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Fast Multipole Methods

• Approximate evaluation of sum of 

potentials (or radial basis functions)

• Functions can be in 1,2,3 or d dimensions

• Reduce cost from O(N2) to O(N (log N + log 

ε)) for given error ε

• Many application areas including f

• Astrophysics, Molecular dynamics

• Scattering calculations (Acoustics, EM)

• Partial Differential Equations

• Statistics, Machine Learning

Performance tests
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FMM: A hierarchical algorithm

•Uses data structures (octrees, neighbor lists)                                                                               

and translation theorems to reduce O(N2) cost 

More formal flowchart
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Straightforward

FMM Data Structures on GPU

• Pack source & receiver data points according to 

their max-level box indices in O(n) time (one pass) 

on GPU. One point per thread:

• Using CUDA atomic add operation to count

• Adapting scan operation in CUDA SDK to build 

boxes bookmark for data points addressing

• Using bookmark to filter empty boxes

• Build neighbor list and neighbor bookmark to 

address the data points for the direct sum. One 

thread per non-empty receiver box at the max level:

• Double link from neighbor bookmark to neighbor 

list then to sorted source data points enable us to 

avoid empty box storage

• Adapting scan to build neighbor bookmark

• Data structures for translation are build on the fly:

• For each box of current level, build its non-empty 

status and compute its E2 or E4 neighbors. One 

box per thread. 

• Each thread load pre-computed translation 

coefficients for each non-empty box and compute 

S|S, S|R or R|R translation.

• All data structures are computed and stored on 

GPU without data transfer between host and device
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N Serial CPU (s) GPU(s) Time Ratio 

4096 3.51E-02 1.50E-03 23 
8192 1.34E-01 2.96E-03 45 
16384 5.26E-01 7.50E-03 70 
32768 3.22E-01 1.51E-02 21 
65536 1.23E+00 2.75E-02 45 
131072 4.81E+00 7.13E-02 68 
262144 2.75E+00 1.20E-01 23 
524288 1.05E+01 2.21E-01 47 
1048576   4.10E+01 5.96E-01 69

Sparse mat-vec product

(optimal settings for CPU and GPU)

Other steps of the FMM

• Straigtforward accelerations in range 5-60;

• Effective accelerations for N=106 (taking 

into account octree level reduction) in range 

30-60;

• Remark: Direct summation (no FMM) can 

be accelerated up to 600 times.

The FMM computation results are from [3].

CPU: 2.67 GHz Intel Core 2 extreme QX 7400 (2GB RAM 

and one of four CPUs employed). 

GPU: NVIDIA GeForce 8800 GTX (peak 330 GFLOPS). 
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Error in computations of potential

Overall Performance

Error in computation of large sums on GPU 

using direct summation and the FMM

Error computed
over a grid of 729 
sampling points, 
relative to “exact” 
solution, which is 
direct summation 
with double 
precision. 

Possible reason why 
the GPU error in direct 
summation grows: 
systematic roundoff 
error in computation 
of function 1/sqrt(x).
(still a question).

Results achieved on our FMM code on the CPU and GPU for N=4096,…,

1048576. Left: Wall-clock time for the FMM run portion for different

accuracy settings on the CPU and GPU. A roughly linear scaling is

observed. Also shown are the direct product results for the GPU and

CPU (the lines with slope =2). Left Middle: Error achieved on the CPU

and GPU versions of the FMM for different truncation numbers. Right

Middle: Error achieved in force calculation on the CPU and GPU

versions of the FMM for different truncation numbers. Right: Effective

number of Gflops achieved (following [3]). While the peak performance of

the direct potential/force evaluation is about 290 GFlops, the FMM

achieves speeds of up to 50 Tflops.

Previous FMM realized on GPU/CPU

• The adaption of FMM to the GPU was presented 

by Gumerov & Duraiswami [3]

• Multi Language Environment: Fortran 95 on CPU, 

CUDA on GPU,  Middleware FLAGON as a bridge

• Data structures were generated on CPU and 

transferred to GPU

• The FMM run was performed on the GPU

• However expensive CPU data structure 

construction makes the implementation unsuitable 

for computing dynamic problems

GPU Data Structure Performance test

GPU: NVIDIA GeForce 480 GTX

CPU: Intel Xeon "Nehalem“ Quad-Core 2.8Ghz

1048576 Source & Receiver Points

Level CPU Time GPU Time Speedup Ratio

3 223,42 7.686 29.068

4 272.254 13.949 19.517

5 430.616 12.959 33.229

6 1808.414 34.591 52.280

7 6789.339 70.847 95.831

8 7782.755 124.859 62.332

4. M.S. Warren, J.K. Salmon, D.J. Becker, M.P. Goda, T. Sterling, & 

G.S. Winckelmans. “Pentium Pro inside: I. a treecode at 430 

Gigaflops on ASCI Red,” Bell price winning paper at SC’97, 1997


