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Abstract 
 

In this paper we present a new model for 
instrumenting a process on the fly.  We describe a 
command line tool developed by our research group 
based on our instrumentation library, Dyninst.  With 
this model the user no longer needs to have a full set 
of mutations planned out ahead of time.  The 
command line interface allows the user to mutate a 
process, gather data, and generate new mutations 
while the mutatee is running.  This model effectively 
allows the user to put off most of the decisions about 
what mutations to insert into a mutatee until run-time, 
and allows the user to take a more active role in 
analyzing the data that comes back from the mutatee. 
 
1. Introduction 
 

The normal cycle of developing a program is to 
edit source code, compile it, and then execute the 
resulting binary. However, sometimes this cycle can 
be too restrictive. We may wish to change the 
program while it is executing, and not have to re-
compile, re-link, or even re-execute the program to 
change the binary. At first thought, this may seem like 
a bizarre goal, however there are several practical 
reasons we may wish to have such a system. Runtime 
code changes, through dynamic instrumentation, are 
useful to support a variety of applications including 
debugging, performance monitoring, and application 
steering.  Another key to this technique is that access 
to the source code of the program to be instrumented 
is not needed. 

The Dyninst library provides users with a platform 
independent API to permit the insertion of code into a 
running program [2,6].  The traditional usage of this 
library has been for the user to write a mutator 
program that will attach to a running process, a 
mutatee, and insert and remove instrumentation code 
as necessary.  The user needs to change only the 
mutator to change the instrumentation code and rerun 
the mutatee/mutator pair.  However, this model still 
has shortcomings.  The space of possible mutations 
and how they can be applied must be decided when 
the mutator is built.  The user can write a shared 
library containing code to be run from instrumentation 
and load it into the mutatee's address space using 
Dyninst, but how that instrumentation is applied is 
still a build time decision.   

In order to push decisions about instrumentation 
off completely until runtime, the user would have to 
explicitly make the mutator interactive to allow the 
user to guide the instrumentation by hand.  Even then 
the user is limited to the instrumentation code 
available in the mutator. 

 
2. DyninstAPI 

 
The result of inserting instrumentation code is 

shown in Figure 1.  To instrument a point in a 
program, an instruction in the text section is replaced 
with a jump to a base trampoline.  The base 
trampoline contains a jump to a mini-trampoline and 
space for the replaced instruction.  The mini-
trampoline contains the instructions that perform the 
desired functionality as well as saving and restoring 
registers.  The mini-trampoline can call an existing 
function or run a snippet of code created by Dyninst 
and inserted into the running program.  The base and 
mini trampoline architecture allows many different 
bits of instrumentation (many mini-trampolines) to be 
inserted at the same point in the program, at different 
times.  The overhead of executing instrumentation is 
similar to a function call and depends on how 
efficiently registers can be saved and restored during 
execution. 

 
3. Command Line Instrumentation 
 

The model discussed above is such that the user 
builds a mutator that contains a set of mutations that 
may be conditionally inserted into the mutatee.  While 
this model has great advantages over recompiling the 
mutatee to change the instrumentation, it does not fit 
all needs.  In the early phase of a project, the user may 
not know what to expect from the instrumentation.  
The data gathered from the mutatee may need to be 
studied before more instrumentation is written. The 
previous model provides no easy way to study the new 
mutatee behavior and produce new instrumentation 
without restarting the mutatee/mutator pair after 
updating the mutator.  Once the mutator is compiled 
the possible set of mutations that can be inserted, and 
how they are inserted, is locked in.  This is acceptable 
for short running mutatees or programs that do not 
require a long “warm-up” period.  Mutatees that take 
even 30 minutes to warm up could present a problem 
in the early phase of the project as the user tries to 



Figure 1: Detailed View of Instrumentation Code 

understand exactly what type of instrumentation is 
needed.   

Instrumenting code from the command line as the 
mutatee runs is a more effective model for the user 
does not want to restart often.  Allowing the user to 
look at the data that comes back from the mutatee and 
then decide what type of mutations need to be inserted 
can be very helpful.  The user can then take a more 
active role in analyzing the data returned from the 
mutatee and more easily deal with new and 
unexplored situations.  It could very well be the case 
that the user may want to use this model the first few 
times mutations are inserted into a mutatee, to get a 
feel for the behavior of the mutatee and determine 
what data needs to be collected and how, before 
compiling the mutations into the more rigid form of a 
mutator.  Just as the user does not want to recompile 
an application to insert instrumentation, the user may 
not want to restart an application to insert fresh 
instrumentation. 

 
4. Dyner 
 

Our research group has produced Dyner, a TCL-
based interactive command line tool, to give the user a 
command line interface for instrumenting a program 
[5]. This allows the user to apply the model described 
above to instrument code.   Dyner provides full access 
to Dyninst functionality and has a few macros defined 
for common tasks, such as function tracing or 
counting function executions for performance 
measurement.  From the command line the user can 
declare variables in the mutatee, load shared libraries 
in the mutatee, instrument functions and save the 
mutated binary back to a runnable executable file on 
disk.   Dyner also provides the user with the 
functionality necessary to attach to an already running 
process or to launch a process from an executable to 
instrument. 

Dyner provides functionality to instrument various 
predefined points in a function, the entry and exit 
points, as well as to instrument a particular line in a 
source file. Breakpoints inserted with Dyner can be 
predicated by logic written at the command line in C 
like code.  Dyner parses the input statements and then 
generates code that is inserted into the mutatee. Local 
and global variables, and functions declared in the 
mutatee can be used in the statements.  Moreover, 
variables declared with Dyner can be included in the 
statements. 

Dyner has some exploratory functionality as well. 
This allows the user to inspect the running process 
before doing any instrumentation.  These functions 
% declare int foo_counter; 
 
% break foo exit { foo_counter>5; }
 
% at foo entry { foo_counter ++; } 

Figure 2 Dyner Commands 

allow the user to interactively learn about an 
unfamiliar executable. The show command in 
particular, can be used to retrieve a list of variables, 
functions or modules from the process, with options to 
restrict the command to a particular function or 
module.  The whatis command allows the user to 
retrieve detailed information about functions or 
variables in the mutatee.  For variables, the retrieved 
information includes the type, scope, line number and 
frame.  The find function command will display type 
information regarding a function in the mutatee. 

Dyner also support batch script files and includes a 
source command to run them.  The user can write 
scripts of Dyner commands and run them from within 
Dyner.  This allows the user to easily and reliably 
repeat common tasks. 

Dyner also allows the user to interrupt the mutatee 
at any time.  Once the mutatee arrives at a spot 
deemed safe by Dyninst it is paused and the user can 
modify instrumentation, inspect variables or load a 
shared library into the mutatee.  This gives the user 
full interactive control over the mutatee. 

Figure 2 shows the Dyner commands to declare a 
variable in the mutatee’s address space, insert a 
conditional breakpoint, and insert code at a function’s 
entry point. 

 
5. Examples 
 

There are a number of possible uses for command 
line instrumentation of processes.  Not only does this 
model allow the user to analyze and respond to data 
produced by the mutatee, but instrumentation code, as 
in the case when using a regular mutator, runs with 
very little overhead once it has been inserted. A 
number of specific examples where this model may be 
useful follow. 
 
5.1 Conditional Breakpoints   
 

One of the tasks gdb [3] is very slow at is 
conditional breakpoints.  This requires gdb to insert a 
regular breakpoint and catch it each time it runs to 
check the condition.  If gdb determines that the 
condition is true the breakpoint is passed on to the 
user.  With a system like Dyner, the user can merely 
insert a breakpoint guarded by a conditional into the 
mutatee and allow the mutatee to run.  Once the 
condition is met the breakpoint will fire and control 
kicks back to Dyner.  The user could then investigate 
the variables in the current function or insert or run 
instrumentation.  The key to this is that all the code 
executes in the mutatee's memory space until the 
breakpoint actually occurs.  There is not a periodic 



context switch back to the mutator, making Dyner 
much faster than gdb for this task. 
 
5.2 Interactive Debugging 
 

There is a class of security applications that 
monitor the execution of processes for anomalous 
behavior.  The control flow of a program is one type 
of behavior that is monitored [4].   Observing a 
program deviating from expected behavior could be a 
sign of a buffer overflow attack or format string 
attack.  Either attack can have the effect of causing the 
program to execute malicious code injected as part of 
the attack.  This may manifest as the program taking 
an unexpected control flow path during execution.  

Debugging security applications meant to detect 
these types of attacks requires the tester to have an 
executable behave in anomalous ways, on demand.  A 
full-blown mutator produced with Dyninst could 
attach to a target process and modify it in such a way 
as to trigger a security violation.  However, being able 
to interactively cause the target program to behave 
anomalously can make debugging a bit easier.  As the 
security application is interactively debugged, it can 
be quite helpful to have interactive control over the 
violations raised by the target program. 
 
5.3 Exploratory Instrumentation 
 

If the user is instrumenting a program for the first 
time, with the goal of performance measurement or 
program steering, the final set of mutations may not 
be known when the mutator is written.  In the case of 
performance measurement to find a bottleneck, the 
user may need to experiment with the instrumentation, 
being guided by previous results when changing the 
instrumentation.  The first set of mutations may 
collect data at a very high level.  The entry point to 
each subsystem may be instrumented to determine 
how much time is spent in each.  Once the user has 
data describing which subsystems account for most of 
the runtime, the user can remove the high level 
instrumentation and insert some more fine-grained 
instrumentation in the time consuming subsystems.   
The user can further hone down the cause of the 
bottleneck by looking at the algorithm run time and 
data structure access time. 

The type of instrumentation needed at the lowest 
level may depend on the algorithms and data 
structures being used.  The original model of running 
a compiled mutator and mutating a program could be 
quite inefficient for this exploratory task.  Since a 
large system may have many different types of 
algorithms and data structures the user would need to 
write instrumentation for each of these before it is 
known which one is likely producing the bottleneck.  
Alternatively, the user could go through a number of 
cycles of building a mutator, gathering data and 
rebuilding the mutator.  As previously noted, this may 
work for short running mutatees.  Long running 
mutatees or mutatees that need a significant amount of 
time to warm up could present a problem. 

Using an interactive instrumentation tool like 
Dyner allows the user to insert and remove 
instrumentation as the need arises.  The user can insert 
instrumentation at a high level, let the application run 
and then check the gathered data.  Using this data, the 
user can remove the previous instrumentation and 
insert instrumentation at a lower level as needed.   
This cycle can continue, until the user has discovered 
the source of the bottleneck. 

The advantages to using Dyner are clear.  The user 
saves the overhead of restarting the application for 
each cycle.  In order to not restart the application 
using a traditional mutator, the user would have to be 
able to plan out all possible instrumentation code that 
could be needed, and exactly what conditions should 
trigger its use. This could be a large amount of 
instrumentation to write, with most of it possibly 
going unused.  With an interactive mutator like Dyner, 
the user can write some instrumentation, review some 
data, and write some more instrumentation. 

 
6. Related Work 

 
The underlying mechanism used by Dyner to 

instrument a process, as noted above, is Dyninst [2].  
Dyninst is a general-purpose runtime instrumentation 
library.  While Dyninst is similar to binary editing 
tools such as ATOM [10], EEL [7] or ETCH [8] (and 
in fact Dyninst does have binary editing capabilities) 
it is more akin to tools such as Vulcan [9] and (to a 
lesser extent) Dynamo [1] that allow the user to 
instrument a running process on the fly.  ATOM, EEL 
and ETCH all operate directly on the binary 
executable file offline before execution begins.  
Vulcan provides the user the ability to either 
instrument the binary executable offline or the process 
image while the executable is running.  Dynamo acts 
as an interpreter for the executable file and 
instruments the instruction stream it is working with 
when necessary to perform dynamic optimizations. 

The main difference between Dyner and all the 
systems mentioned here is that the user, while the 
executable is running, can create, insert and remove 
instrumentation code.  The user can literally sit at the 
keyboard and write code and insert it into the process 
while watching the process run.  None of the tools 
discussed here allow that level of interactivity during 
instrumentation. 
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