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ABSTRACT
We fundamentally reconsider implementation of the Fast
Multipole Method (FMM) on a computing node with a het-
erogeneous CPU-GPU architecture with multicore CPU(s)
and one or more GPU accelerators, as well as on an
interconnected cluster of such nodes. The FMM is a divide-
and-conquer algorithm that performs a fast N -body sum
using a spatial decomposition and is often used in a time-
stepping or iterative loop. Using the observation that the
local summation and the analysis-based translation parts of
the FMM are independent, we map these respectively to the
GPUs and CPUs. Careful analysis of the FMM is performed
to distribute work optimally between the multicore CPUs
and the GPU accelerators. We first develop a single node
version where the CPU part is parallelized using OpenMP
and the GPU version via CUDA. New parallel algorithms
for creating FMM data structures are presented together
with load balancing strategies for the single node and
distributed multiple-node versions. Our implementation can
perform the N -body sum for 128M particles on 16 nodes in
4.23 seconds, a performance not achieved by others in the
literature on such clusters.
ACM computing classification: C.1.2 [Multiple Data
Stream Architectures]:Parallel processors; C.1.m [Mis-
cellaneous]: Hybrid systems; F.2.1: [Numerical Algo-
rithms and Problems]
General terms: Algorithms, Design, Performance, Theory

1. INTRODUCTION
The N−body problem, in which the sum of the“influence”

or“potential”Φ of N particles (“sources”) at locations xi, i =
1, . . . , N with “strength” qi, i = 1, · · · , N is computed
at M locations (“receivers”) yj , j = 1, . . . ,M, arises in a
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number of contexts including stellar dynamics, molecular
dynamics, boundary element methods, wave propagation,
and statistics. This problem may also be viewed as the
computation a matrix-vector product (MVP) of a dense
rectangular M × N matrix Φ, which is derived from the
kernel function Φ, with an arbitrary vector q

φ = Φq ⇐⇒ φ (yj) =

N∑
i=1

Φ (yj ,xi) qi, (1)

j = 1, ...,M . Here Φ (y,x) is the kernel function. The cost
of this operation is quadratic in N (for M ∼ N), which
can be prohibitive for large N. In many applications such
sums are computed as a part of a time stepping procedure,
where the particles move according to forces computed with
the potential, and this computation must be repeated. In
other applications, such MVPs arise in the iteration used for
solution of linear systems involving matrices similar to Φ,
and its expense becomes a major constraint to scaling the
algorithm to larger sizes and greater fidelity.

The fast multipole method (FMM) is an algorithm that,
given a specified accuracy ε, computes (1) to this guaranteed
accuracy with linear time and memory complexity. It was
first developed for the Coulomb kernel [1], which in 3D is

Φ(y,x) =

{
|y − x|−1, x 6= y,

0, x = y.
(2)

In all the text below, we use this and its gradient, although
our algorithm is general.

The FMM is a divide-and-conquer approximation algo-
rithm which uses a construct from computational geometry
called“well separated pair decomposition”(WSPD) with the
aid of recursive data-structures based on octrees (which have
a cost of O(N logN)). The FMM decomposes the matrix

Φ in (1) into a dense and a sparse part, Φ = Φ(dense) +

Φ(sparse), where Φ(dense) (yj ,xi) = 0 for xi /∈ Ω (yj),
i.e. for the sources located outside some neighborhood
of point yj , while Φ(sparse) (yj ,xi) = 0 for xi ∈ Ω (yj).
The sparse MVP can be performed directly, whereas a
hierarchical algorithm is used to compute Φ(dense)q to a
specified error ε via use of appropriate data structures, trun-
cated series/integral representations of the kernel function
(multipole/local expansions), and translations of these.

Subsequently the FMM was also developed for other
kernels. In particular, its behavior for oscillatory kernels
(those arising from the Helmholtz or Maxwell equations)
is different, and several modifications to the original FMM
ansatz were necessary to achieve O(N) performance [2,



3]. The FMM can be extended for computation of vector
kernels (e.g. dipoles), and gradients of the potential (or
forces) can be also computed. Kernel independent multipole
methods that do not require development of a separate
mathematical apparatus for new non-oscillatory kernels have
been developed [4].

1.1 Fast multipole method and scalability
The FMM, because of its linear complexity, allows the al-

gorithm size to scale well, if it were implementable efficiently
on new architectures. On modern multicore and GPU
architectures, this requires parallelization of the algorithm.
The FMM has been sought to be parallelized almost since
its invention – see e.g., [5, 6, 7, 8]. However, these works are
mostly related to more coarse-grained parallel algorithms
and often focus on tree codes rather than the FMM. With
the advent of multicore processors and GPUs there was a
fresh opportunity. GPU parallelization of the FMM was
first achieved in [9].

This work has since continued in several papers in SC
2009 and 2010, including the 2009 Gordon Bell prize winner
[10]. The FMM was considered on a cluster of GPUs in [11,
10], and the benefits of architecture tuning on networks of
multicore processors or GPUs was considered in [12, 13, 14].
In these papers adaptations of previous FMM algorithms
were used, and impressive performance was achieved.

1.2 Present contribution
We fundamentally reconsider the FMM algorithm on

heterogeneous architectures to achieve a significant im-
provement over recent implementations and to make the
algorithm ready for use as a workhorse simulation tool for
both time-dependent vortex flow problems and for boundary
element methods. Our goal is to perform large rotorcraft
simulations [15] using coupled free vortex methods with
sediments and ground effect [16] as well as develop fast
methods for simulation of molecular dynamics [17], micro
and nanoscale physics [11], and astrophysics [18].

We consider essentially similar hardware of the same
power consumption characteristics as the recent papers, and
our results show that the performance can be significantly
improved. Since GPUs are typically hosted in PCI-express
slots of motherboards of regular computers (often with
multicore processors), an implementation that just uses
GPUs or multicore CPUs separately wastes substantial
available computational power. Moreover, a practical work-
station configuration currently is a single node with one or
more GPU-accelerator cards and a few CPU sockets with
multicore processors. With a view to providing simulation
speed-ups for both a single node workstation and a cluster
of such interconnected nodes, we develop a heterogeneous
version of the algorithm.

To achieve an optimal split of work between the GPU and
CPU, we performed a cost study of the different parts of the
algorithms and communication (see Fig. 1). A distribution
of work that achieves best performance by considering
the characteristics of each architecture is developed. The
FMM in practical applications is required to handle both
the uniform distributions often reported on in performance
testing and the more clustered non-uniform distributions
encountered in real computations. We are developing
strategies to balance the load in each of these cases.

Since our algorithm is to be used in time-stepping where

the data distribution changes during the simulation, we
wanted to improve scalability in the algorithms for creating
the FMM data-structures and interaction lists. Extremely
fast algorithms, which generate these lists in small fractions
of the time of the FMM sum itself, were developed.

Our single node version with two Intel Nehalem 5560 2.8
GHz processors per node (total eight cores) and two NVIDIA
Tesla S1070 GPUs provides 8 million particle simulation
for 1.6 s (potential) and 2.8 s (potential+force) (truncation
number p = 8). The algorithm was extensively tested on
clusters with two through thirty two nodes with the same
basic architecture on which 1 billion particle simulations
were achieved. Note that the largest size for the FMM
achieved on a run on 256 GPUs reported on SC2009 was 16
million particles with approximately 1 s for a vortex element
method velocity+stretching computation (p = 10) [10].
Similar timings for a N body (potential+force) problem
were achieved by our version on 4 nodes (8 GPUs). While
not explicitly indicated in [10], according to [11] the two
problems have a theoretical flop count difference of about a
factor of 5.5, providing an indication of our speedup relative
to [10]. (Note, in a real implementation using efficient
representations of differentiation operators [19, 15] better
speedups may be possible.)

2. FMM ALGORITHM
The FMM splits the matrix vector product (1) into

a sparse and dense part. The products Φ(dense)q and
Φ(sparse)q can be computed independently and in parallel.
For optimal performance the decomposition must be per-
formed in a way to balance the time for computation of the
respective parts. This in turn determines the depth of the
hierarchical space partitioning and the performance achieved
in the two parts.

The “analysis part ” of the FMM computes Φ(dense)q as:

• Generation of data structure. The domain is scaled
to a unit cube and recursively divided via an octree
structure to level lmax. Level l contains 8l boxes.
The source and receiver data structures exclude empty
boxes, allow fast neighbor finding, and build interaction
lists (e.g., via bit-interleaving [3]).

• Precomputations of parameters common to several
boxes, such as elements of translation matrices.

• Upward pass. This generates the multipole basis (M)
expansion coefficients {Cm

n } at each source box from
level l = lmax to l = 2. At level lmax this is done via

summation of multipole expansion coefficients
{
C

(i)m
n

}
for all sources i at their box centers. For levels l =
lmax − 1, ..., 2 this is done via a multipole-to-multipole
(M2M) translation of coefficients from children to parent
boxes followed by a consolidation.

• Downward pass. Local basis (L) expansion coeffi-
cients {Dm

n } are generated for each receiver box from
levels l = 2 to l = lmax via a two step procedure
at each level: first, a multipole-to-local (M2L) trans-
lation is done followed by consolidation from a special
neighborhood stencil implied by the WSPD. Then, a
local-to-local (L2L) translation from the parent to child
receiver box is performed followed by consolidation with
the result of the first step.

• Evaluation. Evaluate local expansions (L) at level lmax

at all receiver locations in the box.



Several different bases and translation methods have been
proposed for the Laplace kernel. We used the expansions
and methods described in [19, 9] and do not repeat details.
Real valued basis functions that allow computations to be
performed recursively with minimal use of special functions,
complex arithmetic, or large renormalization coefficients are
used. L- and M-expansions are truncated to contain p2

terms with p selected to provide the required accuracy.
Translations are performed using the RCR decomposition
[20, 19] (rotation – coaxial translation – back rotation)
of the matrix translation operators, which provides O(p3)
translation with a low asymptotic constant. It was shown
in [19] that these methods are more efficient than the
asymptotically superior methods in [21] for problems usually
encountered in practice.

The above algorithm can also be modified to work well
with nonuniform distributions by skipping empty boxes, by
adjusting the value of p for the P2M and L2P steps to
satisfy the error bound for each particle, and by stopping
the downward pass for sparse boxes before the finest level.
Even more adaptive algorithms are possible (see e.g., [22,
3]), but were not implemented here.

The “sparse part” of the FMM computes Φ(sparse)q by
taking all receiver particles in a given box at the finest
level and computing the influence of sources in that box
and neighboring boxes directly.

3. FMM DATA STRUCTURES ON THE GPU
The need for a fast code for data structures is a manifes-

tation of Amdahl’s law. In a serial FMM code, generation
of basic data structures usually takes a small portion of
the total algorithm execution time. In some applications
of the FMM, such as for iterative solution of large linear
systems, this step is even less important as it is amortized
over several iterations. The typical way of doing the data
structures is via an O(N logN) algorithm that uses sorting,
which is usually done on the CPU [9]. However, for large
dynamic problems, when the particle positions change every
time step, the cost of this step would dominate, especially
when the FMM itself is made very fast, as we propose to do.

Reimplementing the CPU algorithm for the GPU would
not have achieved the kind of acceleration we sought.
The reason is that the conventional FMM data structures
algorithm employs sorting of large data sets and operations
such as set intersection on smaller subsets, that require
random access to the global GPU memory, which is not very
efficient.

Instead, we were able to device a new parallelizable
algorithm, which generates the FMM data structure in
O(N) time, bringing the overall complexity of the FMM
to O(N) for a given accuracy. Our efficient algorithm is
based on use of occupancy histograms (i.e., the counts of
particles in all boxes), bin sorting, and parallel scans [23]. A
potential disadvantage of our approach is the fact that the
histogram requires allocation of an array of size 8lmax where
zeros indicate empty boxes. Nonetheless this algorithm for
GPUs with 4 GB global memory enables of data structures
up to a maximum level lmax = 8, which is sufficient
for many problems. In this case accelerations up to two
orders of magnitude compared to CPU were achieved. For
problems that required greater octree depth, we developed a
distributed multi-GPU version of the algorithm, where the
domain is divided via octrees spatially and distributed to the

GPUs, each GPU performs independent structuring of data
residing in its domain, and global indexing is provided by
applying prefixes associated with each GPU. The problem
decomposition needed for load balancing can also be done
with this data structure.

We describe the algorithm for a single GPU. For a multi-
GPU setup, some more or less obvious modifications are
needed. The same algorithm is repeated for the source and
receiver hierarchies. Each step has O(N) complexity, and
the steps are easily parallelizable on the GPU.

• Determine of the Morton index [24] for each particle,
after scaling of all data to a unit cube using bit-
interleaving (e.g. [25, 3]). On the GPU this does not
require communication between threads.

• Construction of occupancy histogram and bin sorting.
The histogram shows how many particles reside in each
spatial box at the finest level. In this step, the box index
is its Morton index. Bin sorting occurs simultaneously
with the histogram construction. Note that there is no
need to sort the particles inside the box — bin sorting
just results in an arbitrary local rank for each particle
in a given box. In this step we use the atomicAdd()

GPU function. While this may cause the threads to
access the same memory address sequentially to update
the value, the performance is not compromised because
most threads are usually working on different boxes and
the method rarely serializes.

• Parallel scan and global particle ranking. Parallel scan
[23, 26] is an efficient algorithm that provides a pointer
to the particles in a given box in the final array. Particle
global ranking is simply a sum of its global bookmark
and local arbitrary rank.

• Final filtering. This process simply removes entries for
empty boxes and compresses the array, again using a
scan, so the empty boxes are emitted in the final array.

• Final bin sorting. Particle data is placed into the output
array according to their global ranking.

The second part of the algorithm determines the inter-
acting source boxes in the neighborhood of the receiver
boxes. The histogram for the receivers can be deallocated
while retaining the one for sources. We also keep the array
A of source boxes obtained after the parallel scan (before
compression). This enables fast neighbor determination
without sort, search, or set intersection operations.

For a given receiver box i, its Morton index n is available
as the ith entry of the array ReceiverBoxList. This index
allows one to determine the Morton indices of its spatial
neighbors. As a new neighbor index is generated, the
occupancy map is checked. If the box is not empty, the
corresponding entry in array A provides its global rank,
which is stored as the index of the neighbor box.

Computation of the parent neighborhoods and subdivision
of the domains for translation stencils, which require a
more complex data access pattern, is performed on the
CPU, which creates the arrays ReceiverBoxList, Source-

BoxList, NeighborBoxList and bookmarks (values indicat-
ing the starting and ending values of the particle number in
a box).

Table 1 shows the time for data structures generation
using a NVIDIA GTX480 and CPU Intel Nehalem quad-
core 2.8 GHz (a single core was used) for N = 220 source



lmax CPU (ms) Improved CPU (ms) GPU (ms)
3 1293 223 7.7
4 1387 272 13.9
5 2137 431 13.0
6 8973 1808 34.6
7 30652 6789 70.8
8 58773 7783 124.9

Table 1: FMM data structure computation for
220 uniform randomly distributed source and
receiver particles using our original CPU O(N logN)
algorithm, the improved O(N) algorithm on a single
CPU core, and its GPU accelerated version.

and M = 220 receiver points uniformly randomly distributed
inside a cube. The octree depth was varied in the range
lmax = 3, ..., 8. Column 2 shows the wall clock time for
a standard algorithm, which uses sorting and hierarchical
neighbor search using set intersection (the neighbors were
found in the parent neighborhood domain subdivided to the
children level). Column 3 shows the wall clock time for the
present algorithm on the CPU. It is seen that our algorithm
is several times faster. Comparison of the GPU and CPU
times for the same algorithm show further acceleration in
the range 20-100. As a consequence, the data-structure step
is reduced to a small part of the computation time again.

4. PARALLELIZATION OF THE FMM
We present first the algorithm for a single heterogeneous

node (i.e., typical contemporary workstation with several
shared-memory CPU cores and one or more GPUs). Next,
an approach for clusters consisting of several heterogeneous
nodes, is presented. This algorithm is sufficient for the
number nodes we have access to. We also briefly consider
the case of even larger numbers of nodes.

4.1 Single heterogeneous node
Different stages of the FMM have very different efficiency

when parallelized on the GPU (Fig. 1). The lowest efficiency
(due to limited GPU local memory) is for translations. On

the other hand, computation of Φ(sparse)q on the GPU
is very efficient (making use of special instructions for the
reciprocal square root and multiply-and-add operations), as
well as the generation of M-expansions and evaluation of L-
expansions. In fact, anything having to do with particles
is very efficient on the GPU, and translations are relatively
efficient on the CPU.

Fig. 2 illustrates the work division between the CPU
cores and GPU(s) on a single node. The large source
and receiver data sets are kept in GPU global memory,
and operations related to particles are performed only
on the GPU. This makes dynamic simulations (where
particles change location) efficient, since particle update
can be done efficiently on the GPU minimizing CPU-GPU
data transfer. The GPU does the jobs that it can do
most efficiently, specifically, generating the data structure,
generating M-expansions for source boxes at the finest level,
performing the sparse MVP, evaluating L-expansions for the
receiver boxes at the finest level, and producing final results.
Because the result is obtained on the GPU, it can be used
immediately for the next time step.

The CPU performs all work related to operations with
boxes. It receives as input the box data structure from the
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Figure 1: The relative cost and speedup of different
steps of the FMM on uniform data on a GPU
(NVIDIA GeForce 8800GTX) vs a 4 core CPU (Intel
Core 2 extreme QX, 2.67GHz). The relative cost
of steps is given for the GPU realization (lmax = 4,
p = 8, N = M = 220). The CPU wall clock time
is measured for the same settings as for GPU (not
necessarily optimal for the CPU). From [9].

GPU, which is used to generate a translation data structure
(note that we use the reduced translation stencils described
in [9], instead of the standard 189 per box), and M-expansion
coefficients for the non-empty source boxes at the finest level.
Then the CPU performs the upward and downward passes
of the FMM and returns L-expansions for the non-empty
receiver boxes at the finest level.

This strategy has several advantages

1. The CPU and GPU are tasked with the most efficient
jobs they can do.

2. The CPU is not idle during the GPU-based computa-
tions and our tests show the loads on CPU and on GPU
are reasonably balanced.

3. Data transfer between the CPU and GPU includes only
p2 expansion coefficients for each non-empty box, which
usually is smaller than the particle data.

4. The CPU code can be better optimized as it may
use more complex data structures, e.g. for complex
translation stencils. More efficient automatic compilers
are available for the CPU.

5. We use double precision without much penalty on the
CPU. This is helpful since translation operations are
more sensitive to round off.

6. If the required precision is below 10−7 single precision
can be used for GPU computations. If the error
tolerances are more strict, then double precision can be
used on GPUs that support them.

7. The algorithm is efficient for dynamic problems.

8. Visualization of particles for computational steering is
easy, as all the data always reside in GPU RAM.
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Figure 2: Flow chart of the FMM on a single
heterogeneous node (a few GPUs and several CPU
cores). Steps shared in dark gray are executed in
parallel on the CPU and the GPU.

4.2 Several heterogeneous nodes
For distributed heterogeneous nodes, the above algorithm

can be efficiently parallelized by using the spatial decom-
position property inherent to the FMM (see Fig. 3). The
separation of jobs between the CPU cores and GPUs within
a node remains the same. The M2L translations usually
are the most time consuming and take 90% or more of the
CPU time in the single node implementation. However, if
we have P nodes and each node serves only N/P sources

located compactly in a spatial domain Ω
(s)
j , j = 1, ..., P

covered by N
(s)
j ≈ N (s)/P source boxes at level lmax such

that Ω
(s)
j do not intersect, then the number of the M2M

and M2L translations for all receiver boxes due to sources in
Ω

(s)
j is approximately (CM2M + CM2L) /P , where CM2L and

CM2M are the numbers of all M2L and M2M translations
for the entire domain, respectively, and N (s) the number of
source boxes. This is achieved because our implementation
of the FMM skips empty source boxes.

To achieve scalability for the L2L translations, we intro-
duce an intermediate communication step between the nodes
at levels l = 2, ..., lmax. This is between the CPUs alone,
and does not affect the parallel computation of the sparse
MVP on the GPU. For each node we subdivide the receiver
boxes handled by it into 4 sets. These are built based
on two independent criteria: belonging to the node, and
belonging to the neighborhood containing all source boxes
assigned to the node. “Belonging” means that all parents,
grandparents, etc. of the box at the finest level for which
the sparse MVP is computed by a given node also belong to
that node. Receiver boxes that do not satisfy both criteria
are considered “childless” and the receiver tree for each node
is truncated to have that boxes as leaves of the tree.

During the downward pass a synchronization instruction
is issued after computations of the L-expansion coefficients

for receiver boxes in the tree at each level. The nodes then
exchange only information about the expansions for the leaf
boxes, and each node sums up only information for the boxes
which belong to it. These steps propagate until level lmax at
which all boxes are the leave boxes and information collected
by each node is passed to its GPU(s), who evaluate the
expansions at the node source points and sum the result
with the portion of the sparse MVP computed by this node.

4.2.1 Simplified algorithm
If the number of nodes is not very large, the above algo-

rithm can be simplified to reduce amount of synchronization
instructions and simplify the overall data structure. In a
simplified algorithm, each node performs an independent
job in the downward pass to produce the L-expansion coef-
ficients for all receiver boxes at level lmax. These coefficients
are not final, since they take into account only contribution
of the sources allocated to a particular node. To obtain the
final coefficients, all expansions for a given receiver box must
be summed up and sent to the node that computes the sparse
MVP for that receiver box. This process for all nodes can be
efficiently performed in parallel using hierarchical (golden)
summation according to the node indices.

In contrast to the general algorithm, in the simplified
algorithm some L2L translations are duplicated (see Fig. 3),
which deteriorates the algorithm scalability and increases
data transfer between the nodes. However, even in the
worst case when all L2L translations are repeated on all
nodes, the effect of L2L-translation duplication may have
a substantial effect on the overall complexity only if the
number of all L2L translations violates the restriction
CL2L � (CM2M + CM2L) /P. This inequality holds for
moderate clusters. Indeed, if we use a scheme with a
maximum of 119 or 189 M2L translations per box and one
L2L translation then for P . 100 the scheme is acceptable,
though sufficient memory per node is needed to keep L-
expansion coefficients for all boxes in the tree. Our tests
show that satisfactory performance for N . 109, which is
comparable with the number of particles used in any FMM
realizations we are aware of.

For illustration, the flow chart in Fig. 4 shows the algo-
rithm for two heterogeneous nodes. Each node initially has
in memory the sources and receivers assigned (randomly)
to the node. Based on this, each node builds an octree.
After that, all nodes are synchronized and receiver hierarchy
data is scattered/gathered, so each node has complete
information about all receiver boxes.

Since initial source/receiver data is redistributed between
the nodes, each node takes care of a spatially compact
portion of particle data. This distribution is done by
prescribing weights to each box at a coarse level of the tree
and splitting the tree along the Morton-curve to achieve
approximately equal weights to each part. Then the single
node heterogeneous algorithm described in the previous
section is executed with some small modifications. The
sparse MVP is computed only for the receiver boxes handled
by a particular node, and the dense MVP is computed only
for source boxes allocated on that node but for all receiver
boxes (i.e. influence of a portion of the source boxes on all
receivers is computed). The data on the L-expansions at
the finest level is then consolidated for the receiver boxes
handled by each node. The final summation consists of
evaluation of the L-expansions and summation with partial



Figure 3: Illustration of separation of the M2M
and M2L translation jobs between two nodes. Two
nodes handle sources allocated in two light gray
source boxes and compute L-expansions for the
darker gray receiver boxes. Solid lines with arrows
show M2M translations, the dashed lines show
M2L translations, and bold solid lines with arrows
show L2L translations. M2M and M2L steps do
not overlap, and the same (adaptive, empty box
skipping) algorithm with different inputs can be
executed on each node. L2L translations for the
same boxes are duplicated by each node for the
simplified algorithm in §3.2.1 and are not duplicated
in the general algorithm proposed in §3.2.

sparse MVPs.

5. IMPLEMENTATION ISSUES
We use OpenMP for intra-node CPU computation (as

implemented in Intel Fortran/C v.11) and MPI for inter-
node communication. As shown in Fig. 4, on each computing
node we launch a single process, within which multiple
OpenMP threads are used to control multiple GPUs and
compute FMM translations on the CPU. MPI calls for
communicating with other nodes are made from the master
thread of this process.

CUDA 3.2, which we used, allows only one active GPU
device in a single CPU thread. Hence, to parallelize the
multi-threaded CPU translation and multi-GPU direct sum,
OpenMP threads have to be divided into two different
groups. To avoid performance degradation due to the
nested OpenMP parallel regions performing quite different
computational tasks, the threads that control GPUs are
spawned first. After a thread launches its GPU kernel
function call, it immediately rejoins the master thread. At
this point the threads for CPU translations are spawned,
while the GPUs perform the local direct summation in the
mean time.

After initial partition, each node has its own source and
receiver data. The receiver data are mutually exclusive
amongst all the nodes; however, the same source data might
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Figure 4: A flow chart of the FMM on two
heterogeneous nodes. The single heterogeneous
node algorithm (see Fig. 2) is executed in parallel
on CPU cores and GPUs available to the node.

repeatedly appear on many nodes since they belong to
the interaction neighborhood of many receiver boxes. As
shown in Fig. 2, the main thread spawns multiple threads
to copy data onto different GPUs and performs initial data
structure building. Then each thread sends information on
the receiver boxes to the master thread. The master thread
computes the global receiver box information and broadcasts
it to all other nodes. Based on the previous data structures
and the global receiver box information, each GPU then
builds its own data structure for the CPU translations,
performs initial multipole expansions, and copies them to
CPU. Next, the CPU translation and GPU direct sum are
performed simultaneously using the scheme described above.

For the simplified algorithm described above, the master
thread collects the local expansion coefficients as a binary
tree hierarchy within l rounds given 2l processes. When it
finishes, the master process has the local expansion data for
all receiver boxes and sends the corresponding data to all
other processes.

6. PERFORMANCE TESTS
6.1 Hardware

We used a small cluster (“Chimera”) at UMIACS at
the University of Maryland (32 nodes) and a large one
(“Lincoln”) at NCSA at the University of Illinois (192 nodes).
In both clusters the same basic node architecture was
interconnected via Infiniband. At UMIACS, each node was
composed of a dual socket quad-core Intel Nehalem 5560 2.8
GHz processors, 24 GB of RAM per node, and two Tesla
S1070 accelerators each with 4 GB of RAM. At NCSA, each
node had the same GPU architecture with the same Tesla,



Time (s) \ N 1,048,576 2,097,152 4,194,304 8,388,608 16,777,216
Num of GPUs 1 2 1 2 1 2 1 2 1 2
CPU wall clock 0.13 0.13 1.06 1.08 1.07 1.11 1.02 1.10 8.53 8.98

C/G parallel region 0.58 0.30 1.06 1.08 1.58 1.11 4.38 2.21 8.55 8.98
Force+Potential total run 0.71 0.39 1.23 1.22 1.96 1.34 5.11 2.63 10.3 10.1

Potential total run 0.40 0.24 1.16 0.89 1.27 1.25 2.94 1.52 9.76 6.30
Partitioning – 0.14 – 0.32 – 0.58 – 1.14 – 3.09

Table 2: Performance on a single heterogeneous node: force with potential (best settings). For potential
computations, only the total run time is provided.

but the CPUs were Intel Harpertown 5300 processors at
2.33 GHz with 16 GB of RAM. The double precision single
node tests were run on a workstation with a NVIDIA Tesla
C2050 GPU accelerator with 3 GB, and an Intel Xeon E5504
processor at 2.00 GHz and 6 GB RAM.

6.2 Remarks on the reported results
Partitioning times: Our algorithm takes some time for

global partition of the data. However, in a dynamic problem,
this step is only needed at the initial step, and this time is
amortized over several time steps, after which the global
repartitioning may again be necessary. Accordingly, we
report the partitioning time separately from the total run
time. The run time, however, includes the cost of generating
the entire FMM data structure on each node since this will
have to be done at each time step. In the tests we measured
the time for potential + force (gradient) computations
and also for a faster version where only the potential was
computed.

Most cases are computed with p = 8, which is sufficient to
provide single precision accuracy (relative errors in the L2-
norm are below 10−5). When comparisons are made with
[10], we set p = 10 to match their choice. The benchmark
cases include random uniform distribution of particles inside
the cube and on the surface of a sphere (spatially non-
uniform). In our wider tests we varied the number of sources
and receivers N and M . In all the reported cases, N = M ,
while the source and receiver data are different.

6.3 Single heterogeneous node
The algorithm for a single node was extensively tested.

The first test was performed on a single node of the Chimera
cluster using one and two GPUs with spatially uniform
random particle distributions. Table 2 shows the measured
performance results in optimal settings (in terms of the tree
depth lmax) for potential + force computations (the total
run time for potential only computations is also included).
Fig. 5 plots data only for potential computations in optimal
settings. Even though these timing results appear to
outperform the results of other authors on similar hardware
which we are aware of, one may question whether the
algorithm is scalable with respect to the number of particles
and number of GPUs since the run time changes quite non-
uniformly. An explanation of the observed performance is
that the GPU sparse MVP has optimum performance for

certain data cluster size s
(sparse)
opt [9], and when clusters with

s < s
(sparse)
opt are used, this increases both the GPU and

CPU times (due to increase of lmax). Cluster sizes with

s > s
(sparse)
opt can be optimal, and this can be found from

the balance of the CPU and GPU times. Since lmax changes
discretely and the CPU time depends only on the number of

boxes, or lmax (for uniform distributions), the CPU time
jumps only when the level changes. Increase of lmax by
one increases the CPU time eight times, and such scaling is
consistent with the observed results. On the other hand, the

GPU time for fixed lmax and s > s
(sparse)
opt is proportional to

N2. So there is no way to balance the CPU and GPU times
for a fixed lmax, except perhaps increasing the precision of
CPU computation.

If the GPU time dominates, then use of the second GPU
reduces the time, as seen for the cases N = 220 and
N = 223. Note also that the parallelization efficiency for
2 GPUs is close to 100%. On the other hand, if the CPU
time dominates, then the second GPU does not improve
performance if lmax remains the same (see case N = 222 for
the potential). CasesN = 221 andN = 224 show a reduction
of the time due to the use of the second GPU because of a
different reason. For these cases optimal lmax is different
when using one or two GPUs. This causes reduction of the
CPU time and increase of the single GPU time for two GPUs
compared to the case with one active GPU.
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Figure 5: The wall clock time (potential-only
computation) for the heterogeneous FMM running
on a single node (8 CPU cores) with one and two
GPUs. The CPU part is plotted by the thin dashed
lines. The thick dashed line shows linear scaling.

We also performed tests with spatially non-uniform distri-
butions (points or the sphere surface). This requires deeper



octrees to achieve optimal levels (usually increase of lmax

by 2) and provides more non-uniform loads on the GPU
threads, which process the data box by box (the number
of points in the non-empty boxes varies substantially). This
results in the increase of both CPU and GPU times. In some
cases this increase is not substantial (e.g. for N = 220 the
CPU/GPU parallel region time is 0.44 s and the total run
time is 0.56 s), while we never observed increase more than
2.5 times (e.g. for N = 222 the CPU/GPU parallel region
time is 2.82 s and the total run time is 3.26 s for potential
only computations) (compare with Table 2).

6.3.1 Double precision GPU performance
Accepted wisdom in scientific computing often requires

double precision computations for many problems. We
accordingly demonstrate our algorithm with double preci-
sion on the CPU, and both single and double precision on
the GPU. Table 3 shows results of our tests for potential
computation for N = 220 using different truncation numbers
p and algorithms with different GPU precision. We used
a workstation with a Tesla C2050 and a 4 core Intel e5504
2.00 GHz CPU (which explains the difference in run times in
comparison with Tables 2 and 3). The error was measured in
the relative L2-norm using 100 random comparison points.
Direct double precision computations were used to provide
the baseline result. It is seen that for p 6 8 there is no need
to use double precision (which slows down the GPU by at
least a factor of two). The CPU time grows proportionally
to p3, and the GPU time depends on p as A + Bp2 with a
relatively small constant B. This changes the CPU/GPU
balance of the heterogeneous algorithm and reduces the
optimal tree depth lmax as p increases.

Prec p = 4 8 12 16
Time (s) S 0.37 0.62 1.48 2.92

D 1.36 1.40 1.49 2.95
Error S 2.8·(−4) 1.4·(−6) 2.5·(−7) 1.2·(−7)

D 1.6·(−4) 6.9·(−7) 4.3·(−8) 4.3·(−9)

Table 3: Performance and error for single and
double precision GPU ((−m) means 10−m)

6.4 Multiple heterogeneous nodes
On heterogeneous clusters we varied the numbers of

particles, nodes, GPUs per node, and the depth of the space
partitioning to derive optimal settings, taking into account
data transfer overheads and other factors.

The weak scalability test is performed by fixing the
number of particles per node to N/P = 223 and varying
the number of nodes (see Table 4 and Fig. 6) for a
simplified (small cluster) parallel algorithm. For perfect
parallelization/scalability, the run time in this case should
be constant. In practice, we observed an oscillating pattern
with slight growth of the average time. Two factors affect
the perfect scaling: reduction of the parallelization efficiency
of the CPU part of the algorithm and the data transfer
overheads. The results in Table 2 for 2 GPUs were computed
with lmax = 5 for cases P = 1 and 2 and lmax = 6 for cases
P = 4, 8, 16. In the case of the ideal CPU algorithm the
time should reduce by a factor of two when the number of
nodes is doubled at constant lmax and increase eight-fold
when lmax increases by one. In our case, P is constant, so
when lmax increases and P doubles the CPU time should

increase by factor of 4. Qualitatively this is consistent with
the observed pattern, but the simplified algorithm that we
used is not perfectly scalable due to overheads (e.g. due
to L2L-translations and related unnecessary duplication of
the data structure) becoming significant at large sizes. The
deficiency of the simplified algorithm also shows up in the
data transfer overheads. The amount of such transfers
depends on the number of boxes and the table clearly shows
that the overhead time increases with lmax. Fig. 6 shows
that for relatively small number of nodes this imperfectness
is acceptable for practical problems.
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Figure 6: Contribution of the CPU/GPU parallel
region time and the overhead (data transfer between
the nodes and CPU/GPU sequential region) to
the total run time for two GPUs per node
(UMIACS Chimera cluster). The data size increases
proportionally to the number of nodes. The time is
measured for computations of potential only.

We also performed the strong scalability test, in which
N is fixed and P is changing (Fig. 7). The tests were
performed for N = 223 and P = 1, 2, 4, 8, 16 with one
and two GPUs per node. The deviations from the perfect
scaling can be explained as follows. In the case of one
GPU/node, the scaling of the CPU/GPU parallel region
is quite good. We found that in this case the GPU
work was a limiting factor for the parallel region. This
is consistent with the fact that the sparse MVP alone is
well scalable. In the case of two GPUs, the CPU work
was a limiting factor for the parallel region. Scalability
of the algorithm on the CPU is not as good as for the
sparse MVP part because of the reasons explained above
when the number of nodes increase. However, we can see
approximate correspondence of the times obtained for two
GPUs/node to the ones with one GPU/node, i.e. doubling
of the number of nodes with one GPU or increasing the
number of GPUs results in approximately the same timing.
This shows a reasonably good balance between the CPU and
GPU work in the case of 2 GPUs per node (so this is more
or less the optimal configuration for a given problem size).
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scalability t = O (1/P ). The time is measured for
potential only computations.

More significant imperfections are observed for the total run
time at increasing P , which is related to the data transfer
overheads between the nodes (we also saw that in the weak
scalability tests).

We did similar tests on the Lincoln cluster, which pro-
duced almost the same results. These best results are
obtained for optimal settings, when the GPU(s) reach their
peak performance (in terms of the particle cluster size).
For such sizes the UMIACS cluster is limited by N = 228.
For larger problems a suboptimal performance is obtained;
however, such cases are still of practical importance, as
solving billion-size problems in terms of seconds per time
step is quite useful. Fig. 8 presents the results of the run
employing 32 nodes with one or two GPUs per node, which
shows a good scaling with N (taking into account that the
FMM has jumps when the level changes). In the figure,
we plot the best of one-GPU and two-GPU run times (as
it was shown above, the use of the second GPU in the
heterogeneous algorithm is not always beneficial and may
create additional overhead). The largest case computed in
the present study is N = 230 for 32 two-GPU nodes. For
this case, the CPU/GPU parallel region time was 12.5 s and
the total run time 21.6 s.

We believe that the achieved total run times are among
the best ever reported for the FMM for the sizes of the
problems considered (e.g, comparing with [10, 11, 13, 14,
27]). Fig. 9 compares the wall clock time required by the
potential+force computations for the present algorithm with
the velocity+stretching timing reported in [10]. The present
algorithm was executed with two GPUs per node for 2 and
8 nodes and one GPU for a single node (the total number
of GPUs employed is shown in the figure).
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6.5 Performance assessment
There are several ways to assess the performance of our

algorithm. (See http://folding.stanford.edu/English/

FAQ-flops for a discussion). One way to assess this
performance is to look at the actual number of operations
performed in the FMM. This yields much more modest
numbers of flops, but may be more useful in comparing the
performance of different implementations of the FMM. The
most arithmetically intensive part of the FMM is performed
by the GPU during the sparse MVP. For uniform distribu-
tions and cluster size s, the number of operations at max.

tree depth lmax is approximately N
(sp)
op = 23lmax27s2x, where

x is the number of operations per direct evaluation and
summation of the potential or potential+force contribution.

For a cluster of size s = 28 and lmax = 5 we have N
(sp)
op =

23127x. This corresponds to N = 23lmaxs = 223. Our tests
show a very consistent GPU/CPU parallel region time per
GPU for this problem size, which is strongly dominated by
GPU, t(sp) = 2.45 s (two GPUs do the same job for 1.23 s).
This means that a single GPU performs at peak rate not less

than R = N
(sp)
op /

(
230t(sp)

)
= 22x GFlops. The estimation

of the x is rather tricky, and somewhat controversial, since
a larger value tends to indicate better performance for
one’s algorithm. For potential only computations it can be
estimated either as x = 9 in terms of GPU instructions,
or as x = 27 in terms of CPU instructions, which is the
commonly accepted way of counting. The latter value,



Time (s) \ N (P ) 8,388,608 (1) 16,777,216 (2) 33,554,432 (4) 67,108,864 (8) 134,217,728 (16)
Num of GPUs 1 2 1 2 1 2 1 2 1 2

CPU wall 1.02 1.10 4.49 0.61 2.71 2.80 1.41 1.75 0.85 1.22
CPU/GPU 2.45 1.23 4.49 2.91 2.71 2.80 2.67 1.75 6.25 3.17
Overhead 0.50 0.30 1.03 0.36 0.95 0.85 1.12 0.96 1.31 1.07
Total run 2.95 1.53 5.46 3.27 3.66 3.65 3.79 2.71 7.56 4.24

Table 4: Performance for P heterogeneous nodes with N/P = 223 (potential only).
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Figure 9: A comparison of the present imple-
mentation for N-body force+potential calculations
with the 2009 Gordon Bell prize winner [10] for
velocity+stretching calculations, which theoretically
require about 5.5 times more computation for the
same N (see Fig. 12 there). In all cases the
truncation number p = 10.

which is consistent with the tests of the algorithms using
standard CPU counters provides Rmax = 594 GFlops while
x = 9 results in Rmin = 198 GFlops. Both these numbers
are within the limit of the GPU used (933 GFlops peak
performance reported by NVIDIA). Similar numbers can
be computed for the potential+force computations by using
x = 38 or x = 15, and the timing data from Table 2.

The contribution of the CPU part of the algorithm in
the parallel region improves this marginally. We count all
M2M, M2L, and L2L translations, evaluated the number of
operations per translation, and used the measured times for
the GPU/CPU parallel region at lmax = 5. That provided
as a estimate of 27 GFlops per node for 8 CPU cores. Thus
we can bound the single heterogeneous node performance for
two GPUs between 423 and 1215 GFlops. We used at most
32 nodes with two GPUs each, and our cluster’s performance
bounds are [13.2, 38] TFlops.

Following [28], several authors, used a fixed flop count for
the original problem and computed the performance that
would have been needed to achieve the same results via a
“brute-force” computation [10, 11, 29, 30, 31]. For N = 230

sources/receivers and a computation time of 21.6 s (total

run), which we observed for 32 nodes with two GPUs per
node, the brute-force algorithm would achieve a performance
of 1.25 Exaflops.

7. CONCLUSION
Algorithmic improvements presented in this paper sub-

stantially extend the scope of application of the FMM for
large problems, especially for dynamic problems, where
performance on data structure computations became a
bottleneck. The heterogeneous algorithm substantially
simplifies the GPU job and makes it much more efficient.
It also provides a full load on the CPUs, enables efficient
double precision computations, and brings other benefits of
parallel use of the CPU cores and GPUs. With the present
algorithm, dynamic problems of the order of ten million
particles per GPU can be solved in a few seconds per time
step, extending capabilities of single workstations equipped
with one or several GPUs and relatively small (several node)
low-cost heterogeneous clusters.

Weak and strong scalability of the algorithm for small and
midsize clusters was demonstrated. A FMM run for 230 &
1 billion particles was performed with this algorithm on a
midsize cluster (32 nodes with 64 GPUs). A more advanced
fully scalable algorithm for large clusters is presented.

Perhaps our biggest contribution is the use of the ne-
glected resource (CPU) in heterogeneous CPU/GPU envi-
ronments, allowing a significant improvement in hardware
utilization. A user with a gaming PC worth less than
$3000 (2 graphics cards and two-quad-core CPUs plus 16 GB
RAM) can achieve FMM performance comparable with the
2009 Bell prize winner, at one percent of the cost and power,
and a performance of 405 MFlops/dollar. Our algorithm can
tackle two orders of magnitude larger problems of interest in
fluid, molecular and stellar dynamics due to vastly improved
handling of data structures and algorithmic improvements
compared to current state-of-the-art algorithms. It also
scales well, allowing the user to add more CPU cores
and GPU cards to further improve the price/performace
ratio. The Chimera machines cost $220K and achieve a
performance of 177 MFlops/dollar—the best performance
reported so far on the FMM [10].
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