
GPUML: Graphical processors for speeding up 

kernel machines

http://www.umiacs.umd.edu/~balajiv/GPUML.htm

Balaji Vasan Srinivasan, Qi Hu, Ramani Duraiswami

Department of Computer Science,

University of Maryland, College Park

Workshop on High Performance Analytics –

Algorithms, Implementations and Applications

Siam Conference on Data Mining, 2010



Large datasets

 Improved sensors – ease of data collection

 Large datasets

 Millions of samples (tall)

 Large number of attributes (fat)

 Objective: extract meaningful information from data



Extracting information from the data

 Raw data to an interpretable version

 Example: Speech signal speaker

 Function estimation: f: X Y

 Information extraction categories:

 Density estimation [evaluating the class membership]

 Regression [fitting a continuous function]

• Y = R

• Example: predicting temperature from historic data

 Classification [classify into one of the predefined classes]

• Y={-1,+1}

• Example: Object recognition, speaker recognition

 Ranking / Similarity evaluation [preference relationships between classes]

• Example: information retrieval

 Learn the underlying structure in data for a target application



Approaches to learning

 Parametric

 A priori model assumption

 Use training data to learn “model” parameters

 Training data discarded after learning

 Performance  a priori assumptions

 Nonparametric

 No model assumption

 “Let the data speak for itself”

 Retain training data for prediction

 Better performance

 Computationally expensive



Kernel machines

Robust non-parametric machine learning approaches

At their core: linear algebra operations on matrices of kernel

functions

Given: data in Rd, X={x1,x2,…,xN};

 Kernel matrix similarity between pairs of data points

Each element given by a function; for example,



 Most of these kernel based learning approaches scale O(N2) or

O(N3) in time with respect to data

 There is also O(N2) memory requirement in many of these

 This is undesirable for very large datasets

Popular kernel machines



Computational bottlenecks in kernel machines

1. Weighted kernel summation

 Ex. Kernel density estimation

 O(N2) time and space complexity

2. Kernel matrix-vector product within iterative solvers

 Ex. kernel PCA, kernel ridge regression

 O(N2) time and space complexity per iteration

3. Kernel matrix decompositions (Cholesky/QR)

 O(N3) time and O(N2) space complexity



Objective

 Address the scalability issue (time and memory) using GPUs

 Illustrate in several learning applications

 Kernel density estimation

 Mean shift clustering

 Gaussian process regression

 Ranking

 Spectral regression kernel discriminant analysis (SRKDA)



Overview

 Graphical processors

 CUDA architecture

 Category1: Kernel summation

 Algorithm

 Application: Kernel density estimation

 Category2: Iterative formulation

 Application: Mean shift clustering

 Application: Gaussian process regression

 Application: Ranking

 Category3: Kernel decomposition

 Approach

 Application: Spectral regression kernel discriminant analysis



Graphical processing units (GPU)



Graphics processors

 Graphics processors were developed to cater to the demands of

real-time high definition graphics

 Graphics processing units (GPU)

 Highly parallel, multi-core processor

 Tremendous computational horsepower

 High memory bandwidth

 General purpose computation (GPGPU)

 Single program multiple data architecture

 High arithmetic intensity



Figure from: NVIDIA CUDA Programming Guide 3.0. 2010

CPU vs GPU



Compute Unified Device Architechture (CUDA)

 NVIDIA introduced CUDA in November 2006

 Resulted in GPUs to be viewed as a bunch of parallel coprocessors

assisting the main processor

 Result in more easier use of GPUs for general purpose problems

 Different GPU memories

 Global memory - access time: 400 clock cycles

• Cheaper to access consecutive memory locations

 Shared memory & Registers

• Cheapest access time, as less as an instruction execution time

 Main concerns in GPU

 Memory accesses

 Transfer to local cache and operate on this data.



CUDA Memory Model

Thread

Local Memory

Grid 0

. . 

. Global
Memory

. . .

Grid 1

Block

Shared
Memory



Category1: Kernel summation



Kernel summation on GPU

 Data:

 Source points xi, i=1,…,N,

 Evaluation points yj, j=1,…,M

 Each thread evaluates the sum corresponding to one evaluation point:

 Algorithm:

Load yj corresponding 
to the current thread in 

to a local register

Load the first chunk of 
source data to the 
shared memory

Evaluate part of kernel 
sum corresponding to xj

in the shared memory. 

Store the result in a 
local registerAll the source points 

processed? 

Write the sum in the 
local register to the 

global memory. 

yj
Xi;i={1..k}

fj

Yes



GPU based speedups

Advantages: 

Can be easily extended to any kernel 

Performs well up to 100 dimensions

Disadvantages:

Memory restrictions

Quadratic time complexity

0 10 20 30 40 50
10

1

10
2

10
3

Dimension

S
p
e
e
d
u
p

Kernel summation on GPU

 

 

Gaussian

Epanechnikov

Matern

Periodic

CPU: Intel Quad core processor

GPU: Tesla C1060



FIGTREE

 Algorithmic acceleration of Gaussian summation

 Guaranteed ε-error bound

 Automatically tunes between two O(N) approaches

 Tree-based approach (low Gaussian bandwidths)

 Improved fast Gauss transform (large Gaussian bandwidths)

 Advantage: O(N)

 Disadvantage: time advantage only up to 10 data dimensions

Yang, C., Duraiswami, C., and Davis, L. Efficient kernel machines using the improved fast gauss transform.

In Advances in Neural Information Processing Systems, 2004.

D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss transforms. In Advances in Neural Information 

Processing Systems 18, pages 747–754. 2006.

Raykar, V.C. and Duraiswami, R. The improved fast Gauss transform with applications to machine learning.

In Large Scale Kernel Machines, pp. 175–201, 2007.

Morariu, V., Srinivasan, B.V., Raykar, V.C., Duraiswami, R., and Davis, L. Automatic online tuning for fast

Gaussian summation. In Advances in Neural Information Processing Systems, 2008.

Available at: http://www.umiacs.umd.edu/~morariu/figtree/

http://www.umiacs.umd.edu/~morariu/figtree/


10
3

10
4

10
5

10
6

10
-2

10
0

10
2

Data Size

T
im

e
 t
a
k
e
n

Double precision (3-d data)

 

 

GPUML

FIGTREE

10
3

10
4

10
5

10
6

10
-2

10
0

10
2

Data Size

T
im

e
 t
a
k
e
n

Single precision (3-d data)

 

 

GPUML

FIGTREE

GPUML vs FIGTREE

10
0

10
1

10
2

10
-4

10
-2

10
0

10
2

Dimensions (10,000-sized data)

T
im

e
 t
a
k
e
n

 

 

GPUML - Single

FIGTREE - Single

GPUML - Double

FIGTREE - Double



Application1: Kernel Density Estimation

 Non-parametric way of estimating probability density function

of a random variable

 Two popular kernels: Gaussian and Epanechnikov



Application1: Results on standard distributions

 Performed KDE on 15 normal mixture densities from [1] 

based on 10,000 samples:

1. J. S. Marron and M. P. Wand, “Exact Mean Integrated Squared Error”, The Annals of Statistics, Vol. 20, 

No. 2, 712-736, 1992

Gaussian kernel

CPU time 25.14s

GPU time 0.02s

Mean absolute error ~10-7

Epanechnikov

kernel

CPU time 25.11s

GPU time 0.01s

Mean absolute error ~10-7



Category2: Iterative formulations



Application2: Mean shift clustering

 Mode seeking approach

 Gradient ascent with kernel density estimates

 Took only ~15s to converge against 1.7 hours by a direct

approach

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), pp. 603–619.



Application3: Gaussian Process Regression

 Bayesian regression

 Given data D = {xi, yi}, i=1..N

 Learn:

 Test point x*, need to find f(x*) or f*

 Gaussian process:

 f(x): zero-mean Gaussian process

 Process variance: K(x, x’) kernel function

 For Gaussian noise: P(f*|D,x*) = N(m,V)

 m=k*(x)(K+σ2I)-1y

 V= k(x*,x*) – k*(x) (K+σ2I)-1k*(x)

 K = kernel matrix of training data

 k* = kernel vector of test point w.r.t all training data

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005.



Application3: Gaussian Process Regression

 GPR model f*=k*(x)(K+σ2I)-1y

 Complexity – O(N3): solving the linear system

 Alternative1: Low ranked approximation1

 Train using a rank-m (m<N) approximation to matrix „K‟ to get O(m2N)

 Alternative2: Train on a subset (size m<N) of the actual data1

 Alternative3: O(kN2) using iterative solvers like Conjugate

gradient1

 Accelerate each iteration using GPU

 Have also designed a novel preconditioner for better convergence1

1. C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005 

(chapter 8)

2. Srinivasan BV, Duraiswami R, Gumerov N, "Fast matrix-vector product based FGMRES for kernel 

machines", 11th Copper Mountain Conference on Iterative Methods, April 2010



Application3: GPR using GPUML

Dataset d N CPU GPU
GPU with

preconditioner

Boston

housing
13 506

1.8s

(23)

0.11s

(23)

0.43s

(3)

Stock 9 950
6.6s

(28)

0.174s

(28)

0.786s

(4)

Abalone 7 4177
105s

(25)

0.6s

(26)

0.4s

(2)

Computer 

activity
8 4499

920s

(48)

6s

(47)

3.5s

(3)

California 

housing
9 950 --

28s

(84)

39s

(2)

Sarcos 27 44440 --
1399s

(166)

797s

(4)

Iterations to converge shown in braces



Application4: Ranking

 Information retrieval

 Given features Xi and Xj

 Learn preference relationships between Xi & Xj

 Ranking function: f: Rd
R

 f(Xi)>f(Xj) if Xi preferred over Xj

 Maximize Wilcoxon-Mann-Whitney statistic

G. Omer, R. Rosales, and B. Krishnapuram, “Learning rankings via convex hull separation”, in Advances in

Neural Information Processing Systems, 2006, pp. 395–402.

V. Raykar, R. Duraiswami, and B. Krishnapuram, “A fast algorithm for learning a ranking function from

large-scale data sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, pp. 1158–1170.



Application4: Ranking 

Dataset d x N Raykar et al. GPU

Error in WMW statistic

Training 

data
Test data

Auto 8 x 392 0.75s 0.52s ~10-4 ~10-4

California

housing
9 x 20640 105s 28s ~10-3 ~10-3

Computer 

Activity
22 x 8192 5.6s 5.5s ~10-4 ~10-4

Abalone 8 x 4177 10s 5s ~10-3 ~10-3

V. Raykar, R. Duraiswami, and B. Krishnapuram, “A fast algorithm for learning a ranking function from

large-scale data sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, pp. 1158–

1170.



Category3: Kernel decomposition



Cholesky / QR decompositions on GPU

 Several GPU-based approaches exist

 Can be used as is! 

 As data size/dimension increase

 Kernel construction  bottleneck

 Solution:

 Construct kernel matrix on GPU

 Use accelerated decompositions

V. Volkov and J. Demmel, “LU, QR and Cholesky factorizations using vector capabilities of GPUs”, Tech Rep.

UCB/EECS-2008-49, EECS Department, University of California, Berkeley, May 2008.



Kernel construction on GPU

Load a chunk of 
evaluation point in a 

local register 

Load xj to the shared 
memory by in blocks

Compute the 
“distance” contribution 
of the current chunk in 

a local register and 
load the next chunk. 

Use the computed 
distance for evaluating 

the matrix entry

Write the final 
computed kernel 

matrix entries into 
global memory

Use the kernel matrix 
with "GPU-based 
decompositions"

yj

Xii

i={1..k1}
j={1..k2}

Repeat until the entire 

data is processed

 Data:

 Source points xi, i=1,…,N,

 Evaluation points yj, j=1,…,M

 Each thread evaluates one kernel matrix element

 Algorithm:



Kernel decomposition on GPU

10
1

10
2

10
3

10
4

2

3

4

5

6

7

8

9

Data dimension

S
p

e
e

d
u

p

 

 

Cholesky

QR



Application5: SRKDA

 Linear Discriminant Analysis (LDA): 

 Maximize inter-class variance

 Minimize intra-class variance

 Kernel Discriminant Analysis (KDA) 

 LDA in kernel space

 Eigen decomposition of kernel matrix

 SRKDA

 Cast KDA as a spectral regression problem

 Solve kernel system using Cholesky

decomposition

DataSize Direct GPU

1000 0.6s 0.3s

2500 4.4s 2.1s

5000 22s 12s

7500 60s 37s

D. Cai, X. He, and J. Han, “Efficient kernel discriminant analysis via spectral regression”, in IEEE

International Conference on Data Mining, IEEE Computer Society, 2007, pp. 427–432



Summary

 Kernel machines  robust, but computationally expensive

 Lack of scalability

 Address this using GPUs

 Illustrated with:

 Kernel density estimation

 Mean shift clustering

 Gaussian process regression

 Ranking

 Spectral Regression KDA

 Released as an open source package, GPUML

 http://www.umiacs.umd.edu/~balajiv/GPUML.htm



GPUML: Graphical processors for speeding up 

kernel machines

http://www.umiacs.umd.edu/~balajiv/GPUML.htm

Balaji Vasan Srinivasan, Qi Hu, Ramani Duraiswami

Department of Computer Science,

University of Maryland, College Park

Workshop on High Performance Analytics –

Algorithms, Implementations and Applications

Siam Conference on Data Mining, 2010


