
Fast N-body Algorithms for Dynamic Problems on the GPU

Qi Hu, Nail A. Gumerov and Ramani Duraiswami, University of Maryland, College Park

{huqi, gumerov, ramani}@umiacs.umd.edu

Fast Multipole Methods

• Approximate evaluation of sum of

potentials (or radial basis functions)

• Functions can be in 1,2,3 or d dimensions

• Reduce cost from O(N2) to O(N (log N + log

ε)) for given error ε

• Many application areas including f

• Astrophysics, Molecular dynamics

• Scattering calculations (Acoustics, EM)

• Partial Differential Equations

• Statistics, Machine Learning

Performance tests

10^4 10^5 10^6
10

-5

10
-4

10
-3

10
-2

Number of Sources

L
2
 e

rr
o

r
in

 G
ra

d
ie

n
t

10
5

10
-1

10
0

10
1

10
2

10
3

10
4

Number of Sources (N)

E
ff

e
ct

iv
e

 G
fl

o
p

s

10
5

10
-2

10
-1

10
0

10
1

10
2

Number of Sources (N)

F
M

M
 R

u
n

 T
im

e
 (

s
)

10
5

10
-6

10
-5

10
-4

10
-3

Number of Sources

L
2
 E

rr
o

r

p= 4 o

p= 8 *

p= 12 }

1. Get S-expansion

coefficients

(directly)

2. Get S-expansion

coefficients from children

(S|S translation)

Level lmax

3. Get R-expansion

coefficients from far neighbors

(S|R translation)

Level 2

4. Get R-expansion

coefficients from far neighbors

(S|R translation)

6. Evaluate R-expansions

(directly)

7. Sum sources

in close neighborhood

(directly)

Start

End

Level lmaxLevel lmax

5. Get R-expansion

coefficients from parents

(R|R translation)

Levels lmax-1,…, 2 Levels 3,…,lmax

1. Get S-expansion

coefficients

(directly)

2. Get S-expansion

coefficients from children

(S|S translation)

Level lmax

3. Get R-expansion

coefficients from far neighbors

(S|R translation)

Level 2

4. Get R-expansion

coefficients from far neighbors

(S|R translation)

6. Evaluate R-expansions

(directly)

7. Sum sources

in close neighborhood

(directly)

Start

End

Level lmaxLevel lmax

5. Get R-expansion

coefficients from parents

(R|R translation)

Levels lmax-1,…, 2 Levels 3,…,lmax

MLFMM
Source Data Hierarchy

N
M

Evaluation Data Hierarchy

Level 2

Level 3
Level 4Level 5

Level 2

Level 3

Level 4 Level 5

S S|S
S|S S|R

R|R
R|R

FMM: A hierarchical algorithm

•Uses data structures (octrees, neighbor lists)

and translation theorems to reduce O(N2) cost

More formal flowchart

References:
1. L. Greengard & V. Rokhlin, “A fast algorithm for

particle simulations,” J. Comput. Phys., 73, 1987,

325-348.

2. N.A. Gumerov & R. Duraiswami. Fast Multipole

Methods for the Helmholtz Equation in Three

Dimensions, Elsevier, 2005.

3. N.A. Gumerov & R. Duraiswami. Fast Multipole

Methods on Graphics Processors, J. Comput.

Phys.,227, 2008, 8290-8313

O(NM) O(N+M)

N M

Straightforward

FMM Data Structures on GPU

• Pack source & receiver data points according to

their max-level box indices in O(n) time (one pass)

on GPU. One point per thread:

• Using CUDA atomic add operation to count

• Adapting scan operation in CUDA SDK to build

boxes bookmark for data points addressing

• Using bookmark to filter empty boxes

• Build neighbor list and neighbor bookmark to

address the data points for the direct sum. One

thread per non-empty receiver box at the max level:

• Double link from neighbor bookmark to neighbor

list then to sorted source data points enable us to

avoid empty box storage

• Adapting scan to build neighbor bookmark

• Data structures for translation are build on the fly:

• For each box of current level, build its non-empty

status and compute its E2 or E4 neighbors. One

box per thread.

• Each thread load pre-computed translation

coefficients for each non-empty box and compute

S|S, S|R or R|R translation.

• All data structures are computed and stored on

GPU without data transfer between host and device

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Number of Sources

T
im

e
 (

s
)

y=ax
2

y=cx

GPU

3D Laplace

y=8
-lmax

dx
2
+ex+8

lmax
f

CPU

Sparse Matrix-Vector Product

smax=320 y=bx

2

3

lmax=4

b/c=300

N Serial CPU (s) GPU(s) Time Ratio

4096 3.51E-02 1.50E-03 23
8192 1.34E-01 2.96E-03 45
16384 5.26E-01 7.50E-03 70
32768 3.22E-01 1.51E-02 21
65536 1.23E+00 2.75E-02 45
131072 4.81E+00 7.13E-02 68
262144 2.75E+00 1.20E-01 23
524288 1.05E+01 2.21E-01 47
1048576 4.10E+01 5.96E-01 69

Sparse mat-vec product

(optimal settings for CPU and GPU)

Other steps of the FMM

• Straigtforward accelerations in range 5-60;

• Effective accelerations for N=106 (taking

into account octree level reduction) in range

30-60;

• Remark: Direct summation (no FMM) can

be accelerated up to 600 times.

The FMM computation results are from [3].

CPU: 2.67 GHz Intel Core 2 extreme QX 7400 (2GB RAM

and one of four CPUs employed).

GPU: NVIDIA GeForce 8800 GTX (peak 330 GFLOPS).

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Number of Sources

L
2

-r
e

la
ti
v
e

 e
rr

o
r

p=4

p=8

p=12

Direct

CPU

GPU

FMM

FMM

FMM

Filled = GPU, Empty = CPU

Error in computations of potential

Overall Performance

Error in computation of large sums on GPU

using direct summation and the FMM

Error computed
over a grid of 729
sampling points,
relative to “exact”
solution, which is
direct summation
with double
precision.

Possible reason why
the GPU error in direct
summation grows:
systematic roundoff
error in computation
of function 1/sqrt(x).
(still a question).

Results achieved on our FMM code on the CPU and GPU for N=4096,…,

1048576. Left: Wall-clock time for the FMM run portion for different

accuracy settings on the CPU and GPU. A roughly linear scaling is

observed. Also shown are the direct product results for the GPU and

CPU (the lines with slope =2). Left Middle: Error achieved on the CPU

and GPU versions of the FMM for different truncation numbers. Right

Middle: Error achieved in force calculation on the CPU and GPU

versions of the FMM for different truncation numbers. Right: Effective

number of Gflops achieved (following [3]). While the peak performance of

the direct potential/force evaluation is about 290 GFlops, the FMM

achieves speeds of up to 50 Tflops.

Previous FMM realized on GPU/CPU

• The adaption of FMM to the GPU was presented

by Gumerov & Duraiswami [3]

• Multi Language Environment: Fortran 95 on CPU,

CUDA on GPU, Middleware FLAGON as a bridge

• Data structures were generated on CPU and

transferred to GPU

• The FMM run was performed on the GPU

• However expensive CPU data structure

construction makes the implementation unsuitable

for computing dynamic problems

GPU Data Structure Performance test

GPU: NVIDIA GeForce 480 GTX

CPU: Intel Xeon "Nehalem“ Quad-Core 2.8Ghz

1048576 Source & Receiver Points

Level CPU Time GPU Time Speedup Ratio

3 223,42 7.686 29.068

4 272.254 13.949 19.517

5 430.616 12.959 33.229

6 1808.414 34.591 52.280

7 6789.339 70.847 95.831

8 7782.755 124.859 62.332

4. M.S. Warren, J.K. Salmon, D.J. Becker, M.P. Goda, T. Sterling, &

G.S. Winckelmans. “Pentium Pro inside: I. a treecode at 430

Gigaflops on ASCI Red,” Bell price winning paper at SC’97, 1997

