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ABSTRACT
An index is devised to support position-independent search
for images containing quartets of icons. Point quartets ex-
ist that do not unambiguously map to quadrilaterals, how-
ever, four points do unambiguously determine a set of six
interpoint line segments. Values for the “size”, “shape”, and
“orientation” attributes of an icon quartet can be derived
as functions of this interpoint line set, and can be used to
construct a point-based index, in which each point quar-
tet maps to a single point in the resulting hyperdimensional
index space. Orientation can be represented by a single,
spatially closed dimension. However, assignment of a ref-
erence direction for quartets possessing a k-fold rotational
symmetry presents a significant challenge. Methods are de-
scribed for determining shape and orientation attributes for
point quartets, and for mapping these attributes onto a set
of attribute axes to form a combined index. The orientation
computation supplies, as a byproduct, one component of the
shape attribute. All attributes are continuous with respect
to small variations in the indexed point quartets.

1. INTRODUCTION
Given a set of n pointlike objects, we are interested in

constructing an index that can capture that set’s spatial in-
terrelationships, so as to facilitate retrieval of similar sets in
a position, scale, and orientationally independent manner.
Position-independent search for arrangements of point-like
objects has also been investigated within the context of as-
trometry [6, 3, 4]. Previous work [1, 2] examined this ques-
tion for the cases n = 2 and n = 3. This paper extends
the analysis to the case n = 4, which leads to a number of
interesting issues..

The search algorithms to be described here use a point-
based indexing method [5, Page 1], which operates by map-
ping each of the objects to be indexed into a single point
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within a multidimensional index space, with each dimension
of that space representing a separable attribute of the ob-
ject. For point configurations such attributes might include
absolute spatial position, size, “shape”, and spatial orienta-
tion. We choose to define shape as that which remains when
size and orientation have been removed.

2. INDEXES AND HASHING
In a point-based index, members of the set of objects to

be indexed are mapped by an indexing function into points
of a multidimensional index space. Ideally this mapping
would be one-to-one; that is, two different objects would
never map to the same point. Relaxation of this constraint
results in hashing; the case where two different objects map
to the same index point is called a hash collision (it is equally
valid to view hashing as the general process, and to refer to
the ideal case as perfect hashing).

A false positive is the penalty for a hash collision. A tar-
get object is used to determine an index space point, but
some database objects indexed in the vicinity of this tar-
get point (in the same hash bucket) are not similar to the
target object. When appropriate filtering is used to weed
out false positives, the only effect hash collisions cause in a
database search application is the degradation of response
time, caused by both the increased amount of data retrieved
from external storage and the added costs of the filtering
process itself.

The goal of similarity search is to find an object similar to
(but not necessarily identical to) a target object. To support
similarity search, an indexing function must be mathemati-
cally continuous—that is, objects that are “similar to” each
other must map to proximate points in the index space.

In some cases these goals of one-to-one and continuous
mapping are mutually exclusive. For example, in order to
ensure continuity in the regions corresponding to symmet-
ric collinear point triples, the indexes described in [2] map
mirror image triangles into the same index space point. For
the case of four or more points, the configuration space is
of a much higher dimensionality, and continuous one-to-one
mappings between spaces of differing dimensionality are not
possible. In such cases, it may be necessary to tolerate the
degradation of response time caused by relaxation of the
one-to-one requirement for the index function.

3. EMERGENT PROPERTIES
It is well known that when attempts are made to gener-

alize based on a known case, complications (termed emer-
gent properties) not previously present sometimes arise. An
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Figure 1: Non-convexity

example of such a complication is the emergence of non-
Abelian properties in the group of rotations in k-dimensional
space when k increases from 2 to 3. Thus it is not surprising
that several such complications arise when generalizing from
point triples to point quartets. For example, the four points
may be non-coplanar, or may fail to unambiguously deter-
mine a convex quadrilateral. Moreover, even if a quadri-
lateral is determined, it will generally be non-rigid, and in
some cases may scale in non-isotropic ways.

With the exception of the one special case of collinear
points (which has been suitably handled in [2]), configura-
tions of three points uniquely determine triangles, which are
always convex. However, configurations of four points fall
into two distinct classes. In particular, the convex hull of the
four points may contain all four points, as in Figure 1(a),
in which case a convex quadrilateral is uniquely determined.
Alternatively, as in Figure 1(b), it may be the case that
the convex hull contains only three of the points, with the
fourth point being interior to the triangle formed by the
other three points, and in this case, an unambiguous defi-
nition of a traditional quadrilateral is not possible, as there
are three equally valid possibilities, shown in Figure 1(c),
(d), and (e). Furthermore, regardless of which of the three
possibilities is selected, the resulting quadrilateral will fail
to be convex.

In all cases, a set of six interpoint lines (as shown in Fig-
ure 1(f)) is determined. However, in the case where the
fourth point is interior to the triangle, it is not possible to
partition these six line segments into a set of four “sides”
and a set of two “diagonals”.

A quadrilateral (or other higher-order polygon) is in gen-
eral not rigid. Even if the side lengths are completely de-
termined, there remain unconstrained degrees of freedom.
Loosely, the quadrilateral can be said to “flop around”.

Another interesting emergent property is that in many
cases the shape of a quadrilateral is not completely deter-
mined by the set of vertex angles. In particular, whenever
two (necessarily opposite) sides of a quadrilateral are paral-
lel, the set of side lengths is not constrained by the vertex
angles, but can vary anisotropically. We call such behavior
“tromboning”.

Figure 2 shows three figures with identical vertex angles
but different shapes. The equivalence of the corresponding
angles can be seen by observing that each figure consists
of an inner rectangle flanked by a pair of congruent 3-4-5
right triangles (the dotted-line altitude delimits the bound-
ary of one such triangle). Thus the doubly-slashed angle is
arctan 4

3
or approximately 53.13◦. This example has been

constructed so that the three figures have equal perimeters
(52). While this will not generally be true, it does demon-
strate the existence of cases where the perimeter fails to
distinguish the shapes.

4. SIZE
There are a number of different ways to characterize a

configuration’s size. One would be to sum the lengths of the
six interpoint line segments. In many index designs the size
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Figure 2: Non-isotropic Scaling

15

(15,12,13)
(a)

12

10 10

12
(14,?,14)

(b)

14

12

13

(15,10,13)
(c)

10

13 14 15

10

14

12

10

14

1214 14

(14,14,12) (14,14,12)
(e)(d)

Figure 3: Anomalies in side length characterization

attribute will be the only unbounded one. Orientation is
inherently limited to 360◦, and shape can be defined using a
set of bounded measures. While the application domain of
the index may impose an independent limit on the maximum
size configuration to be indexed (and thus the maximum
value of the size attribute), the size attribute is the only one
that is inherently unbounded.

5. SHAPE
In this section we analyze the concept of the “shape” of a

configuration of four points, by first examining the case of
a traditional convex quadrilateral, and then extending the
analysis to the more general case.

As we have seen, the abstract shape of a traditional quadri-
lateral cannot (due to non-rigidity) be unambiguously char-
acterized by a set of side lengths, nor (due to tromboning)
can it always be unambiguously characterized by a set of
vertex angles. Therefore, the values for a shape attribute
must be derived from a combination of both side lengths
and vertex angles.

To accommodate uniform scaling, the perimeter of the
quadrilateral is normalized (say to 1), with the normaliza-
tion factor becoming one of the index attributes. Equiva-
lently, the “size” of the quadrilateral becomes one axis of the
index space. After this normalization, any three side lengths
unambiguously determine the length of the fourth side.

The method of organizing the set of side lengths also af-
fects the continuity of the index (recall the definition of con-
tinuity in Section 2). Figure 3(a–c) shows the results of an
attempt to characterize the side lengths starting with the
longest side and proceeding clockwise (note that in spaces
of more than 2 dimensions even the notion of “clockwise”
breaks down). When the longest side is unambiguous (cases
(a) and (c)), the ordering of the lengths is well defined, but
at the seam (b) where two sides are nearly the same length,
continuity from both directions cannot be obtained.

One way to avoid this discontinuity is to construct the
index based on the sorted set of side lengths, irrespective
of their relative position in the quadrilateral, as shown in
Figure 3(d,e). While this method avoids the discontinuity
described above, it does introduce the possibility for addi-
tional hash collisions. In particular, this demonstrates that
two very different shapes can generate the same sorted set
of side lengths, and so would collide on this coordinate of a
point-based index.

One vertex angle is also required to complete the shape
characterization. This can be the largest (or the smallest)
of the vertex angles. Although choosing the largest angle,
regardless of its geometric relationship to the sides, gener-
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Figure 4: Degrees of Freedom (2-D Space)

ates the same kind of ambiguity as does a histogram of the
side lengths, it does assure continuity of the index function
at seams where the geometric position of the largest angle
suddenly shifts.

As discussed in Section 3, when the four points do not all
lie on their mutual convex hull (as in Figure 1(b)), it is not
possible to unambiguously define a traditional quadrilateral.
But for any arbitrary configuration of four distinct points,
the six interpoint distances (Figure 1(f)) are well defined
(and nonzero), and thus could be used to construct an alter-
native shape component of an index. Shape changes that for
a traditional quadrilateral would be described as “flopping”
also change the lengths of the diagonals, thereby allowing
a shape index to be defined based on lengths only, without
requiring the consideration of vertex angles.

Figure 4 contains an analysis of the degrees of freedom
that are involved in the characterization of the“shape”of ar-
bitrary planar configurations of n points, and demonstrates
that it is inherently 2n − 4 dimensional. This can be seen
by observing that each of the n points in the configuration
introduces two degrees of freedom, in the form of x and y

coordinates. Two degrees of freedom are subsumed by the
absolute spatial position of the configuration as a whole (e.g.,
the x and y coordinates of the center of gravity), one degree
of freedom is subsumed in uniform scaling, and one in ro-
tation (e.g., orientation) in the plane. For example, the six
initial degrees of freedom of a trio of points (e.g., a triangle),
are reduced to two inherent shape dimensions. This makes
sense, as the “shape” of a triangle is completely determined
by two vertex angles, or (given a normalized perimeter) by
two side lengths (rigidity was discussed in Section 3).

From this analysis, as the shape space for configurations
of four points is inherently four-dimensional, the shape com-
ponent of a point-based index could be based on any of a
number of schemes such as the largest four of the six inter-
point distances, the largest two and the smallest two, etc.
Monte Carlo experiments could investigate the performance
of these schemes under differing data distribution statistics.

Note that for a collinear configuration the length of the
longest segment (between the two extremal points) remains
unchanged as the positions of the interior points vary. Thus,
in order to fully utilize the shape variety of such configura-
tions, the technique chosen to derive the shape attribute
should ensure that segments other than the longest segment
are included.

As we shall see in the next section, use of an “orienta-
tion” attribute can also contribute a component to the set
of “shape” attributes.

6. ORIENTATION
While rotation in a plane involves only a single degree of

freedom, determining a reference direction for an arbitrary
point quartet is not straightforward. The method described
in this section for deriving a value for the orientation at-
tribute is based on the concept of an eccentricity vector.
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Figure 5: Mapping a line segment in π-space
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Figure 6: Point quartet with six lines

Intuitively, our aim is to capture a measure of the devia-
tion of a given configuration from a symmetric one. When
the vector is nonzero, its direction component provides an
absolute value for the “orientation” of the configuration.

The ambiguity associated with defining the direction of a
line segment can be removed by mapping the length and di-
rection of the line onto a space in which a rotation through
180◦ leaves the direction invariant. Mapping a line segment
as a vector in such a π-space is equivalent to moving one
endpoint to the origin and doubling the angle corresponding
to its slope. The mathematics involved follow directly from
the classical double-angle formulas. This can be seen with
the aid of Figure 5. Substituting the double-angle formu-
las sin 2α = 2 sin α cos α and cos 2α = cos2 α − sin2 α and
simplifying yields:

x′ =
∆x2

− ∆y2

�
∆x2 + ∆y2

y′ =
2∆x∆y�
∆x2 + ∆y2

(1)

Note that reversal of the direction of the line segment (corre-
sponding to the negation of both ∆x and ∆y) leaves Equa-
tion 1 unchanged, as the two negations cancel out in the
numerator of the y′ term and all other appearances of ∆x

and ∆y are squared. In this method, angles were multiplied
by two in order to accommodate a two-way rotational sym-
metry. The general technique of multiplication of the angle
by k to accommodate a k-way rotational symmetry is called
normalization, and is beyond the scope of this paper.

In order to accommodate the cases where a point quartet
does not correspond to a classical convex quadrilateral, the
six interpoint lines can be mapped into π-space and summed,
to yield a π-measure for the rotation of the quartet. As a
concrete example, Figure 6 shows a quartet of points that
actually does form a classical quadrilateral, with the six in-
terpoint lines mapped into π-space, and the resulting sum
computed using Equation 1.

The use of this approach to define a reference direction
may fail when the quartet possesses a k-fold rotational sym-
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Figure 7: Rotational symmetry

metry. For example, consider Figure 7(a), where three points
are arranged at the vertices of an equilateral triangle and a
fourth point is located at the center. This figure possesses a
3-fold rotational symmetry. Figure 7(b) shows the result of
mapping the six interpoint lines in π space and we see that
the vector sum in this space is zero, which means that in
this case no reference direction is determined.

As another example, consider Figure 7(c) where four points
are arranged at the corners of a square. This figure possesses
a 4-fold rotational symmetry. In Figure 7(d) the six inter-
point lines are mapped into π space, and again, the vector
sum is zero (as a convention, dashed lines indicate vectors
drawn off-origin for clarity). However, in the case of a figure
with two-fold rotational symmetry (e.g., Figure 7(e)) the π

space vector sum (f) is non-zero. Thus this scheme does
allow the definition of reference direction for figures with a
two-fold rotational symmetry.

In general, recall from Figure 4 the configuration space
of point quartets is inherently four-dimensional, and these
methods map it to a two-dimensional (polar coordinate)
space. Those shapes which map to the polar origin con-
stitute the kernel of this mapping, and the Rank-nullity
Theorem can be used to show that the dimensionality of
this kernel is two. Thus the shapes which result in a zero
eccentricity vector form some two-dimensional subspace of
the four-dimensional shape space.

The choice of eccentricity vector used in any particular in-
dex should be influenced by the statistical properties of the
expected data. Symmetric configurations have the potential
of generating a zero eccentricity vector. We want to to make
sure that whatever eccentricity vector method that we use
generates a zero vector only for configurations (symmetric
and non-symmetric) that are not frequently expected. The
reason for doing so is to avoid the loss of orientational se-
lectivity for frequently encountered configurations that is a
consequence of mapping such configurations to the axis of a
cylindrical index space. This is described in Section 7.

7. INDEX CONSTRUCTION
After determining the shape and orientation methods to

be used, the attribute axes must be integrated into an index
space. As the orientation attribute is inherently circular, it
is natural to use some form of polar coordinates, as in the in-
dex spaces described in [2], which are structured as the pro-
jection of a set of polar coordinates into a four-dimensional
hypercylinder. This scheme can be extended quite naturally
to configurations of four or more points.

For each indexed configuration, the value of the eccentric-
ity vector determines both the angular and radial polar co-
ordinates. The magnitude of the eccentricity vector is used

as one component of a basis for the shape space. 2n−5 other
basis components (to be selected as described in Section 5),
in addition to one size component, become the linear axes
of the hypercylindrical index space.

The drawback of this scheme is that all configurations for
which the eccentricity vector is zero are mapped to points
along the hypercylinder axis, and no information on their
orientation will be represented in the index.

8. CONCLUDING REMARKS
A point-based index for four-point configurations can be

constructed with attributes axes for size, “shape”, and ori-
entation. Although orientation-independent search for point
configurations can be supported by an index based only on
size and shape, extending the index structure by adding a
closed (e.g., circular) orientation axis requires some method
to determine an orientation attribute value for each config-
uration. A method was presented for deriving an “eccentric-
ity vector” that represents the deviation of the configuration
from a symmetrical one. Using direction component of this
vector as the orientation attribute value and the magnitude
component as one element of the “shape” attribute value,
configurations can be mapped into a hypercylindrical index
space. However, there exists a set of pathological configu-
rations which result in computation of a zero-length eccen-
tricity vector. Such configurations map to the central axis
of the cylindrical hyperspace, and the index will not exhibit
orientational selectivity with respect to them. For applica-
tions that expect to index large numbers of such figures, the
technique of rotation attribute normalization can be used,
at the cost of a severe reduction in orientational selectivity
for all indexed configurations.
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