

Interactive Binary Instrumentation

Chadd C. Williams

Department of Computer Science
University of Maryland

chadd@cs.umd.edu

Jeffrey K. Hollingsworth
Department of Computer Science

University of Maryland
 hollings@cs.umd.edu

Abstract

In this paper we present a new model for
instrumenting a process on the fly. We describe a
command line tool developed by our research group
based on our instrumentation library, Dyninst. With
this model the user no longer needs to have a full set
of mutations planned out ahead of time. The
command line interface allows the user to mutate a
process, gather data, and generate new mutations
while the mutatee is running. This model effectively
allows the user to put off most of the decisions about
what mutations to insert into a mutatee until run-time,
and allows the user to take a more active role in
analyzing the data that comes back from the mutatee.

1. Introduction

The normal cycle of developing a program is to
edit source code, compile it, and then execute the
resulting binary. However, sometimes this cycle can
be too restrictive. We may wish to change the
program while it is executing, and not have to re-
compile, re-link, or even re-execute the program to
change the binary. At first thought, this may seem like
a bizarre goal, however there are several practical
reasons we may wish to have such a system. Runtime
code changes, through dynamic instrumentation, are
useful to support a variety of applications including
debugging, performance monitoring, and application
steering. Another key to this technique is that access
to the source code of the program to be instrumented
is not needed.

The Dyninst library provides users with a platform
independent API to permit the insertion of code into a
running program [2,6]. The traditional usage of this
library has been for the user to write a mutator
program that will attach to a running process, a
mutatee, and insert and remove instrumentation code
as necessary. The user needs to change only the
mutator to change the instrumentation code and rerun
the mutatee/mutator pair. However, this model still
has shortcomings. The space of possible mutations
and how they can be applied must be decided when
the mutator is built. The user can write a shared
library containing code to be run from instrumentation
and load it into the mutatee's address space using
Dyninst, but how that instrumentation is applied is
still a build time decision.

In order to push decisions about instrumentation
off completely until runtime, the user would have to
explicitly make the mutator interactive to allow the
user to guide the instrumentation by hand. Even then
the user is limited to the instrumentation code
available in the mutator.

2. DyninstAPI

The result of inserting instrumentation code is

shown in Figure 1. To instrument a point in a
program, an instruction in the text section is replaced
with a jump to a base trampoline. The base
trampoline contains a jump to a mini-trampoline and
space for the replaced instruction. The mini-
trampoline contains the instructions that perform the
desired functionality as well as saving and restoring
registers. The mini-trampoline can call an existing
function or run a snippet of code created by Dyninst
and inserted into the running program. The base and
mini trampoline architecture allows many different
bits of instrumentation (many mini-trampolines) to be
inserted at the same point in the program, at different
times. The overhead of executing instrumentation is
similar to a function call and depends on how
efficiently registers can be saved and restored during
execution.

3. Command Line Instrumentation

The model discussed above is such that the user
builds a mutator that contains a set of mutations that
may be conditionally inserted into the mutatee. While
this model has great advantages over recompiling the
mutatee to change the instrumentation, it does not fit
all needs. In the early phase of a project, the user may
not know what to expect from the instrumentation.
The data gathered from the mutatee may need to be
studied before more instrumentation is written. The
previous model provides no easy way to study the new
mutatee behavior and produce new instrumentation
without restarting the mutatee/mutator pair after
updating the mutator. Once the mutator is compiled
the possible set of mutations that can be inserted, and
how they are inserted, is locked in. This is acceptable
for short running mutatees or programs that do not
require a long “warm-up” period. Mutatees that take
even 30 minutes to warm up could present a problem
in the early phase of the project as the user tries to

Figure 1: Detailed View of Instrumentation Code

understand exactly what type of instrumentation is
needed.

Instrumenting code from the command line as the
mutatee runs is a more effective model for the user
does not want to restart often. Allowing the user to
look at the data that comes back from the mutatee and
then decide what type of mutations need to be inserted
can be very helpful. The user can then take a more
active role in analyzing the data returned from the
mutatee and more easily deal with new and
unexplored situations. It could very well be the case
that the user may want to use this model the first few
times mutations are inserted into a mutatee, to get a
feel for the behavior of the mutatee and determine
what data needs to be collected and how, before
compiling the mutations into the more rigid form of a
mutator. Just as the user does not want to recompile
an application to insert instrumentation, the user may
not want to restart an application to insert fresh
instrumentation.

4. Dyner

Our research group has produced Dyner, a TCL-
based interactive command line tool, to give the user a
command line interface for instrumenting a program
[5]. This allows the user to apply the model described
above to instrument code. Dyner provides full access
to Dyninst functionality and has a few macros defined
for common tasks, such as function tracing or
counting function executions for performance
measurement. From the command line the user can
declare variables in the mutatee, load shared libraries
in the mutatee, instrument functions and save the
mutated binary back to a runnable executable file on
disk. Dyner also provides the user with the
functionality necessary to attach to an already running
process or to launch a process from an executable to
instrument.

Dyner provides functionality to instrument various
predefined points in a function, the entry and exit
points, as well as to instrument a particular line in a
source file. Breakpoints inserted with Dyner can be
predicated by logic written at the command line in C
like code. Dyner parses the input statements and then
generates code that is inserted into the mutatee. Local
and global variables, and functions declared in the
mutatee can be used in the statements. Moreover,
variables declared with Dyner can be included in the
statements.

Dyner has some exploratory functionality as well.
This allows the user to inspect the running process
before doing any instrumentation. These functions
% declare int foo_counter;

% break foo exit { foo_counter>5; }

% at foo entry { foo_counter ++; }

Figure 2 Dyner Commands

allow the user to interactively learn about an
unfamiliar executable. The show command in
particular, can be used to retrieve a list of variables,
functions or modules from the process, with options to
restrict the command to a particular function or
module. The whatis command allows the user to
retrieve detailed information about functions or
variables in the mutatee. For variables, the retrieved
information includes the type, scope, line number and
frame. The find function command will display type
information regarding a function in the mutatee.

Dyner also support batch script files and includes a
source command to run them. The user can write
scripts of Dyner commands and run them from within
Dyner. This allows the user to easily and reliably
repeat common tasks.

Dyner also allows the user to interrupt the mutatee
at any time. Once the mutatee arrives at a spot
deemed safe by Dyninst it is paused and the user can
modify instrumentation, inspect variables or load a
shared library into the mutatee. This gives the user
full interactive control over the mutatee.

Figure 2 shows the Dyner commands to declare a
variable in the mutatee’s address space, insert a
conditional breakpoint, and insert code at a function’s
entry point.

5. Examples

There are a number of possible uses for command
line instrumentation of processes. Not only does this
model allow the user to analyze and respond to data
produced by the mutatee, but instrumentation code, as
in the case when using a regular mutator, runs with
very little overhead once it has been inserted. A
number of specific examples where this model may be
useful follow.

5.1 Conditional Breakpoints

One of the tasks gdb [3] is very slow at is
conditional breakpoints. This requires gdb to insert a
regular breakpoint and catch it each time it runs to
check the condition. If gdb determines that the
condition is true the breakpoint is passed on to the
user. With a system like Dyner, the user can merely
insert a breakpoint guarded by a conditional into the
mutatee and allow the mutatee to run. Once the
condition is met the breakpoint will fire and control
kicks back to Dyner. The user could then investigate
the variables in the current function or insert or run
instrumentation. The key to this is that all the code
executes in the mutatee's memory space until the
breakpoint actually occurs. There is not a periodic

context switch back to the mutator, making Dyner
much faster than gdb for this task.

5.2 Interactive Debugging

There is a class of security applications that
monitor the execution of processes for anomalous
behavior. The control flow of a program is one type
of behavior that is monitored [4]. Observing a
program deviating from expected behavior could be a
sign of a buffer overflow attack or format string
attack. Either attack can have the effect of causing the
program to execute malicious code injected as part of
the attack. This may manifest as the program taking
an unexpected control flow path during execution.

Debugging security applications meant to detect
these types of attacks requires the tester to have an
executable behave in anomalous ways, on demand. A
full-blown mutator produced with Dyninst could
attach to a target process and modify it in such a way
as to trigger a security violation. However, being able
to interactively cause the target program to behave
anomalously can make debugging a bit easier. As the
security application is interactively debugged, it can
be quite helpful to have interactive control over the
violations raised by the target program.

5.3 Exploratory Instrumentation

If the user is instrumenting a program for the first
time, with the goal of performance measurement or
program steering, the final set of mutations may not
be known when the mutator is written. In the case of
performance measurement to find a bottleneck, the
user may need to experiment with the instrumentation,
being guided by previous results when changing the
instrumentation. The first set of mutations may
collect data at a very high level. The entry point to
each subsystem may be instrumented to determine
how much time is spent in each. Once the user has
data describing which subsystems account for most of
the runtime, the user can remove the high level
instrumentation and insert some more fine-grained
instrumentation in the time consuming subsystems.
The user can further hone down the cause of the
bottleneck by looking at the algorithm run time and
data structure access time.

The type of instrumentation needed at the lowest
level may depend on the algorithms and data
structures being used. The original model of running
a compiled mutator and mutating a program could be
quite inefficient for this exploratory task. Since a
large system may have many different types of
algorithms and data structures the user would need to
write instrumentation for each of these before it is
known which one is likely producing the bottleneck.
Alternatively, the user could go through a number of
cycles of building a mutator, gathering data and
rebuilding the mutator. As previously noted, this may
work for short running mutatees. Long running
mutatees or mutatees that need a significant amount of
time to warm up could present a problem.

Using an interactive instrumentation tool like
Dyner allows the user to insert and remove
instrumentation as the need arises. The user can insert
instrumentation at a high level, let the application run
and then check the gathered data. Using this data, the
user can remove the previous instrumentation and
insert instrumentation at a lower level as needed.
This cycle can continue, until the user has discovered
the source of the bottleneck.

The advantages to using Dyner are clear. The user
saves the overhead of restarting the application for
each cycle. In order to not restart the application
using a traditional mutator, the user would have to be
able to plan out all possible instrumentation code that
could be needed, and exactly what conditions should
trigger its use. This could be a large amount of
instrumentation to write, with most of it possibly
going unused. With an interactive mutator like Dyner,
the user can write some instrumentation, review some
data, and write some more instrumentation.

6. Related Work

The underlying mechanism used by Dyner to

instrument a process, as noted above, is Dyninst [2].
Dyninst is a general-purpose runtime instrumentation
library. While Dyninst is similar to binary editing
tools such as ATOM [10], EEL [7] or ETCH [8] (and
in fact Dyninst does have binary editing capabilities)
it is more akin to tools such as Vulcan [9] and (to a
lesser extent) Dynamo [1] that allow the user to
instrument a running process on the fly. ATOM, EEL
and ETCH all operate directly on the binary
executable file offline before execution begins.
Vulcan provides the user the ability to either
instrument the binary executable offline or the process
image while the executable is running. Dynamo acts
as an interpreter for the executable file and
instruments the instruction stream it is working with
when necessary to perform dynamic optimizations.

The main difference between Dyner and all the
systems mentioned here is that the user, while the
executable is running, can create, insert and remove
instrumentation code. The user can literally sit at the
keyboard and write code and insert it into the process
while watching the process run. None of the tools
discussed here allow that level of interactivity during
instrumentation.

7. Acknowledgements

Dyner has been produced by a number of people

working on the Dyninst and Paradyn projects at both
the University of Maryland and the University of
Wisconsin. This paper is a reflection of their efforts,
as well as of the authors’. We would like to
specifically thank Bryan Buck for his many insightful
comments during the development of this paper.

This work was supported in part by DOE Grants
DE-FG02-93ER25176, DE-FG02-01ER25510, and
DE-CFC02-01ER254489 and NSF award EIA-
0080206.

8. References

[1] Bala, V., Duesterwald, E., Banerjia, S., Dynamo: A

Transparent Dynamic Optimization System, In
Proceedings of Programming Language Design and
Implementation. June 2000.

[2] Buck, B., Hollingsworth, J.K., API for Runtime Code
Patching, Journal of Supercomputing
Applications,2000

[3] GDB, online at http://sources.redhat.com/gdb.
[4] Giffin, J.T., Jha, S., Miller, B.P., Efficient Context-

Sensitive Intrusion Detection, In Proceedings of
Network and Distributed System Security Symposium,
San Diego, California, February 2004.

[5] Hollingsworth, J.K., Altinel, M., Dyner User’s Guide,
http://www.dyninst.org/docs/dynerGuide.v40.pdf, May
2003.

[6] Hollingsworth, J.K., Buck, B., DyninstAPI
Programmer's Guide,
http://www.dyninst.org/docs/dyninstProgGuide.v40.pdf
, May 2003.

[7] Larus, J.R., Schnarr, E., EEL: Machine-Independent
Executable Editing, In Proceedings of Programming
Languages Design and Implementation. June 18-21,
1995.

[8] Romer, T., Voelker, G., Lee, D., Wolman, A., Wong,
W., Levy, H. H., Bershad, B., Instrumentation and
optimization of Win32/Intel executables using Etch, In
Proceedings of the USENIX Windows NT Workshop,
Aug 1997.

[9] Srivastava, A., Edwards, A., Vo., Vulcan: Binary
tranformation in a distributed environment, Microsoft
Technical Report, MSR-TR-2001-50, April 20, 2001.

[10] Srivastava, A., Eustace, A., ATOM: A systen for
Building Customized Program Analysis Tools, In
Proceedings of Programming Language Design and
Implementation. May 1994.

http://sources.redhat.com/gdb

