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Fast Multipole Methods

* Approximate evaluation of sum of
potentials (or radial basis functions)

 Functions can be in 1,2,3 or d dimensions

* Reduce cost from O(N?) to O(N (log N + log

€)) for given error €

* Many application areas including f

» Astrophysics, Molecular dynamics

» Scattering calculations (Acoustics, EM)

 Partial Differential Equations

e Statistics, Machine Learning
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FMM: A hierarchical algorithm

*Uses data structures (octrees, neighbor lists)
and translation theorems to reduce O(N?) cost

Straightforward g
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More formal flowchart
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Previous FMM realized on GPU/CPU
» The adaption of FMM to the GPU was presented

by Gumerov & Duraiswami [3]

* Multi Language Environment: Fortran 95 on CPU,
CUDA on GPU, Middleware FLAGON as a bridge

» Data structures were generated on CPU and
transferred to GPU

* The FMM run was performed on the GPU
* However expensive CPU data structure
construction makes the implementation unsuitable

for computing dynamic problems

FMM Data Structures on GPU

* Pack source & recelver data points according to
their max-level box indices in O(n) time (one pass)

on GPU. One point per thread:
» Using CUDA atomic add operation to count

» Adapting scan operation in CUDA SDK to build

boxes bookmark for data points addressing

» Using bookmark to filter empty boxes

 Build neighbor list and neighbor bookmark to

address the data points for the direct sum. One

thread per non-empty receiver box at the max level:
* Double link from neighbor bookmark to neighbor
list then to sorted source data points enable us to
avold empty box storage

» Adapting scan to build neighbor bookmark

» Data structures for translation are build on the fly:
* For each box of current level, build its non-empty
status and compute its E2 or E4 neighbors. One

box per thread.
» Each thread load pre-computed translation

coefficients for each non-empty box and compute

S|S, S|R or R|R translation.

* All data structures are computed and stored on
GPU without data transfer between host and device

GPU Data Structure Performance test

GPU: NVIDIA GeForce 480 GTX

CPU: Intel Xeon "Nehalem®“ Quad-Core 2.8Ghz

1048576 Source & Recelver Points
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Performance tests

The FMM computation results are from [3].
CPU: 2.67 GHz Intel Core 2 extreme QX 7400 (2GB RAM

employed).

GPU: NVIDIA GeForce 8800 GTX (peak 330 GFLOPS).
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Sparse Matrix-Vector Product
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. (Optimal settings for CPU and GPU)
N Serial CPU (s) GPU(s) Time Ratio
o 4096 3.51E-02  1.50E-03 23
8192 1.34E-01  2.96E-03 45
16384  5.26E-01  7.50E-03 70
oy DIG=300 32768  3.22E-01  1.51E-02 21
65536 1.23E+00 2.75E-02 45
131072 4.81E+00 7.13E-02 68
262144 2.75E+00 1.20E-01 23
e 524288 1.05E+01 2.21E-01 47
3D Laplace 1048576 4.10E+01 5.96E-01 69
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Other steps of the FMM
 Straigtforward accelerations in range 5-60;
» Effective accelerations for N=10° (taking

Into account octree level reduction) In range

Overall Performance

* Remark: Direct summation (no FMM) can
be accelerated up to 600 times.
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Results achieved on our FMM code on the CPU and GPU for N=4096,...,
1048576. Left: Wall-clock time for the FMM run portion for different
accuracy settings on the CPU and GPU. A roughly linear scaling is
observed. Also shown are the direct product results for the GPU and
CPU (the lines with slope =2). Left Middle: Error achieved on the CPU
and GPU versions of the FMM for different truncation numbers. Right
Error achieved in force calculation on the CPU and GPU
versions of the FMM for different truncation numbers. Right: Effective
number of Gflops achieved (following [3]). While the peak performance of
the direct potential/force evaluation is about 290 GFlops, the FMM
achieves speeds of up to 50 Tflops.

Error In computation of large sums on GPU
using direct summation and the FMM

Error computed
over a grid of 729
sampling points,
relative to “exact”
solution, which is
direct summation
with double
precision.

Possible reason why
the GPU error in direct
summation grows:
systematic roundoff
error in computation
of function 1/sqgrt(x).
(still a question).



