
exible and new spatial relationships between objects can be de�ned
at query time with no need to re�ne the logical representation of the images already stored in the
database.

In our work, we focus on images where the set of objects that may appear in them is known
a priori. The geometric shapes of these objects are relatively primitive, and they convey symbolic

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 4

information. For example, in the map domain many graphical symbols are used to indicate the
location of various sites such as hospitals, post o�ces, recreation areas, scenic areas etc. We call this
class of images symbolic images. We distinguish between fully-symbolic images and partially-symbolic
images. In a fully-symbolic image we can fully classify each symbol found in the image and report
the certainty of this classi�cation. In a partially-symbolic image, we assume that the symbols can
be abstracted in such a way that given two symbols we can compute the certainty that they belong
to the same class. The reason that we have chosen to concentrate on such images is that there are
well-known and e�ective methods to automatically convert such images from a physical to a logical
representation. In contrast, for other types of images such as photographs, satellite images, and
medical images, such robust methods do not exist. All of the examples and experiments in this
paper are from the map domain. However, images from many other interesting applications fall into
the category of symbolic images. These include CAD/CAM, engineering drawings,
oor plans, and
more. Hence, the methods that we describe here are applicable to them as well. We have conducted
a preliminary study for some of them (e.g.,
oor plans [31]).

3 Image Input

Images can be represented in one of two ways. In the physical image representation, an image is
represented by a two-dimensional array of pixel values. The physical representation of an image
is denoted by Iphys. In the logical image representation, an image I is represented by a list of
tuples, one for each symbol s 2 I . In the classi�cation approach, the tuples are of the form:
s : (C; certainty; (x; y)) where C 6=unde�ned, (x; y) is the location of s in I , and 0 < certainty � 1
indicates the certainty that s 2 C. In the abstraction approach, the tuples are of the form: s :
(~s; (x; y)) where ~s is the feature vector representing symbol s, and (x; y) is the location of s in I .
Image input is the process of converting an image from its physical to its logical representation. This
process varies according to the image integration approach used.

In the classi�cation approach, an input image I is converted to a logical image by classifying each
symbol s found in I using a training set library. Symbols are classi�ed using a modi�cation of the
weighted several-nearest neighbor classi�er [5] termed a weighted bounded several-nearest neighbor

classi�er. An initial training set library is constructed by giving the system one example symbol for
each class that may be present in the application. In the map domain, the legend of the map may be
used for this purpose. The feature vector that is computed for each of these samples constitutes an
initial training set. A more representative training set is built by having the user verify the results
of the classi�cations for the few �rst images that are inserted into the database. Feature vectors of
symbols that could not be classi�ed correctly using the current training set library are added to the
library. Once the current recognition rate is deemed adequate, the remaining images are processed
automatically.

The feature vector is composed of four global descriptors (�rst invariant moment, circularity,
eccentricity, and rectangularity) and three local shape descriptors (horizontal gaps per total area,
vertical gaps per total area, and ratio of hole area to total area). These features are commonly
used to describe shapes [21], and we found them to be e�ective in discriminating between di�erent
geographic symbols. These features are all invariant to scale and translation. In addition, most of
them are also invariant to orientation.

More than one candidate classi�cation may be output for each symbol. Symbols that are classi�ed
as unde�ned are not inserted into the database. Figure 1 is a block diagram of the image input system
for the classi�cation approach. See [32] for more details.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 5

Classifications

System

Classifications
Generated

VERIFICATION

USER

MODIFICATION

LIBRARY

SEGMENTATION

AND
PREPROCESSING

Set Library
Training
Modified

User Verified

DATBASE

YES

NO

Tile Image

EXTRACTION

FEATURE

CLASSIFICATION

OBJECT
PREPROCESSING

AND

SEGMENTATION

EXTRACTION

FEATURE USER

LABELING

LIBRARY Training
Initial

Library
SetCONSTRUCTION

Legend
Non-

Tile xy

Tile
Legend

Current Training Set Library

Set of
Triplets:
(class, certainty, point)

MODE?

VERIFICATION
USER

LEGEND ACQUISITION PHASE

SYMBOL CLASSIFICATION PHASE

SYSTEM

IMAGE

Modified Classifier Parameters

Classifier Parameters
Initial/Default

SYMBOLIC

Figure 1: Image input system (classi�cation approach)

In the abstraction approach, an image is converted into a logical image by creating an abstraction
(the feature vector) for each symbol in the input image. There is no attempt to classify symbols or
to weed out unde�ned symbols during image input using the abstraction approach. A feature vector
is inserted into the database for each connected component in the input image. One sample symbol
from each class is also required in this case. The feature vector of this sample is used to search for
symbols that belong to the same class as the sample when querying the symbolic-image database by
content.

4 Image Storage

Images and other information pertaining to the application are stored in relational tables. The
spatial database that is used for both approaches is SAND [1] (spatial and non-spatial database)
developed at the University of Maryland. It is a home-grown extension to a relational database in
which the tuples may correspond to geometric entities such as points, lines, polygons, etc. having
attributes which may be both of a locational (i.e., spatial) and a non-locational nature. Both types
of attributes may be designated as indices of the relation.

As mentioned above, the database that we used is based on the relational model. The methods
that we employ can however be used in an object-oriented database as well. In fact, SAND has many
characteristics of an object relational database in the sense that new data types can be de�ned along
with methods that access, index, and display these types. We have utilized this feature to implement
the high dimensional data type used for the feature vector attribute along with a k-d tree index for
this data type.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 6

4.1 Classi�cation Approach

(CREATE TABLE classes

name STRING PRIMARY KEY,

semant STRING,

bitmap IMAGE);

(CREATE TABLE physical_images

img_id INTEGER PRIMARY KEY,

descriptor STRING,

upper_left POINT,

raw IMAGE);

(CREATE TABLE logical_images

img_id INTEGER REFERENCES physical_images(img_id),

class STRING REFERENCES classes(name),

certainty FLOAT (CHECK certainty BETWEEN 0 AND 1),

loc POINT,

PRIMARY KEY (img_id,class,loc);

Figure 2: Schemas for the relations classes, physical images, and logical images when using
the classi�cation approach.

name semant bitmap

S harbor

square hotel

scenic scenic view

T customs

R restaurant

P post office

M museum

K cafe

waves beach

triangle camping site

B filling station

arrow holiday camp

cross first aid station

fish fishing site

H service station

inf tourist information

pi picnic site

air airfield

star sight of interest

box youth hostel

U sports institution

telephone public telephone

Figure 3: Example instance for the classes relation in the map domain using the classi�cation
approach.

img id descriptor upper left raw

image 1 tile 003.012 of Finish road map (6144,1536) Figure 5

image 2 tile 003.013 of Finish road map (6656,1536) Figure 6

Figure 4: Example instance for the physical images relation in the map domain using the classi�-
cation approach.

The schema de�nitions given in Figure 2 de�ne the relations in the DBMS when using the

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 7

classi�cation approach. We use an SQL-like syntax. The classes relation has one tuple for each
possible class in the application. The name �eld stores the name of the class (e.g., star), the semant
�eld stores the semantic meaning of the class in this application (e.g., site of interest). The bitmap
�eld stores a bitmap of an instance of a symbol representing this class. It is an attribute of type
IMAGE. The classes relation is populated using the same data that is used to create the initial
training set for the image input system (i.e., one example symbol for each class that may be present
in the application along with its name and semantic meaning). See Figure 3 for an example instance
of the classes relation in the map domain.

The physical images relation has one tuple per image I in the database. The img id �eld is an
integer identi�er assigned to I when it is inserted into the database. The descriptor �eld stores an
alphanumeric description of I given by the user. The raw �eld stores the actual image in its physical
representation. The upper left �eld stores an o�set value that locates the upper left corner of I
with respect to the upper left corner of some larger image J . This is useful when a large image J
is tiled, as in our example map domain. Subtracting this o�set value from the absolute location of
s in the non-tiled image J yields the location of s in the tile I that contains it. Additional data
about the images such as origin, camera angles, scale, etc. can be added as �elds of this relation.
See Figure 4 for an example instance of the physical images relation in the map domain.

Figure 5: Example image 1 (image 1). Figure 6: Example image 2 (image 2).

The logical images relation stores the logical representation of the images. It has one tuple
for each candidate class output by the image input system for each valid symbol s in each image
I . The img id �eld is the integer identi�er assigned to I when it was inserted into the database.
It is a foreign key referencing the img id �eld of the tuple representing I in the physical images

relation. The class and certainty �elds store the name of the class C to which s was classi�ed and
the certainty of the classi�cation. The loc �eld stores the (x; y) coordinate values of the center of
gravity of s relative to the non-tiled image. The primary key of the logical images relation is the
combination of the img id, class, and loc �elds. Recall, that a symbol may be assigned more than
one classi�cation. Therefore there can be two tuples with the same img id,loc values, but with a
di�erent class, and thus all three attributes are required to uniquely identify a tuple. See Figure 7
for an example instance of the logical images relation in the map domain for the images given in
Figures 5 and 6.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 8

img id class certainty loc

image 1 M 1 (6493,1544)

image 1 P 0.99 (6161,1546)

:

image 1 box 1 (6280,2011)

image 2 arrow 0.99 (6861,1544)

image 2 scenic 0.72 (6803,1565)

:

image 2 R 0.99 (6800,1807)

Figure 7: Example instance for the logical images relation in the map domain using the classi�-
cation approach. The tuples correspond to the symbols in the images of Figures 5 and 6.

Alphanumeric indices cl sem and cl name are constructed to search the classes relation by
semant and name, respectively. An alphanumeric index pi id is used to search the physical images

relation by img id. A spatial index on points pi ul is used to search the physical images relation
by the coordinates of the upper left corner of the images. An alphanumeric index li cl is used to
search the logical images relation by class. It has a secondary index on attribute certainty. A
spatial index on points li loc is used to search the logical images relation by location (i.e., to
deal with spatial queries regarding the locations of the symbols in the images such as distance, range,
and directional relationship queries). The spatial indices are implemented using a PMR quadtree
for points [24].

4.2 Abstraction Approach

(CREATE TABLE classes

name STRING PRIMARY KEY,

semant STRING,

bitmap IMAGE,

fv POINT);

(CREATE TABLE physical_images

img_id INTEGER PRIMARY KEY,

descriptor STRING,

upper_left POINT,

raw IMAGE);

(CREATE TABLE logical_images

img_id INTEGER REFERENCES physical_images(img_id),

fv POINT,

loc POINT,

PRIMARY KEY (img_id,loc));

Figure 8: Schemas of the relations classes, physical images, and logical images when using
the abstraction approach.

The schema de�nitions given in Figure 8 de�ne the relations for the abstraction approach. These
relations are very similar to those used in the classi�cation approach. They di�er in the presence
of the fv �eld which corresponds to the feature vector for a sample of the class in the case of the
classes relation, and to a feature vector for each of the actual symbols in the image in the case

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 9

img id fv loc

image 1 (0.909,0.032,24.854,0.053,17.829,12.047,14.412,55.906) (6162,1546)

image 1 (1.144,0.024,21.053,0.158,15.597,14.062,9.766,18.891) (6494,1546)

:

image 1 (0.687,0.021,35.948,0.471,11.205,0.000,0.000,0.000) (6158,1614)

image 2 (0.166,0.063,61.654,0.263,2.244,0.000,0.055,0.000) (6862,1545)

image 2 (0.456,0.023,46.094,0.500,9.517,0.000,0.000 0.000) (6804,1565)

:

image 2 (0.513,0.054,19.448,0.138,9.834,0.000,0.000,0.000) (6776,1766)

Figure 9: Example instance for logical images relation in the map domain using the abstraction
approach. The tuples correspond to a subset of the symbols in the images of Figures 5 and 6 (the
full relation would have 78 tuples).

of relation logical images. In the abstraction approach, the attributes img id and loc uniquely
identify a tuple as there can be only one symbol in a given location. Thus, the primary key of relation
logical images is (img id,loc). Multidimensional indices cl fv and li fv are constructed for both
the classes and the logical images relations on the basis of the fv �eld. These indices are realized
with a disk-based version of an adaptive k-d tree [12], a data structure that has been shown to be
e�ective for indexing points in high dimensions in contrast to variants of R-trees [45]. By using this
disk-based adaptive k-d tree for indexing the feature vectors, we get very e�cient searches at query
time since, by de�nition, the adaptive k-d tree is balanced and separates the vectors by the most
discriminating features. The index has to be recomputed when images are added to the database.
However, since images are usually entered in batches, and since preprocessing an image is quite
time-consuming, this is not a concern in this work.

5 Retrieving Images by Content

In order to describe the methods that we use for retrieving images by content, and in order to
compare the cost of processing queries using the two suggested approaches, we present two example
queries and demonstrate the strategies used to process these queries. The �rst query only deals
with contextual information. The second query speci�es constraints both on contextual and spatial
information.

5.1 Example Queries

The example queries are speci�ed using natural language and SQL. For each query, we present two
SQL formulations. The �rst formulation uses the schemas as de�ned by the classi�cation approach,
and the second formulation uses the schemas as de�ned by the abstraction approach.

Query Q1: display all images that contain a scenic view.

display PI.raw

from logical_images LI, classes C, physical_images PI

where C.semant = "scenic view" and C.name = LI.class

and LI.img_id = PI.img_id;

display PI.raw

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 10

from logical_images LI, classes C, physical_images PI

where C.semant = "scenic view" and wdist(C.fv,LI.fv) <= MD

and LI.img_id = PI.img_id;

The function wdist takes two feature vectors and returns the weighted Euclidean distance be-
tween them. MD is a parameter, that may be set by the user, that determines the maximum distance
(in weighted feature space) between two feature vectors such that the two symbols that are ab-
stracted by these two feature vectors are considered to be in the same classi�cation. That is, for any
two symbols s1 and s2, (wdist(~s1; ~s2) � MD) ^ s1 2 C) s2 2 C, where ~s1 and ~s1 are the feature
vectors representing symbols s1 and s2, respectively.

Query Q2: display all images that contain a scenic view within 5 miles of a picnic site.

display PI.raw

from logical_images LI1, logical_images LI2, classes C1,

classes C2, physical_images PI

where C1.semant = "scenic view" and C2.semant = "picnic site"

and C1.name = LI1.class and C2.name = LI2.class

and dist(LI1.loc,LI2.loc) <= 5

and LI1.img_id = LI2.img_id and LI1.img_id = PI.img_id;

display PI.raw

from logical_images LI1, logical_images LI2, classes C1,

classes C2, physical_images PI

where C1.semant = "scenic view" and C2.semant = "picnic site"

and wdist(C1.fv,LI1.fv) <= MD

and wdist(C2.fv,LI2.fv) <= MD

and dist(LI1.loc,LI2.loc) <= 5

and LI1.img_id = LI2.img_id and LI1.img_id = PI.img_id;

The function dist takes two geometric objects (such as two points in the example above) and
returns a
oating point number representing the Euclidean distance between them.

5.2 Query Processing

The following plans outline how responses to queries Q1 and Q2 are computed using the two ap-
proaches. These plans utilize the indexing structures available for each organization. Indices on
alphanumeric attributes are capable of locating the closest value greater than or equal to a given
string or number. Indices on spatial attributes are capable of returning the items in increasing order
of their distance from a given point (this is termed an incremental nearest neighbor operation) [16].
This operation may optionally receive a maximum distance, D, in which case it will stop when the
distance to the next nearest neighbor is greater than D. Thus, it returns all neighbors within D of
a query point in increasing distance.

The xth plans, labeled PxC and PxA, use the classi�cation approach and the abstraction ap-
proach, respectively. In this section we only sketch the plans. For detailed plans for these queries,
see the Appendix where associated with each line is the cost of the appropriate operations.

Query Q1: display all images that contain a scenic view.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 11

Plan P1C : Search using an alphanumeric index on class.

Get all tuples of logical images which correspond to \scenic view" (use index li cl)

For each such tuple t

display the physical image corresponding to t

Plan P1A: Search using multidimensional index on fv.

Get all tuples of logical images whose fv field is within MD

of the feature vector of \scenic view" (use index li fv)

For each such tuple t

display the physical image corresponding to t

Query Q2: display all images that contain a scenic view within 5 miles of a picnic site.

Finding a plan for Q2 gives rise to many query optimization issues within the domain of symbolic-
image databases. Most of these issues are also applicable to spatial databases [1]. While query
optimization for relational databases has received much attention (e.g. [33]) and some work exists
regarding query optimization for object-oriented databases (e.g. [40]), the issue of query optimization
in spatial database has hardly been studied. To illustrate just how complex this issue may be, and
to see how it is e�ected by the two approaches, we present several plans for computing an answer
to Q2. They di�er in the selection of indices that are used to process the queries, and in whether or
not they build intermediate structures while processing the query.

Plan P2AC Search for \picnic" and \scenic view" tuples using the alphanumeric index on class.
For each \picnic" tuple, check all \scenic view" tuples to see which ones are within 5 miles.

get all tuples of logical images corresponding to \picnic" (use index li cl)

for each such tuple t1

get all tuples of logical images corresponding to \scenic view" (use index li cl)

for each such tuple t2

if distance between t1 and t2 � 5 miles

and they are in the same image then

display corresponding physical image

Plan P2BC Search for \picnic" tuples using the alphanumeric index on class. Search for all tuples
within 5 miles of each \picnic" tuple using the spatial index on loc, and see which are \scenic
views".

get all tuples of logical images corresponding to \picnic" (use index li cl)

for each such tuple t

get all points within 5 miles of t.loc

(using the incremental nearest neighbor operation)

for each one of these points p

if p is a ``scenic view'' and in the same image as t then

display the corresponding physical image

Plan P2CC Search for \scenic view" tuples using the alphanumeric index on class. Build a
temporary spatial index on the loc attribute of these tuples. Search for \picnic" tuples using
the alphanumeric index on class, and search for \scenic view" tuples within 5 miles of each
\picnic" using the temporary index.

create a PMR quad tree for points tmp loc

having the same properties as the index on loc

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 12

get all tuples of logical images corresponding to \scenic view" (use index li cl)

for each such tuple t

insert it into tmp loc

get all tuples of logical images corresponding to \picnic" (use index li cl)

for each such tuple t

get all points within 5 miles of t.loc in tmp loc

for each one of these points p that are in the same image as t

display the corresponding physical image

Plan P2AA Search for tuples corresponding to \picnic" and \scenic view" feature vectors using
the multidimensional index on fv. For each \picnic" tuple, check all \scenic view" tuples to
see which ones are within 5 miles.

get all tuples of logical images whose fv field is within MD

of the feature vector of \picnic" (use index li fv)

for each such tuple t1

get all tuples of logical images whose fv field is within MD

of the feature vector of \scenic view" (use index li fv)

for each such tuple t2

if distance between t1 and t2 � 5 miles

and they are in the same image then

display the corresponding physical image

Plan P2BA Search for tuples corresponding to \picnic" feature vectors using the multidimensional
index on fv. Search for all tuples within 5 miles of each \picnic" tuple using the spatial index
on loc, and see which ones correspond to \scenic view" feature vectors.

get all tuples of logical images whose fv field is within MD

of the feature vector of \picnic" (use index li fv)

for each such tuple t

get all points within 5 miles of t.loc

(using the incremental nearest neighbor operation)

for each one of these points p

if p.fv is within MD of ``scenic view'' feature vector

and in the same image as t then

display the corresponding physical image

Plan P2CA Search for tuples corresponding to \scenic view" feature vectors using the multidi-
mensional index on fv. Build a temporary spatial index on the loc attribute of these tuples.
Search for tuples corresponding to \picnic" tuples using the multidimensional index on fv,
and search for tuples corresponding to \scenic view" feature vectors within 5 miles using the
temporary index.

create a PMR quad tree for points tmp loc

having the same properties as the index on loc

get all tuples of logical images whose fv field is within MD

of the feature vector of \scenic view" (use index li fv)

for each such tuple t

insert it into tmp loc

get all tuples of logical images whose fv field is within MD

of the feature vector of \picnic" (use index li fv)

for each such tuple t

get all points within 5 miles of t.loc in tmp loc

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 13

for each one of these points p

if it is in the same image as t then

display the corresponding physical image

class=picnic

(Block nested
loop join)

)Btree index
on class()Btree index

on class()Btree index
on class(

σclass=picnic

(Index nested loop
join using spatial
index on loc)

σclass=picnic

)Btree index
on class(

(create spatial
index on result

σ

)

(b)

li

σclass=scenic view

li

dist(loc,loc)<5

)Btree index(on class

(Index nested loop
join using temporary
spatial index on loc)

(c)

li

σclass=scenic view

li

dist(loc,loc)<5

li

dist(loc,loc)<5

li

(a)

Figure 10: Query evaluation plans for query Q2 using the classi�cation approach. (a) plan P2AC ,
(b) plan P2BC , (c) plan P2CC .

Figure 10 depicts these plans using Relational Algebra expression trees annotated with the pro-
cessing strategy for each operation. Note that these query evaluation plans only contain the portion
of the query that accesses the logical images relation in order to retrieve the tuples that satisfy
the query. The access to the physical images relation in order to get the actual image for the
\display" operation is not included since it is not considered part of processing the query. It is only
a mechanism to output the answer to the query and is always the same regardless of the selected
execution plan.

5.3 Cost Analysis

In this section we present a cost analysis of the various query execution plans given in the previous
section. The purpose of this analysis is to compare the two approaches analytically as well as to
demonstrate the di�erence in performance while processing queries that have both spatial and non-
spatial components using di�erent query processing strategies. As part of this analysis, we point
out several important factors in query execution plan generation for such queries. In particular,

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 14

Name Meaning

cr accessing a tuple by tid (random order)

csq accessing a tuple in sequential order

csqf accessing the �rst tuple of a relation

caf \�nd �rst" operation on an alphanumeric index

can \�nd next" operation on an alphanumeric index

clsf \�nd nearest neighbor" operation on a location space index

clsn \�nd next nearest neighbor" operation on a location space index

cfsf \�nd nearest neighbor" operation on a feature space index

cfsn \�nd next nearest neighbor" operation on a feature space index

csc string comparison

clsd distance computation in location space

cfsd weighted distance computation in feature space

cmi inserting a tuple into a memory-resident relation

cmsq accessing a tuple in a memory-resident relation sequentially

clsc creating a location space index

clsi inserting a point into a location space index

Table 1: Costs of basic operations used in query processing.

we outline how to compute spatial selectivity factors and and how to use them for selecting the
appropriate plan for each query.

In order to estimate the costs of each plan, we must make some assumptions about the data
distribution and the costs of the various operations. Table 1 contains a tabulation of the costs of
basic operations that are used in processing queries. The cost of many of these operations is a function
of the particular relation on which they operate. cx(y) denotes the cost of performing operation x

on relation or index y. li stands for logical images. The cost of accessing the physical images
relation in order to retrieve the result image and the cost of the \display" operation are not included
since it is always the same regardless of the selected execution plan. Let Npic and Nsv denote the
number of tuples from class \picnic" and \scenic view", respectively. Let Bpic and Bsv denote the
number of disk blocks containing tuples from class \picnic" and \scenic view", respectively.

Equations 1, and 2 estimate the cost of responding to query 1 using the classi�cation approach
and the abstraction approach, respectively.

C1C = caf(li cl) +Nsv � (cr(li) + can(li cl)) (1)

C1A = cfsf(li fv) +Nsv � (cr(li) + cfsn(li fv)) (2)

The di�erence between C1C and C1A is that in the abstraction approach a location-space spatial
\�nd �rst" operation replaces the alphanumeric \�nd �rst" operation of the classi�cation approach.
Likewise, a location-space spatial \�nd next" operation replaces the alphanumeric \�nd next" op-
eration. The reason for this is that in the classi�cation approach the \scenic view" tuples are found
by searching the logical images relation using the alphanumeric index on the class attribute. On
the other hand, in the abstraction approach the \scenic view" tuples are found by searching the
logical images relation using the spatial index on the fv attribute.

Equations 3 and 4 estimate the cost of responding to query 2 with plan P2A using the classi�-
cation approach and the abstraction approach, respectively. NInC2

denotes the average number of
tuples in the circular range speci�ed in query 2 (C2). Nsv InC2

denotes the average number of scenic
view tuples in C2.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 15

Assuming a uniform distribution of symbols in space (i.e., there is an equal number of symbols

in any given area), then NInC2
= area(C2)

A
� N , where N is the total number of tuples in the

logical images relation, A is the area covered by these tuples, and C2 is the circular range speci�ed
in query 2. Assuming a uniform distribution of classi�cations among the symbols (i.e., there is
an equal number of symbols from each classi�cation in any group of symbols), then Nsv InC2

=
area(C2)

A
�

N

CL
, where CL is the number of di�erent classi�cations in the database.

If these assumptions about the distribution of the classi�cations among symbols do not hold,
then other methods are required to estimate the number of scenic view tuples in a given area. The
portion of all tuples that belong to each classi�cation can be recorded when populating the database
by checking the class attribute and tallying the number for each classi�cation. This data can
then be used to estimate the distribution of the classi�cations among the symbols. Assuming that
the distribution of classi�cations among any group of symbols is equal to the the total database
distribution (i.e., the portion of tuples from each classi�cation among any given group of symbols
is equal to the portion of tuples from each classi�cation in the entire database), then Nsv InC2

=
area(C2)

A
� svp �N , where svp is the portion of the database tuples that belong to the \scenic view"

class.

Plan P2AC performs a spatial join operation on the results of two selection operations on relation
logical images. The �rst select operation extracts all tuples of the relation that are of class
\picnic", while the second select operation extracts all tuples of the relation that are of class \scenic
view". The results of these two select operations are then joined according to a predicate based on
the loc attribute. In our implementation of plan P2AC , we perform the select and join operations
simultaneously using a block nested loop join algorithm as follows. One of the classes is designated
as the inner class, and the other is designated as the outer class. One block of tuples belonging into
the outer class are read into a memory-resident bu�er (using the index on attribute class). All
tuples of the inner class are then read (one block at a time using the index on attribute class) and
spatially joined with all tuples of the outer class that are in memory (by computing the predicate
on the spatial attribute). This process is repeated with the next block of tuples of the outer class,
until all tuples of the outer class have been read.

C2AC = caf(li cl) +Npic � (cr(li) + can(li cl)) + read all pic tuples (3)

Bpic � [caf(li cl) +Nsv � (cr(li)+ can(li cl))] + for each pic block; read all sv tuples

Npic �Nsv � clsd check distance betweem each (pic; sv) pair

C2AA = cfsf(li fv) +Npic � (cr(li) + cfsn(li fv)) + read all pic tuples (4)

Bpic � [cfsf(li fv) +Nsv � (cr(li)+ cfsn(li fv))] + for each pic block; read all sv tuples

Npic �Nsv � clsd check distance between each (pic; sv) pair

The di�erence between C2AC and C2AA is that in the the classi�cation approach, the logical images

relation is searched using the alphanumeric index on the class attribute, whereas in the abstraction
approach, the logical images relation is searched using the spatial index on the fv attribute (as
in the case of query 1). As a result, in the abstraction approach a location-space spatial \�nd �rst"
operation replaces the alphanumeric \�nd �rst" operation of the classi�cation approach. Likewise,
a location-space spatial \�nd next" operation replaces the alphanumeric \�nd next" operation.

Notice that the choice of which class is designated as the outer class and which class is designated
as the inner class is signi�cant. In our case we arbitrarily designated class \picnic" as the outer class.
However, by examining equation 3 it is apparent that the class with less instances in the database
should be designated as the outer class. Similarly, from Equation 4 it is apparent that for plan

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 16

P2AA (the abstraction approach) once again the class with less instances in the database should
be designated as the outer class. Note, however, that in the abstraction approach the number of
instances of each class is not as readily available as it is in the classi�cation approach. The assignment
to a particular class is only determined at query execution time by comparing the fv attribute of
a tuple to that of an example feature vector of a symbol belonging to the required classi�cation.
Thus, some external statistics or estimates of the number of instances of each classi�cation in the
application is required.

Equations 5 and 6 estimate the cost of responding to query 2 with plan P2B using the classi�-
cation approach and the abstraction approach, respectively.

C2BC = caf(li cl) +Npic � [cr(li) + can(li cl)] read all pic tuples (5)

Npic � for each pic tuple;

[clsf(li loc) +NInC2
� (cr(li) + csc + clsn(li loc))] �nd sv tuples in range using index li loc

C2BA = cfsf(li fv) +Npic � [cr(li) + cfsn(li fv)] read all pic tuples (6)

Npic � for each pic tuple;

[clsf(li loc) +NInC2
� (cr(li) + cfsd + clsn(li loc))] �nd all sv tuples in range

One di�erence between C2BC and C2BA is that in the classi�cation approach, the logical images

relation is searched using the alphanumeric index on the class attribute, whereas in the abstraction
approach, the logical images relation is searched using the spatial index on the fv attribute (as
in the case on plan P2A). However, in this case, there is another signi�cant di�erence between
the two. In the classi�cation approach, once a tuple t is retrieved a string comparison (cost csc)
is required in order to determine if the class attribute of t corresponds to a \scenic view". On
the other hand, in the abstraction approach, a weighted distance computation (cost cfsd) between
the fv �eld of t and the example feature vector of \scenic view" is required. The cost of this
computation (cfsd) is much higher than the cost of a string comparison (csc), and thus C2BA will
be signi�cantly greater than C2BC . In addition, NInC2

(the average number of tuples in the circular
range speci�ed in query 2) is larger in the abstraction approach because the logical images relation
in the abstraction approach contains tuples that correspond to both valid and invalid symbols, while
in the classi�cation approach only symbols that were classi�ed by the image input system as valid
are inserted into the database. Recall, that NInC2

is estimated by area(C2)
A

� N , where N is the
total number of tuples in the logical images relation, A is the area covered by these tuples, and
C2 is the circular range speci�ed in query 2. Since C2 and A are the same in both the classi�cation
approach and the abstraction approach, and since N is larger in the abstraction approach, NInC2

is
larger in the abstraction approach.

It is interesting to compare the costs of answering query 2 for each approach using plans P2A
and P2B. For the classi�cation approach, we compare equations 3 and 5. In plan P2AC , both
relations are scanned sequentially via the alphanumeric index li cl. For each picnic tuple, each
scenic view tuple is checked to determine whether or not it is within the speci�ed range. Thus,
the total number of distance computations is Npic �Nsv. In addition, the same number of random
access operations are also required in order to get the locations from the logical images relations.
In plan P2BC , the spatial index is used and thus only tuples that are within the speci�ed range
need to be examined. The cost of this is the overhead involved in using the spatial index. In this
case, this cost is Npic location-space \�nd �rst" operations, and Npic � NInC2

location-space \�nd
next" operations. These spatial operations involve distance computations as part of the incremental
nearest neighbor operation. However, there is no need for any distance computations as part of the

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 17

plan itself. Whether plan P2AC or plan P2BC is better depends on the size of the data set, the
portion of these tuples that belong to each classi�cation (termed the contextual selectivity), and on
the portion of all tuples that fall in the range speci�ed by the spatial component (termed the spatial
selectivity). Assuming a high spatial selectivity (i.e., that the number of tuples in the spatial range
is much smaller than the total number of tuples in the data set), plan P2BC should prove to be
much more e�cient than plan P2AC . However, if the spatial selectivity is low, then plan P2AC may
prove to be better.

In the abstraction approach, the di�erence between the cost of plan P2AA and plan P2BA may
not be as signi�cant. The reason for this is that in plan P2AA the spatial index on the fv �eld is
used to extract all the \scenic view" tuples, whereas in plan P2BA a relatively expensive weighted
distance operation is required in order to determine if a given tuple is a \scenic view". However, if
the spatial selectivity is high (i.e., a small number of tuples fall in the range speci�ed by the query),
and the contextual selectivity is low (i.e., a large number of the database tuples are of the required
classi�cation), then plan P2BA should outperform plan P2AA in the abstraction approach as well.

Equations 7, and 8 estimate the cost of responding to query 2 with plan P2C using the classi�-
cation approach and the abstraction approach, respectively. The di�erence between plan P2C and
plan P2B is that in plan P2C an intermediate spatial data structure that contains only those tuples
that are of the desired classi�cation is built before performing the spatial join.

C2CC = clsc + create temporary spatial index (7)

caf(li cl) +Nsv � (cr(li)+ clsi(tmp loc) + can(li cl)) + insert sv tuples into temp index

caf(li cl) +Npic � [cr(li) + can(li cl)] + get all pic tuples

Npic � for each pic tuple

[clsf(tmp loc) +Nsv InC2
� (cr(li)+ clsn(tmp loc))] get tuples in range using temp index

C2CA = clsc + create temporary spatial index (8)

cfsf(li fv) +Nsv � (cr(li)+ clsi(tmp loc) + cfsn(li fv)) + insert sv tuples into temp index

cfsf(li fv) +Npic � [cr(li) + cfsn(li fv)] + get all pic tuples

Npic � for each pic tuple

[clsf(tmp loc) +Nsv InC2
� (cr(li)+ clsn(tmp loc))] get tuples in range using temp index

The di�erence in the cost of executing plan P2B and P2C can be seen by comparing C2BC and
C2CC (Equations 5 and 7). In C2CC there is an added cost associated with creating and populating
the spatial data structure with \scenic view" tuples. The cost of this is clsc+caf(li cl)+Nsv�(cr(li)+
clsi(tmp loc) + can(li cl)). On the other hand, the term NInC2

� (cr(li) + csc + clsn(li loc)) is replaced
with Nsv InC2

� (cr(li) + clsn(tmp loc)). Since the the number of \scenic view" tuples is most likely
much smaller than the total number of tuples in the logical images relation, the cost of building
the temporary spatial data structure should pay o� in the much more e�cient spatial join due to
the fact that the spatial index is smaller and contains only symbols of the desired class.

A more precise comparison is obtained as follows. Recall, that assuming a uniform distribution of
symbols in space (i.e., there is an equal number of symbols in any given area), thenNInC2

= area(C2)
A

�

N , where N is the total number of tuples in the logical images relation, A is the area covered by
these tuples, and C2 is the circular range speci�ed in query 2. Assuming that the distribution of
classi�cations among any group of symbols is equal to the the total database distribution (i.e., the
portion of tuples from each classi�cation among any given group of symbols is equal to the portion of
tuples from each classi�cation in the entire database), then Nsv InC2

= area(C2)
A

�svp�N , where svp

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 18

is the portion of the database tuples that belong to the \scenic view" class. Under these assumptions
plan P2C will outperform plan P2B if the following holds:

Npic � [NInC2
� (c

r(li) + csc + c
lsn(li loc))�Nsv InC2

� (c
r(li) + c

lsn(tmp loc))] >

clsc + caf(li cl) +Nsv � (cr(li) + clsi(tmp loc) + can(li cl))

Substituting values for NInC2
, Nsv InC2

, and Nsv we get:

Npic � [
area(C2)

A
�N � (cr(li) + csc + clsn(li loc))�

area(C2)

A
� svp �N � (cr(li) + clsn(tmp loc))] >

clsc + caf(li cl) + svp �N � (cr(li) + clsi(tmp loc) + can(li cl))

This inequality will not hold when svp is large (i.e., a low contextual selectivity), and when the
search range C2 is small (i.e., a high spatial selectivity). Therefore, when the contextual selectivity
is high or the spatial selectivity is low, then plan P2C will outperform plan P2B.

When using the classi�cation approach, Query Q2 can be further optimized by using a data or-
ganization in which the tuples are partitioned into separate relations resulting in a one-to-one corre-
spondence between relations and classes of the application. For example, tuples (C; certainty; (x; y))
of a logical image for which C = C1 are stored in a relation corresponding to C1. Each such partition
has a spatial index on the locations of the symbols from the corresponding class. Query Q2 is then
computed by a spatial join operation between the two spatial indices with no need for creating tem-
porary indices as is done in Plan P2C. This is termed a partitioned organization in contrast to the
approach discussed in this paper which we term an integrated organization. See [38] for more details
about the partitioned organization as well as a comparison with the integrated organization. The
paritioned organization can not be used with the abstraction approach, since there is no mapping
between tuples and classes using this approach.

Note that the cost estimates presented in this section are at the low level and quite speci�c for
the particular queries and plans that we use. The purpose of these cost estimates was to compare
the two approaches as well as to demonstrate the di�erence in performance while processing queries
that have both spatial and non-spatial components using di�erent query processing strategies. A
more general cost analysis is a very complex issue and is beyond the scope of this paper.

6 Experimental Study

The symbolic-image database system was tested on the red sign layer of the GT3 map of Finland,
which is one of a series of 19 GT maps that cover the whole area of Finland. The red sign layer
contains 22 di�erent geographic symbols that mostly denote tourist sites. The map was scanned at
240dpi. The layer was split into 425 tiles of size 512� 512. Each one of these tiles that contained
at least one symbol was considered an image. Figure 5 is an example image. Of these 425 tiles, 280
contained at least one symbol. These 280 images contained 4111 symbols (both valid and invalid).
Of these 4111 symbols, 1093 were valid symbols, and 3018 were invalid symbols.

The images were input using the image input methodology described in Section 3 for the clas-
si�cation and the abstraction approach. The initial training set was created by giving one example
symbol of each class as taken from the legend of the map. There were 22 classes in the map (see

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 19

holiday camp

fishing site

youth hostel

airfield

filling station

harbor

service station

cafe’

restaurant

first aid

beach

customs

post office

picnic site museum

camping site

hotel

tourist information

public telephone

sports institution

scenic view

site of interest

Figure 11: Symbols and their semantic meaning.

Figure 11 for a description of these symbols). The �rst 50 images were processed in user veri�cation
mode. At that point, the training set contained 100 instances of symbols and the current recognition
rate was determined su�cient. The remaining images were processed automatically. The results of
this conversion (i.e., the logical images) were input to SAND and inserted into relations as de�ned
in Section 4. There were a total of 1093 tuples in the logical images relation corresponding to
280 logical images, when using the classi�cation approach. In the abstraction approach the feature
vectors of both valid and invalid symbols were inserted into the symbolic-image database. Since
these 280 images had 4111 such symbols, there were a total of 4111 tuples in the logical images

relation when using the abstraction approach.

In order to compare the classi�cation and abstraction approaches in terms of query execution time
and in order to compare the various execution plans foe a given query, we created query execution
plans for each one of the queries listed in Section 5 following the strategies outlined there. These
plans were written in Tcl (short for Tool Command Language), an interpreted scripting language
developed by Ousterhout [28] which is the query language used by SAND [11]. They were executed
on a SPARC 10 running UNIX, and statistics regarding the execution were recorded.

Currently, we have only obtained data and scanned one portion of the map. While this data
set was su�cient for testing the symbol recognition component of our system, .a larger data set
is required in order to evaluate the system in terms of storage and retrieval from the database. In
order to do this, we derived semi-synthetic data from the original data set for this purpose. This was
done by replicating the map tiles by a constant factorM . Each original tile was replicated M times.
The upper-left coordinate of these new tiles was computed so that it seems that the entire non-tiled
image is replicated. The objects inside each image were relocated at random within the 512� 512
area of the image. The values selected for M were 2, 4, 8, 16, 32, and 64, yielding multiples of the
original non-tiled image of size 1� 2, 2� 2, 2� 4, 4� 4, 4 � 8, and 8� 8, respectively. Therefore,
the data sets with which we experimented consisted of 280, 560, 1120, 2240, 4480, 8960, and 17920
logical images. This corresponds to 1093, 2184, 4368, 8736, 17472, 34984, and 69952 tuples in the
logical images relation using the classi�cation approach (since the basic data set yielded 1093
candidate classi�cations). When using the abstraction approach, the same data set had 4111, 8222,
16444, 32888, 65776, 131552, and 263104 tuples in the logical images relation (since the basic
data set has 4111 valid and invalid symbols).

In this section, we report results for various quantities that measure database storage and re-
trieval performance. These include image insertion time, storage space, retrieval accuracy, and query
execution time. The results were collected for both the classi�cation approach and the abstraction
approach. In the section dealing with query execution time (i.e., Section 6.4) we compare the dif-
ferent approaches as well as the various execution plans for each one separately. Throughout the

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 20

following discussion, CLA denotes the classi�cation approach, and ABA denotes the abstraction
approach.

6.1 Insertion Times

Figure 12 compares the time to insert the images into the database for various data-set sizes following
the classi�cation and abstraction approaches. These results are only for inserting the data. They
do not include the time required for converting from physical to logical images, which is a time-
consuming process (i.e., it took approximately 4 hours for the basic data set).

0.5
1
2
4
8

16
32
64

128
256
512

280 560 1120 2240 4480 896017920in
se

rt
io

n
tim

e
(in

 m
in

ut
es

, l
og

 s
ca

le
)

number of images (log scale)

Classification
Abstraction

Figure 12: Time (in seconds) for insertion of the
physical and logical images into the database for
various sizes of the data set.

256

512

1024

2048

4096

8192

16384

32768

65536

280 560 1120 2240 4480 896017920st
or

ag
e

si
ze

 (
in

 k
ilo

by
te

s,
 lo

g
sc

al
e)

number of images (log scale)

Classification
Abstraction

Figure 13: Sizes (in Kilobytes) of the relations for
various data set sizes.

Inserting the data using ABA is slower than CLA. Inserting the entire data set takes 2.3 times
longer for small data sets and as much as 5.7 times longer for large data sets. The reason for this is
that there are four times as many tuples in ABA compared to CLA, since tuples corresponding to
both valid and invalid symbols are stored in the symbolic-image database using ABA. Furthermore,
constructing the k-d tree that is used to index the feature vectors in ABA is much more time-
consuming than constructing the B-tree that is used to index the class names in CLA, especially for
large data sets. Recall that an adaptive k-d tree is used for this purpose. The adaptive k-d tree is
optimized for quick searches by the nature of its construction process. However, the cost of this is
a quite complex as it involves selecting the best feature and computing the median of the value of
this feature for all points each time the tree is split.

6.2 Storage Space

Figure 13 compares the sizes of the �les that store and index the logical images in CLA and ABA for
various data set sizes. The total space required for ABA is about four times as much as the space
required for CLA. This corresponds precisely to the di�erence in the number of logical image tuples
between CLA and ABA (1093 compared to 4111 in the basic data set).

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 21

6.3 Retrieval Accuracy

We evaluate the symbolic-image database system in terms of accuracy using two error types that are
commonly used in document analysis studies [26]. Type I error occurs when an image that meets
the query speci�cation was not retrieved by the system (a miss), and a Type II error occurs when an
image that the system retrieved for a given query does not meet the query speci�cation (a false hit).
Note that Type I and Type II errors correspond to the recall and precision metrics, respectively,
used in information retrieval experiments [30]. Figure 14 compares the Type I and Type II error
rates for the classi�cation approach and the abstraction approach.

0

10

20

30

40

50

60

Total Cafe Beach Post Ofc Service Picnic

query symbol

er
ro

r
ra

te
 (

%
)

Type I (cla)

Type I (aba)
Type II (cla)

Type II (aba)

Figure 14: Type I and Type II error rates for
the classi�cation approach and the abstraction
approach.

0

5

10

15

20

25

30

35

Total Cafe Beach Post
Ofc

Service Picnic

query symbol

er
ro

r
ra

te
 (

%
)

Type I
Type II

Figure 15: Type I and Type II error rates when
considering only results with certainty value >

0.25 (classi�cation approach).

The error rates were computed by performing a query that requests all images that contain one
particular symbol. This was repeated for each of the symbols in our application. We counted how
many results did not meet the query speci�cation for each symbol, and how many result images were
missed. We computed the error rates for each symbol. In addition, we computed the total Type I
error rate as the total number of missed results divided by the total number of expected results. The
total Type II error rate, which is the total number of incorrect results divided by the total number
of results, was also computed.

The total Type I error rate using CLA was 6% (i.e., 94% of the images that should have been
retrieved were in fact retrieved by the system). Note however, that this rate varies for the di�erent
symbols. The total Type II error rate was 19% (i.e., 81% of the images that were retrieved did in
fact contain the desired symbol). Recall, that for the classi�cation approach the results are ranked
by certainty. The Type II error rate for the classi�cation approach can be improved by considering
only results with a certainty value greater than some cuto� value. This may increase the Type I
error rate as some results that were correct may have a certainty value that is smaller than the
chosen cuto� certainty value. See Figure 15 for a cuto� certainty value of 0.25 for the classi�cation
approach. In contrast, the certainty cuto� rate is irrelevant for the abstraction approach. Instead,
here, the factor that e�ects the error rates is the search bound distance. Figure 16 reports the
total Type I and Type II error rates, as well as these error rates for a few of the symbols using the
abstraction approach, while varying the search bound value. Figure 17 plots the typeII error rate
versus the type I error rate for various search bound values. From this graph it is apparent that the
type II error rate decreases as the type I error rate increases.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 22

T
ot

al

C
af

e

B
ea

ch

P
os

t O
fc

S
er

vi
ce

P
ic

ni
c

Type I (0.5)

Type I (0.4)

Type I (0.3)
Type II (0.3)

Type II (0.4)
Type II (0.5)

0

10

20

30

40

50

60

70

80

er
ro

r
ra

te
 (

%
)

query symbol

Figure 16: Type I and Type II error rates for sym-
bols using the abstraction approach (the numbers
in parenthesis are the search bound value).

0

10

20

30

40

50

0 10 20 30 40 50

T
yp

e
II

Type I

Figure 17: Total Type II error rate versus Type I
error rate using the abstraction approach varying
the search bound value.

The cause for these errors can only be attributed to the image input process (i.e., symbol clas-
si�cation or abstraction). Our image storage, indexing, and retrieval methods do not introduce any
errors or approximations. The variance in the error rates between di�erent symbols results from
the speci�c classi�cation method and from the contents of the training set that is used when in-
serting images into the database using CLA. In ABA this variance is attributed to the particular
sample feature vector that is used for the search. In particular, in both approaches, the variance is
attributed to the ability of the system to di�erentiate between di�erent symbols. The results that
we report here are for one particular training set (feature vector). However, we experimented with
various training sets and sample feature vectors, and these results were consistent in all cases. In
order to achieve lower error rates, more features would be required to describe each symbol.

Although the Type II error rates may seem rather high (i.e, a relatively large percent of the
images retrieved did not conform to the query speci�cation), the ranking of the results was very
good { that is, the �rst result images in almost all cases did conform to the query speci�cation. If
the goal of the search is to �nd a few good result images (rather than �nding all of them), then
setting a high certainty value or a low search bound value and checking the �rst few results should
give good results. If the goal is to �nd as many results as possible, then a low certainty value or a
high search bound is required followed by manually weeding out the erroneous results. In any case,
the number of result images as a fraction of the total number of images in the database was very
low. Even for a the largest search bound value, only 6% of the images in the database were retrieved
on average for the queries that we performed.

6.4 Query Execution Time

In order to compare the two approaches as well as the competing plans we performed an empirical
comparison in terms of execution time between query Q1 using both approaches and between the
three query execution plans for query Q2 (display all images that contain a scenic view within 5
miles of a picnic site) using the two approaches. This query has both a spatial and a non-spatial
component and is thus a good basis for evaluation. The comparison was done by executing numerous
variations of this query using the plans as outlined in Section 5. An important aspect in selecting

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 23

the appropriate query execution plan is the selectivity of the various parts of the query. That is,
what percent of the tuples of the relation conform to the spatial and non-spatial components of the
query (we refer to these as the spatial and contextual selectivity factors, respectively). The variations
of the query were selected so that we could test its execution under di�erent levels of spatial and
contextual selectivities. The spatial selectivity was changed by varying the search radius (i.e. the
\within" distance). The contextual selectivity was varied by the particular selection of the symbols
speci�ed by the query. We repeated the queries for two cases. In the �rst case, the two symbols
were chosen so that the contextual selectivity of their respective classes is similar (i.e., about the
same percent of tuples of the entire data set belong to both symbol classes). In the second case, the
symbols were chosen such that there are signi�cantly more tuples that belong to one symbol class
than to the other (i.e., one symbol had a very low contextual selectivity). Note that although the
times that we report here are for a speci�c combination of symbols, we performed similar queries for
numerous combinations and observed the same behavior. Therefore, the general trend will be the
same, although the exact values of the execution times may di�er.

We repeated these variations of this query for the various data-set sizes to see how they scale
up. Two steps were taken in order to ensure that the data was in fact read from disk every time a
query was executed (i.e., neutralize the e�ects of any bu�ering that the �le system may perform).
The �rst step was to clear the machine's memory by calling a routine that �lls the entire memory
with the value 0. The second step was to alternate the queries so that they were posed to di�erent
data sets. This ensured that the same data set was never referenced consecutively thereby requiring
that it be read from the disk.

0.5

1

2

4

8

16

32

64

280 560 1120 2240 4480 896017920ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

Classification
Abstraction

Figure 18: Retrieval times in seconds for Query Q1 for various data set sizes.

Figure 18 compares the retrieval times that were required to process query Q1 for various sizes
of the data set. We repeated this query for each one of the symbols in our application. The results
that we report are the average for all symbols. The execution time using ABA is approximately 1.2
times the execution time using CLA for small data sets, and approximately 2.4 times that for the
large data set. There are two reasons for this di�erence in performance. One reason is that since
ABA stores tuples that correspond to both valid and invalid symbols, the database is larger and thus
the total number of operations that are required in order to �nd all symbols of a particular class is
larger. The second reason is that in the case of ABA, this search is performed on the adaptive k-d
tree and involves many weighted feature vector distance computations, while in the case of CLA,
the search is performed on the B-tree and it involves string comparisons, which are a less costly
operation.

Figures 19 and 20 report the retrieval time in seconds for query Q2 using the three plans for

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 24

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

CLA: P2AC
CLA: P2BC
CLA: P2CC
ABA: P2AA
ABA: P2BA
ABA: P2CA

Figure 19: Retrieval time in seconds for Q2 with
search radius 16 varying the data set size; small
di�erence in contextual selectivity.

1

4

16

64

256

1024

4096

16384

280 560 1120 2240 4480 8960 17920

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

number of images (log scale)

CLA: P2AC
CLA: P2BC
CLA: P2CC
ABA: P2AA
ABA: P2BA
ABA: P2CA

Figure 20: Retrieval time in seconds for Q2 with
search radius 16 varying the data set size; large
di�erence in contextual selectivity.

16

64

256

1024

4096

16384

65536

0.01 0.04 0.17 0.68 2.7 10.9 43.8

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

search area as a percent of total area (log scale)

CLA: P2AC
CLA: P2BC
CLA: P2CC
ABA: P2AA
ABA: P2BA
ABA: P2CA

Figure 21: Retrieval time in seconds varying the
search radius, for the 4480 image data set; small
di�erence in contextual selectivity.

16

64

256

1024

4096

16384

65536

0.01 0.04 0.17 0.68 2.7 10.9 43.8

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

, l
og

 s
ca

le
)

search area as a percent of total area (log scale)

CLA: P2AC
CLA: P2BC
CLA: P2CC
ABA: P2AA
ABA: P2BA
ABA: P2CA

Figure 22: Retrieval time in seconds varying the
search radius, for the 4480 image data set; large
di�erence in contextual selectivity.

various data-set sizes for both approaches. Figure 19 corresponds to the case where the di�erence
in the contextual selectivity between the query symbols is small, for progressively lower spatial
selectivities (i.e., larger search radii). Similarly, Figure 20 corresponds to the case where the di�erence
in the contextual selectivity between the query symbols is large. From these �gures, it is apparent
that plan P2C (which builds an intermediate spatial data structure) is best in most cases for both
approaches. The cost of building the temporary spatial index pays o� in the much more e�cient
spatial join needed to execute the query due to the fact that the spatial index results in far fewer
pairs being compared.

Figures 21 and 22 show the retrieval time in seconds for query Q2 using the three plans varying
the spatial selectivity for a constant data-set size. Here we can see that when the spatial selectivity is
low (i.e., a large search area), plan P2B becomes very ine�cient. This can also be seen in Figures 24
and 27 which show the retrieval time of plan P2B as both the search radius and the data set grows
for CLA and ABA, respectively. Notice the steep slope as the size of the radius and the data set
increases. In contrast, in Figures 23 and 26, which show the retrieval time of plan P2A as both

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 25

2 4 8 16 32 64
280

560
1120

2240

4480
8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240

4480
8960

search radius
(in miles)

number of
images

Figure 23: Retrieval time in seconds for Plan
P2AC varying the search radius and the data set
size (classi�cation approach).

2 4 8 16 32 64
280

560
1120

2240

4480
8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240

4480
8960

search radius
(in miles)

number of
images

Figure 24: Retrieval time in seconds for Plan
P2BC varying the search radius and the data set
size (classi�cation approach).

2 4 8 16 32 64
280

560
1120

2240
4480

8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240
4480

8960

search radius
(in miles)

number of
images

Figure 25: Retrieval time in seconds for Plan
P2CC varying the search radius and the data set
size (classi�cation approach).

2 4 8 16 32 64
280

560
1120

2240

4480
8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240

4480
8960

search radius
(in miles)

number of
images

Figure 26: Retrieval time in seconds for Plan
P2AA varying the search radius and the data set
size (abstraction approach).

the search radius and the data set grows, the size of the search radius does not e�ect the retrieval
time. The reason for this is that plan P2A simply computes the distance between every two symbols
conforming to the contextual part of the query speci�cation. Thus, it is not sensitive to the particular
distance and it is attractive for low spatial selectivities.

Plan P2C seems to be the best compromise. It �rst uses the contextual index to only get the
tuples that correspond to the classes speci�ed by the query. It then builds a spatial index on these
tuples and performs a spatial join between them. Even though some overhead is incurred when
building this temporary index, in most cases this pays o�. Plan P2C is sensitive to increasing both
the search radius and the size of the data set. However, the changes are much more subtle compared
to those of plan P2B as can be seen from the moderate slopes in Figures 25 and 28.

Finally, we compare the retrieval times for query Q2 using CLA and ABA. For plan P2A, the ratio
of retrieval time using ABA over the retrieval time using CLA is about 1.5. For plan P2B, the ratio
of retrieval time using ABA over the retrieval time using CLA varies between 3 and 7 depending
on the value of the search radius, the size of the data set, and whether there is a large or small
di�erence in the contextual selectivities. There are two reasons for the poor relative performance
of P2B using ABA. One reason is that since ABA stores tuples that correspond to both valid and
invalid symbols, more tuples are found in each range search, and thus the total number of comparison
operations that are required in order to determine whether the symbol is of the desired class is larger.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 26

2 4 8 16 32 64
280

560
1120

2240

4480
8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240

4480
8960

search radius
(in miles)

number of
images

Figure 27: Retrieval time in seconds for Plan
P2BA varying the search radius and the data set
size (abstraction approach).

2 4 8 16 32 64
280

560
1120

2240

4480
8960

1

100

10000

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

2 4 8 16 32 64
280

560
1120

2240

4480
8960

search radius
(in miles)

number of
images

Figure 28: Retrieval time in seconds for Plan
P2CA varying the search radius and the data set
size (abstraction approach).

The second reason is that this comparison, in the case of ABA, involves a weighted feature vector
distance computation while in the case of CLA, it involves a string comparison, which is a less
costly operation. For plan P2C, the ratio of retrieval time using ABA over the retrieval time using
CLA is a little more than 1. In plan P2C, only tuples whose classi�cation matches the classes of
the query-symbols are retrieved. Therefore, the impact of the larger number of total tuples in the
database in ABA, is very small, and the total retrieval time is very similar.

6.5 Discussion

Our results show that for both data organizations (i.e, CLA and ABA), plans that use a spatial
index perform much better than plans that do not make use of such an index. In addition, for
all but the smallest data sets, it was bene�cial to build a temporary spatial index that contained
only those tuples that belonged to the required classi�cation, as is done by plan P2C. If only query
retrieval time is considered, then clearly CLA is always better than ABA. However, in comparing
these two approaches one must consider a broad spectrum of factors, where query retrieval time is
only one of them. Table 2 outlines these di�erences.

Classi�cation Approach Abstraction Approach

Image preprocessing workload heavy moderate

Image insertion time faster slower

User interaction required yes no

Spatial indexing space location location and feature

Retrieval by content workload low moderate

Hybrid query workload low moderate

Number of applications smaller larger

Adaptable at run time slightly highly

Accuracy: type I good moderate

Accuracy: type II good moderate

Table 2: Comparison of the classi�cation approach and the abstraction approach.

The image preprocessing workload in CLA is heavier than in ABA. In both cases, the images

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 27

are segmented, and a feature vector is computed for each connected component. In CLA, this is
followed by a classi�cation process resulting in a more time-consuming preprocessing step in CLA
compared to ABA. In terms of the time to insert the images into the database after the preprocessing
is complete, ABA is slower than CLA. In terms of user interaction during the image interpretation
process, in ABA there is no need for human interaction. On the other hand, in CLA the user must
assist in creating the training set which is used to automatically classify the images.

Retrieving queries purely on the basis of content (with no spatial constraints, e.g., example query
Q1) is slightly slower in ABA than in CLA. Our results varied from a retrieval time that was greater
by a factor of 1.2 for the small data set, to a retrieval time that was greater by a factor of 2.4 for
the large data set. A similar observation was made for hybrid queries (e.g., query Q2).

The empirical results presented here were for two generic types of queries. The �rst query searches
for images based on content only, while the second query searches for symbolic images based on both
contextual and spatial constraints. In particular, the second query searches for two given symbols
within a certain distance of each other. In addition to these queries, we have also experimented with
queries that involve relational-spatial constraints such as display all images that contain an air�eld
northeast of a beach. Spatial indices are not as e�cient for such queries, as the spatial selectivity
of the relational-spatial constraint is rather small. That is, on the average a relatively large number
(1/4th for northeast) of the symbols will satisfy the relational-spatial constraint. Therefore, unless
there is an additional locational-spatial constraint, it is most likely best to compute such a query
based on the contextual constraints. In fact, we observed performance similar to pure contextual
queries for this query. That is, CLA had a slight advantage over ABA. In general, most queries will
be a variation of these two basic queries; that is, they are either based on content, or they have
an additional spatial constraint. Thus, the results presented here should hold for other applications
that deal with symbolic images.

In terms of
exibility, ABA has a few advantages. The �rst advantage is that it is applicable for
a larger number of applications. CLA is only applicable when all the classes of the application are
known in advance. In addition, a classi�er that can classify these symbols is required. In contrast,
ABA is also applicable in cases where all the classes of the application are not known in advance
(although a sample feature vector is still required to execute queries). In addition, there is no need
for a classi�er. All that is needed is a function that returns the certainty that two symbols belong to
the same class. This function can be realized simply via the Euclidean distance between two feature
vectors with an appropriate normalization.

The second advantage of ABA in terms of
exibility is that it is more adaptive at run time.
In CLA, the parameters that determine the size of the window that is used to search the feature
space are set at image insertion time. The results of the classi�cation using these particular settings
are inserted into the database, and there is no record of the raw data that was used to make these
classi�cations. In ABA, on the other hand, this decision is only made at run time. The user may
vary the size of the search window in feature space for di�erent queries.

Finally, in terms of accuracy, CLA outperforms ABA in both Type I and Type II error rates.
In our results, the di�erence was approximately twofold. One reason for this is that CLA's user
involvement in the early stages of populating the symbolic-image database (when constructing the
training set) pays o� in terms of accuracy. Another reason is that CLA uses a sophisticated classi�er
that is presented with several example instances of each symbol. In contrast, ABA simply considers
any symbol whose feature vector is within a prede�ned distance of one sample feature vector as
belonging to the same class. This is in e�ect like a classi�er that just sets a constant search bound
for neighbors and has no voting process, with a training set that consists of only one instance of

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 28

each class. Note, that the same features are used for both approaches. The only di�erence is in the
number of instances in the training set and in the voting process.

The comparison of the CLA and ABA methods depends on the quality of both the particular
features that are used, and the classi�cation algorithm. However, assuming that both methods use
the same features, these results should hold for other features as well. In our application we selected
some global and some local shape descriptors that were empirically shown to e�ectively discriminate
between geographic symbols [36]. Note that the quality of the classi�cation is the only factor that
e�ects accuracy. The indexing methods and the query execution plans that we employ do not use
any approximations. Their results are always accurate.

7 Concluding Remarks

Throughout this paper we discussed how to input, store, index, and retrieve symbolic images in a
database following the classi�cation and the abstraction approaches. It is apparent that the choice
of which approach to use depends on the application at hand. If the application consists of fully-
symbolic images, and it is important to have more accurate results and quicker query response times,
then CLA should be used. On the other hand, if the application consists of partially-symbolic images,
and it is important to have
exibility at run time, then ABA should be used. For applications that
fall in between these two extremes, the performance study that was presented in this paper can be
used as a guideline for the appropriate selection.

The queries in this paper were speci�ed textually. The system also has a graphical user interface
(GUI) that we did not describe here (see [37]). In addition, we have incorporated a pictorial query
speci�cation that can deal with both contextual and spatial constraints [37]. In this case, a sample
symbol for each class will not be required when using ABA, as it can be taken directly from the
pictorial query. The example spatial queries that we presented in this paper mainly involved distance.
However, by explicitly storing the locations of objects we can easily derive any required relative
spatial relation such as \left of", \above", etc. at query time. Furthermore, using the spatial index
we can devise optimized plans for such queries.

The examples and experiments in this paper were from the map domain. However, images from
many other interesting applications also fall into the category of symbolic images. One complication
that could arise in other applications is that the spatial extent of symbols may be of importance.
In our example application, symbols were represented by a point. In other applications, we may
need to use bounding boxes or other geometric entities to represent the symbols in the logical image.
However, by using the methods suggested in this paper (i.e, storing locations and using spatial data
structures to index the locational data) we can handle objects with spatial extent just as easily. The
only di�erence would be in the selection of the spatial data structure. For example, if symbols are
represented by bounding boxes, then any data structure that is suitable for indexing rectangles such
as an R-tree [15] can be used. The well-known algorithms that exist for range queries on these data
structures can then be utilized for e�cient processing of queries that have a spatial component. In
contrast, it is considerably harder to deal with spatial extent in methods based on 2-D strings [7].
Note that we have used similar methods for the interpretation of
oor plans [31].

8 Acknowledgments

We are grateful to Karttakeskus, Map Center, Helsinki, Finland for providing us the map data.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 29

References

[1] W. G. Aref and H. Samet. Optimization strategies for spatial query processing. In G. Lohman,
editor, Proceedings of the 17th International Conference on Very Large Data Bases, pages 81{90,
Barcelona, September 1991.

[2] Y. A. Aslandogan, C. Thier, C. T. Yu, C. Liu, and K. R. Nair. Design, implementation
and evaluation of SCORE (a System for COntent based REtrieval of pictures). In Eleventh

International Conference on Data Engineering, pages 280{287, Taipei, Taiwan, March 1995.

[3] A. Del Bimbo, M. Mugnaini, P. Pala, and F. Turco. PICASSO: Visual querying by color
perceptive regions. In Proceedings of the Second International Conference on Visual Information

Systems, pages 125{131, San Diego, California, December 1997.

[4] A. Del Bimbo and E. Vicario. Weighting spatial relationships in retrieval by visual contents.
In Proceedings of the IFIP 2.6 4th Working Conference on Visual Database Systems (VDB-4),
pages 277{292, L'Aquila, Italy, May 1998.

[5] J.L. Blue, G.T. Candela, P.J. Grother, R. Chellappa, and C.L. Wilson. Evaluation of pattern
classi�ers for �ngerprints and OCR applications. Pattern Recognition, 27(4):485{501, April
1994.

[6] S. K. Chang, E. Jungert, and Y. Li. The design of pictorial databases based upon the theory
of symbolic projections. In A. Buchmann, O. G�unther, T. R. Smith, and Y. F. Wang, editors,
Design and Implementation of Large Spatial Databases | First Symposium, SSD'89, pages
303{323, Santa Barbara, CA, July 1989. (Also Springer-Verlag Lecture Notes in Computer
Science 409).

[7] S. K. Chang, Q. Y. Shi, and C. Y. Yan. Iconic indexing by 2-D strings. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 9(3):413{428, May 1987.

[8] S. K. Chang, C. W. Yan, D. C. Dimitro�, and T. Arndt. An intelligent image database system.
IEEE Transactions on Software Engineering, 14(5):681{688, May 1988.

[9] T. Dalamaga, T. Sellis, and L. Sinos. A visual database system for spatial and non-spatial
data management. In Proceedings of the IFIP 2.6 4th Working Conference on Visual Database

Systems (VDB-4), pages 105{122, L'Aquila, Italy, May 1998.

[10] C. Djeraba, M. Bouet, and H. Briand. Content-based query and indexing. In Proceedings of

the Second International Conference on Visual Information Systems, pages 69{76, San Diego,
California, December 1997.

[11] C. Esperan�ca and H. Samet. Spatial database programming using SAND. In M. J. Kraak
and M. Molenaar, editors, Proceedings of the Seventh International Symposium on Spatial Data

Handling, volume 2, pages A29{A42, Delft, The Netherlands, August 1996. International Geo-
graphical Union Comission on Geographic Information Systems, Association for Geographical
Information.

[12] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for �nding best matches in loga-
rithmic expected time. ACM Transactions on Mathematical Software, 3(3):209{226, September
1977.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 30

[13] V. Gudivada and V. Raghavan. Design and evaluation of algorithms for image retrieval by
spatial similarity. ACM Transactions on Information Systems, 13(2):115{144, April 1995.

[14] A. Gupta, T. Weymouth, and R. Jain. Semantic queries with pictures: the VIMSYS model.
In G. Lohman, editor, Proceedings of the Seventeenth International Conference on Very Large

Databases, pages 69{79, Barcelona, Spain, September 1991.

[15] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the

ACM SIGMOD Conference, pages 47{57, Boston, MA, June 1984.

[16] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In M. J. Egenhofer and J. R.
Herring, editors, Advances in Spatial Databases | Fourth International Symposium, SSD'95,
pages 83{95, Portland, ME, August 1995. (Also Springer-Verlag Lecture Notes in Computer
Science 951).

[17] Informix. Informix web site. http://www.informix.com.

[18] H. V. Jagadish. A retrieval technique for similar shapes. In Proceedings of the 1991 ACM

SIGMOD International Conference on Management of Data, pages 208{217, Denver, CO, May
1991.

[19] S. Kaushik and E. A. Rudensteiner. Direct manipulation spatial exploration using SVIQUEL.
In Proceedings of the IFIP 2.6 4th Working Conference on Visual Database Systems (VDB-4),
pages 179{185, L'Aquila, Italy, May 1998.

[20] S. Y. Lee and F. J. Hsu. 2D C-string: a new spatial knowledge representation for image database
systems. Pattern Recognition, 23(10):1077{1088, October 1990.

[21] M.D. Levine. Vision in Man and Machine. McGraw-Hill, New York, 1982.

[22] M. S. Lew, K. Lempinen, and N. Huijsmans. Webcrawling using sketches. In Proceedings of

the Second International Conference on Visual Information Systems, pages 77{84, San Diego,
California, December 1997.

[23] R. Mehrotra and J. Gary. Feature-index-based similar shape retrieval. In Third Working

Conference on Visual Database Systems, pages 39{55, Lausanne, Switzerland, March 1995.

[24] R. C. Nelson and H. Samet. A consistent hierarchical representation for vector data. Computer
Graphics, 20(4):197{206, August 1986. (Also Proceedings of the SIGGRAPH'86 Conference,
Dallas, August 1986).

[25] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and P. Yanker. The
QBIC project: Querying images by content using color, texture, and shape. In Proceedings of

the SPIE, Storage and Retrieval of Image and Video Databases, volume 1908, pages 173{187,
San Jose, CA, February 1993.

[26] L. O'Gorman and R. Kasturi, editors. Document Image Analysis. IEEE Computer Society
Press, Los Alamitos, CA, 1994.

[27] V. Oria, B. Xu, and M. T. Tamer. VisualMOQL: A visual query language for image databases.
In Proceedings of the IFIP 2.6 4th Working Conference on Visual Database Systems (VDB-4),
pages 186{191, L'Aquila, Italy, May 1998.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 31

[28] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, April 1994.

[29] A. Pentland, R. W. Picard, and S. Sclaro�. Photobook: Content-based manipulation of image
databases. In Proceedings of the SPIE, Storage and Retrieval of Image and Video Databases II,
volume 2185, pages 34{47, San Jose, CA, February 1994.

[30] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, New York, 1st edition, 1983.

[31] H. Samet and A. So�er. Automatic interpretation of
oor plans using spatial indexing. In
S. Impedovo, editor, Progress in Image Analysis and Processing III, pages 233{240. World
Scienti�c, Singapore, 1994.

[32] H. Samet and A. So�er. Magellan: Map acquisition of geographic labels by legend analysis.
International Journal of Document Analysis and Recognition, 1(2):89{101, June 1998.

[33] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database system concepts. McGraw-Hill, New
York, 3rd edition, 1996.

[34] A. P. Sistla, C. Yu, C. Liu, and K. Liu. Similarity based retrieval of pictures using indices on
spatial relationships. In Proceedings of the 21st International Conference on Very Large Data

Bases, pages 619{629, Zurich, Switzerland, September 1995.

[35] J. R. Smith and S.-F. Chang. VisualSEEk: a fully automated content-based image query system.
In ACM International Conference on Multimedia, pages 87{98, Boston, MA, November 1996.

[36] A. So�er and H. Samet. Negative shape features for image databases consisting of geographic
symbols. In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, Advances in Visual Form

Processing, pages 569{581, Singapore, 1997. World Scienti�c.

[37] A. So�er and H. Samet. Pictorial query speci�cation for browsing through spatially-referenced
image databases. Journal of Visual Langauges and Computing, pages {, 1998. To appear.

[38] A. So�er and H. Samet. Two data organizations for storing symbolic images in a relational
database system. In Semantic Issues in Multimedia Ststems, Norwell, MA, 1999. Kluwer Aca-
demic Press. To Appear.

[39] M. Stonebraker, J. Frew, and J. Dozier. The SEQUOIA 2000 project. In D. Abel and B. C.
Ooi, editors, Advances in Spatial Databases | Third International Symposium, SSD'93, pages
397{412, Singapore, June 1993. (Also Springer Verlag Lecture Notes in Computer Science 692).

[40] D.D. Straube and M.T. �Ozsu. Query optimization and execution plan generation in object-
oriented database systems. EEE Transactions on Knowledge and Data Engineering, 7(2):210{
227, April 1995.

[41] M. Swain. Interactive indexing into image databases. In Proceedings of the SPIE, Storage and

Retrieval for Image and Video Databases, volume 1908, pages 95{103, San Jose, CA, February
1993.

[42] Excalibur Technologies. Excalibur technologies web site. http://www.excalib.com.

[43] M. Ubell. The montage extensible dataBlade architecture. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, page 482, Minneapolis, MN, June 1994.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 32

[44] Virage. Virage web site. http://www.virage.com.

[45] D. White and R. Jain. Similarity indexing: Algorithms and performance. In Proceedings of the

SPIE, Storage and Retrieval of Still Image and Video Databases IV, volume 2670, pages 62{73,
San Jose, CA, February 1996.

9 Appendix: Sample Plans

The following are programs for the queries described in Section 5. Notice that the letters in italic
at the end of each line represent the cost of executing this line in terms of the constants de�ned in
Table 1. NN denotes \nearest neighbor". li, pi, and cl denote logical images, physical images,
and classes, respectively. The cost of the \display" operation is not included since it is not
considered part of processing the query. It is only a mechanism to output the answer to the query
and is always the same regardless of the selected execution plan. In addition, no cost is associated
with operations that compare two values (e.g., =; <).

Plan P1C : Search using an alphanumeric index on class.

cd first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

c tuple of classes corresponding to cd.tid cr(cl)

lc first tuple t of li cl such that t.class � c.name caf(li cl)

while lc 6= ERROR and lc.class = c.name do

li tuple of logical images corresponding to lc.tid cr(li)

pi tuple t of physical images such that

t.img id = li.img id caf(pi id) + cr(pi)

Display pi.raw

lc next tuple of li cl in alphabetic order can(li cl)

endwhile

Plan P1A: Search using spatial index on fv.

cd first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

c tuple of classes corresponding to cd.tid cr(cl)

lv first tuple t of li fv such that

t.fv is the NN and within MD of c.fv cfsf(li fv)

while lv 6= ERROR do

li tuple of logical images corresponding to lv.tid cr(li)

pi tuple t of physical images such that

t.img id = li.img id caf(pi id) + cr(pi)

Display pi.raw

lv tuple t of li fv such that

t.fv is the next NN and within MD of c.fv cfsn(li fv)

endwhile

Plan P2AC: Search using alphanumeric indices on class for all picnic tuples and all scenic view
tuples.

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 33

cds first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

cdp first tuple t of cl sem such that

t.semant � \picnic" caf(cl sem)

cp tuple of classes corresponding to cdp.tid cr(cl)

lcp first tuple t of li cl such that t.class � cp.name caf(li cl)

create temporary memory-resident relations lcp buf and lcs buf

while lcp 6= ERROR and lcp.class = cp.name do

i 0

while i < BS and lcp 6= ERROR and

lcp.class = cp.name do

lip tuple of logical images corresponding to lcp.tid cr(li)

insert lip into lcp buf cmi

lcp next tuple of li cl in alphabetic order can(li cl)

i i + 1

endwhile

lcs first tuple t of li cl such that t.class � cs.name caf(li cl)

while lcs 6= ERROR and lcs.class = cs.name do

j 0

while j < BS and lcs 6= ERROR and

lcs.class = cs.name do

lis tuple of logical images corresponding to lcs.tid cr(li)

insert lis into lcs buf cmi

lcs next tuple of li cl in alphabetic order can(li cl)

j j + 1

endwhile

for all tuples cp of lcp buf cmsq

for all tuples cs of lcs buf cmsq

if dist(cs.loc, cp.loc) � 5 and clsd

cs.img id = cp.img id then

pi tuple t of physical images such that

t.img id = lis.img id caf(pi id) + cr(pi)

Display pi.raw

endif

endfor

endfor

endwhile

endwhile

Plan P2AA Search for picnic tuples and scenic view tuples using the spatial index on fv. For
each picnic tuple, check all scenic view tuples to determine which ones are within the speci�ed
distance.

cds first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

cdp first tuple t of cl sem such that

t.semant � \picnic" caf(cl sem)

cp tuple of classes corresponding to cdp.tid cr(cl)

lcp first tuple t of li fv such that

t.fv is the NN and within MD of cp.fv cfsf(li fv)

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 34

create temporary memory-resident relations lcp buf and lcs buf

while lcp 6= ERROR do

i 0

while i < BS and lcp 6= ERROR do

lip tuple of logical images corresponding to lcp.tid cr(li)

insert lip into lcp buf cmi

lcp tuple t of li fv such that

t.fv is the next NN and within MD of cp.fv cfsn(li fv)

i i + 1

endwhile

lcs first tuple t of li fv such that

t.fv is the NN and within MD of cs.fv cfsf(li fv)

while lcs 6= ERROR do

j 0

while j < BS and lcs 6= ERROR do

lis tuple of logical images corresponding to lcs.tid cr(li)

insert lis into lcs buf cmi

lcs tuple t of li fv such that

t.fv is the next NN and within MD of cs.fv cfsn(li fv)

j j + 1

endwhile

for all tuples cp of lcp buf cmsq

for all tuples cs of lcs buf cmsq

if dist(cs.loc, cp.loc) � 5 and clsd

cs.img id = cp.img id then

pi tuple t of physical images such that

t.img id = lis.img id caf(pi id) + cr(pi)

Display pi.raw

endif

endfor

endfor

endwhile

endwhile

Plan P2BC : Search for picnic tuples using an alphanumeric index on class and search for scenic
view tuples using a spatial index on loc.

cds first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

cdp first tuple t of cl sem such that

t.semant � \picnic" caf(cl sem)

cp tuple of classes corresponding to cdp.tid cr(cl)

lc first tuple t of li cl such that t.class � cp.name caf(li cl)

while lc 6= ERROR and lc.class = cp.name do

lip tuple of logical images corresponding to lc.tid cr(li)

ll tuple t of li loc such that

t.loc is the NN and within 5 of lip.loc clsf(li loc)

while ll 6= ERROR do

lis tuple of logical images corresponding to ll.tid cr(li)

if lis.class = cs.name and lis.img id = lip.img id then csc

pi tuple t of physical images such that

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 35

t.img id = lip.img id caf(li id) + cr(pi)

Display pi.raw

endif

ll tuple t of li loc such that

t.loc is the next NN and within 5 of lip.loc clsn(li loc)

endwhile

lc next tuple of li cl in alphabetic order can(li cl)

endwhile

Plan P2BA Search for picnic tuples using spatial index on fv and search for scenic view tuples
using a spatial index on loc.

cds first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

cdp first tuple t of cl sem such that

t.semant � \picnic" caf(cl sem)

cp tuple of classes corresponding to cdp.tid cr(cl)

lc first tuple t of li fv such that

t.fv is the NN and within MD of cp.fv cfsf(li fv)

while lc 6= ERROR do

lip tuple of logical images corresponding to lc.tid cr(li)

ll tuple t of li loc such that

t.loc is the NN and within 5 of lip.loc clsf(li loc)

while ll 6= ERROR do

lis tuple of logical images corresponding to ll.tid cr(li)

if wdist(lis.fv,cs.fv) � MD and lis.img id = lip.img id then cfsd

pi tuple t of physical images such that

t.img id = lip.img id caf(pi id) + cr(pi)

Display pi.raw

endif

ll tuple t of li loc such that

t.loc is the next NN and within 5 of lip.loc clsn(li loc)

endwhile

lc tuple t of li fv such that

t.fv is the next NN and within MD of cp.fv cfsn(li fv)

endwhile

Plan P2CC Search for \scenic view" tuples using the alphanumeric index on class. Build a
temporary spatial index on the loc attribute of these tuples. Search for \picnic" tuples using
the alphanumeric index on class, and search for \scenic view" tuples using the temporary
spatial index on loc.

cds first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

cdp first tuple t of cl sem such that

t.semant � \picnic" caf(cl sem)

cp tuple of classes corresponding to cdp.tid cr(cl)

create a PMR quad tree for points tmp loc

having the same properties as li loc clsc

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 36

lc first tuple t of li cl such that t.class � cs.name caf(li cl)

while lc 6= ERROR and lc.class = cs.name do

lip tuple of logical images corresponding to lc.tid cr(li)

insert lip.loc into tmp loc clsi(tmp loc)

lc next tuple of li cl in alphabetic order can(li cl)

endwhile

lc first tuple t of li cl such that t.class � cp.name caf(li cl)

while lc 6= ERROR and lc.class = cp.name do

lip tuple of logical images corresponding to lc.tid cr(li)

ll tuple t of tmp loc such that

t.loc is the NN and within 5 of lip.loc clsf(tmp loc)

while ll 6= ERROR do

lis tuple of logical images corresponding to ll.tid cr(li)

if lis.img id = lip.img id then

pi tuple t of physical images such that

t.img id = lip.img id caf(pi id) + cr(pi)

Display pi.raw

endif

ll tuple t of tmp loc such that

t.loc is the next NN and within 5 of lip.loc clsn(tmp loc)

endwhile

lc next tuple of li cl in alphabetic order can(li cl)

endwhile

Plan P2CA Search for \scenic view" tuples using a spatial index on fv. Build a temporary spatial
index on the loc attribute of these tuples. Search for \picnic" tuples using the spatial index
on fv, and search for \scenic view" tuples using the temporary spatial index on loc.

cds first tuple t of cl sem such that

t.semant � \scenic view" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

cdp first tuple t of cl sem such that

t.semant � \picnic" caf(cl sem)

cp tuple of classes corresponding to cdp.tid cr(cl)

create a PMR quad tree for points tmp loc

having the same properties as li loc clsc

lc first tuple t of li fv such that

t.fv is the NN and within MD of cs.fv cfsf(li fv)

while lc 6= ERROR do

lip tuple of logical images corresponding to lc.tid cr(li)

insert lip.loc into tmp loc clsi(tmp loc)

lc tuple t of li fv such that

t.fv is the next NN and within MD of cs.fv cfsn(li fv)

endwhile

lc first tuple t of li fv such that

t.fv is the NN and within MD of cp.fv cfsf(li fv)

while lc 6= ERROR do

lip tuple of logical images corresponding to lc.tid cr(li)

ll tuple t of tmp loc such that

t.loc is the NN and within 5 of lip.loc clsf(tmp loc)

while ll 6= ERROR do

lis tuple of logical images corresponding to ll.tid cr(li)

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 37

if lis.img id = lip.img id then

pi tuple t of physical images such that

t.img id = lip.img id caf(pi id) + cr(pi)

Display pi.raw

endif

ll tuple t of tmp loc such that

t.loc is the next NN and within 5 of lip.loc clsn(tmp loc)

endwhile

lc tuple t of li fv such that

t.fv is the next NN and within MD of cp.fv cfsn(li fv)

endwhile

Plan P3C Search for site of interest tuples using an alphanumeric index on class and search for
points in the given range using a spatial index on loc.

cds first tuple t of cl sem such that

t.semant � \site of interest" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

lc first tuple t of li cl such that t.class � cs.name caf(li cl)

while lc 6= ERROR and lc.class = cs.name do

lis tuple of logical images corresponding to lc.tid cr(li)

ll first tuple t of li loc such that

t.loc is the NN and within 2 of lis.loc clsf(li loc)

while ll 6= ERROR do

lic tuple of logical images corresponding to ll.tid cr(li)

if lic.img id = lis.img id then

pi tuple t of physical images such that

t.img id = lic.img id caf(pi id) + cr(pi)

cd tuple t of classes such that

t.name = lic.class caf(cl name) + cr(cl)

Display pi.raw, Print cd.semant

endif

ll tuple t of li loc such that

t.loc is the next NN and within 2 of lis.loc clsn(li loc)

endwhile

lc next tuple of li cl in alphabetic order can(li cl)

endwhile

Plan P3A Search for site of interest tuples using a spatial index on fv and search for points in
given range using a spatial index on loc.

cds first tuple t of cl sem such that

t.semant � \site of interest" caf(cl sem)

cs tuple of classes corresponding to cds.tid cr(cl)

lc first tuple t of li fv such that

t.fv is the NN and within MD of cs.fv cfsf(li fv)

while lc 6= ERROR do

lis tuple of logical images corresponding to lc.tid cr(li)

ll first tuple t of li loc such that

t.loc is the NN and within 2 of lis.loc clsf(li loc)

while ll 6= ERROR do

VLDB Journal, Volume 7, No. 4, pp. 253-274, December 1998. 38

lic tuple of logical images corresponding to ll.tid cr(li)

if lic.img id = lis.img id then

cd tuple t of classes such that

t.fv is the NN and within MD of lic.fv cfsf(cl fv) + cr(cl)

if cd 6= ERROR then

pi tuple t of physical images such that

t.img id = lic.img id caf(pi id) + cr(pi)

Display pi.raw, Print cd.semant

endif

endif

ll tuple t of li loc such that

t.loc is the next NN and within 2 of lis.loc clsn(li loc)

endwhile

lc tuple t of li fv such that

t.fv is the next NN and within MD of cs.fv cfsn(li fv)

endwhile

