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Large datasets

» Improved sensors — ease of data collection

» Large datasets
= Millions of samples (tall)
= Large number of attributes (fat)

» Objective: extract meaningful information from data
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Extracting information from the data

RyLb

» Raw data to an interpretable version
= Example: Speech signal - speaker
= Function estimation: f: X =2Y

» Information extraction categories:
= Density estimation [evaluating the class membership]
= Regression [fitting a continuous function]
*Y=R
« Example: predicting temperature from historic data

= Classification [classify into one of the predefined classes]
o Y={-1+1}
« Example: Object recognition, speaker recognition

= Ranking / Similarity evaluation [preference relationships between classes]
« Example: information retrieval

» Learn the underlying structure in data for a target application
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Approaches to learning

» Parametric
= A priori model assumption
= Use training data to learn “model” parameters
» Training data discarded after learning
= Performance <> a priori assumptions

» Nonparametric

= No model assumption
“Let the data speak for itself”
Retain training data for prediction
Better performance
Computationally expensive
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Kernel machines

RyLb

» Robust non-parametric machine learning approaches

» At their core: linear algebra operations on matrices of kernel
functions

» Given: data in RY, X={X;,X,,...,.X\};
= Kernel matrix <& similarity between pairs of data points

» Each element given by a fynction; for example,
k;; = sexp (— ”mi;zxj” )
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Popular kernel machines ®

TRYLN

» Most of these kernel based learning approaches scale O(N?) or
O(N3) in time with respect to data

Training Prediction Choosing
(N examples) | (at NV points) | parameters
Kernel regression O(N?) O(N?) O(N?)
Gaussian processes O(N3) O(N?) O(N?)
SVM ON%) | _O(NuN) | O(NE)
Ranking O(N?)
KDE O(N?) O(N?)
Laplacian eigenmaps O(N?>)
Kernel PCA O(N?)

» There is also O(N?) memory requirement in many of these
» This is undesirable for very large datasets
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Computational bottlenecks in kernel machines

1. Weighted kernel summation Yy gik(zi,7);  Kq
= EX. Kernel density estimation
= O(N?) time and space complexity
2. Kernel matrix-vector product within iterative solvers

= EXx. kernel PCA, kernel ridge regression
= O(N?) time and space complexity per iteration

3. Kernel matrix decompositions (Cholesky/QR)
= O(N3) time and O(N?) space complexity
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Objective

» Address the scalability issue (time and memory) using GPUs

> lllustrate in several learning applications
= Kernel density estimation
Mean shift clustering
Gaussian process regression
Ranking
Spectral regression kernel discriminant analysis (SRKDA)
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Overview

» Graphical processors
= CUDA architecture
» Categoryl: Kernel summation
= Algorithm
= Application: Kernel density estimation
» Category?2: Iterative formulation
= Application: Mean shift clustering
= Application: Gaussian process regression
= Application: Ranking
» Category3: Kernel decomposition

= Approach
= Application: Spectral regression kernel discriminant analysis
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Graphical processing units (GPU)
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Graphics processors

» Graphics processors were developed to cater to the demands of
real-time high definition graphics

» Graphics processing units (GPU)
= Highly parallel, multi-core processor

* Tremendous computational horsepower
= High memory bandwidth

» General purpose computation (GPGPU)
= Single program multiple data architecture
= High arithmetic intensity
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CPU vs GPU g
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GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
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Figure from: NVIDIA CUDA Programming Guide 3.0. 2010
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Compute Unified Device Architechture (CUDA) @
» NVIDIA introduced CUDA in November 2006

= Resulted in GPUs to be viewed as a bunch of parallel coprocessors
assisting the main processor

= Result in more easier use of GPUs for general purpose problems
» Different GPU memories

= Global memory - access time: 400 clock cycles
 Cheaper to access consecutive memory locations

= Shared memory & Registers
 Cheapest access time, as less as an instruction execution time

» Main concerns in GPU
= Memory accesses
» Transfer to local cache and operate on this data.
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|CUDA Memory Model &
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Categoryl: Kernel summation
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Kernel summation on GPU

» Data:
. - N
= Source points x;, i=1,...,N, f; =) .1 qik(x:,y5)
= Evaluation points y;, J=1,...,M
Each thread evaluates the sum corresponding to one evaluation point:

Y VYV

Algorithm:
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‘GPU based speedups

SN ak(zi,z); Kq

Kernel summation on GPU

 K(z,3) = sexp (——

—e— Gaussian

—8— Matern
—&— Periodic

—— Epanechnikov |

E K(z;,z) = s(1 — d(zi,2)°) x 1(d(x,7) < 1),

| K(wz,m) = 3(1 + \/gd(mhx)) X eXp(_\/gd(xiax))a
| K(zi,2) = sexp (—2sin*(m * d(z;, z))),

r r

Advantages:
Can be easily extended to any kernel
Performs well up to 100 dimensions

Disadvantages:

20 30 40

Dimension

CPU: Intel Quad core processor
GPU: Tesla C1060

50 Memory restrictions

Quadratic time complexity
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FIGTREE &

» Algorithmic acceleration of Gaussian summation
= Guaranteed e-error bound

» Automatically tunes between two O(N) approaches
= Tree-based approach (low Gaussian bandwidths)
= Improved fast Gauss transform (large Gaussian bandwidths)

» Advantage: O(N)
» Disadvantage: time advantage only up to 10 data dimensions

Yang, C., Duraiswami, C., and Davis, L. Efficient kernel machines using the improved fast gauss transform.

In Advances in Neural Information Processing Systems, 2004.
D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss transforms. In Advances in Neural Information

Processing Systems 18, pages 747—754. 2006.
Raykar, V.C. and Duraiswami, R. The improved fast Gauss transform with applications to machine learning.

In Large Scale Kernel Machines, pp. 175-201, 2007.
Morariu, V., Srinivasan, B.V., Raykar, V.C., Duraiswami, R., and Davis, L. Automatic online tuning for fast

Gaussian summation. In Advances in Neural Information Processing Systems, 2008.
Available at: http://www.umiacs.umd.edu/~morariu/figtree/
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http://www.umiacs.umd.edu/~morariu/figtree/

GPUML vs FIGTREE ®
TRYLN
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Applicationl: Kernel Density Estimation @)

<ol

» Non-parametric way of estimating probability density function
of a random variable

f(x)=1/(Nh) ;v K(z, ;)

-21 =13 0.4 1.9 541 6.2

» Two popular kernels: Gaussian and Epanechnikov

K(z;,1) = sXexp (_(d(x;x)ﬁ)

K(zi,z) = sx(1—d(zi2)?) x 1(d(zi,2) < 1), (2)
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Applicationl: Results on standard distributions
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» Performed KDE on 15 normal mixture densities from [1]
based on 10,000 samples:

Gaussian kernel

Epanechnikov
kernel

1. J. S. Marron and M. P. Wand, “Exact Mean Integrated Squared Error”, The Annals of Statistics, Vol. 20,
No. 2, 712-736, 1992
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Category?2: Iterative formulations
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Application2: Mean shift clustering

» Mode seeking approach
» Gradient ascent with kernel density estimates

» Took only ~15s to converge against 1.7 hours by a direct
approach

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), pp. 603-619.
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Application3: Gaussian Process Regression

> Bayesian regression .

> GivendataD = {x, y},i=L.N o
= Learn: y=f(x)+¢,e ~ N(0,0?) d
= Test point X., need to find f(x*) or f.  -os

» (Gaussian process: S
= f(x): zero-mean Gaussian process 02 04 _ o0s 08 1
= Process variance: K(x, x’) <> kernel function

» For Gaussian noise: P(fJD,x.) = N(m,V)

m=k.(x)(K+0?1)ly

V= K(X«,Xs) — Ku(X) (K+3T21)2K.(X)

K = kernel matrix of training data

k* = kernel vector of test point w.r.t all training data

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005.
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Application3: Gaussian Process Regression

» GPR model = f.=k.(X)(K+0?l)1y
» Complexity — O(N?3): solving the linear system
> Alternativel: Low ranked approximationt
= Train using a rank-m (m<N) approximation to matrix ‘K’ to get O(m?N)
> Alternative2: Train on a subset (size m<N) of the actual data’
> Alternative3: O(kN?) using iterative solvers like Conjugate
gradient?

= Accelerate each iteration using GPU
= Have also designed a novel preconditioner for better convergence!

1. C.Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005
(chapter 8)

2. Srinivasan BV, Duraiswami R, Gumerov N, "Fast matrix-vector product based FGMRES for kernel
machines", 11th Copper Mountain Conference on Iterative Methods, April 2010
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Application3: GPR using GPUML
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Application4: Ranking -

» Information retrieval
= Given features X; and X,
= Learn preference relationships between X; & X;

» Ranking function: f: R42R
= f(X))>f(X;) If X; preferred over X;
» Maximize Wilcoxon-Mann-Whitney statistic

D e, Z Z;ngi F(ad)>f(2i)
WMW & o .
(f) Ze@g Zk 1 L= 31 1 ‘1 gHe” Hk 1A

erfc() 4 o [wT(x{ - 337,;)}

G. Omer, R. Rosales, and B. Krishnapuram, “Learning rankings via convex hull separation”, in Advances in
Neural Information Processing Systems, 2006, pp. 395-402.

V. Raykar, R. Duraiswami, and B. Krishnapuram, “A fast algorithm for learning a ranking function from
large-scale data sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, pp. 1158-1170.
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Application4: Ranking &

Error in WMW statistic

Dataset dx N Raykar et al. GPU

Training

data Test data

V. Raykar, R. Duraiswami, and B. Krishnapuram, “A fast algorithm for learning a ranking function from
large-scale data sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, pp. 1158—
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Category3: Kernel decomposition
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Cholesky / QR decompositions on GPU

RyLb

» Several GPU-based approaches exist
= Can be used as Is!

> As data size/dimension increase
= Kernel construction =» bottleneck

» Solution:

= Construct kernel matrix on GPU
= Use accelerated decompositions

V. Volkov and J. Demmel, “LU, QR and Cholesky factorizations using vector capabilities of GPUs”, Tech Rep.
UCB/EECS-2008-49, EECS Department, University of California, Berkeley, May 2008.
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Kernel construction on GPU

» Data:

= Source points x;, iI=1,...,N,

= Evaluation points y,, j=1,...,M Repeat until the entire
> Each thread evaluates one kernel matrix element data is processed

» Algorithm:

=
L s
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Kernel decomposition on GPU
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Application5;: SRKDA &

RYLPS\Q
» Linear Discriminant Analysis (LDA):

= Maximize inter-class variance

= Minimize intra-class variance

» Kernel Discriminant Analysis (KDA) _

= LDA in kernel space 1000
= Eigen decomposition of kernel matrix
2500 4.4s 2.1s
» SRKDA
= Cast KDA as a spectral regression problem [ 2900 A —
= Solve kernel system using Cholesky 7500 60s 37s

decomposition

D. Cai, X. He, and J. Han, “Efficient kernel discriminant analysis via spectral regression”, in IEEE
International Conference on Data Mining, IEEE Computer Society, 2007, pp. 427-432

acs i
Vol Myt basel Institute for Adbvamord Computer Stostion Perceptual Interfaces and Reality Laboratory




Summary &

» Kernel machines =» robust, but computationally expensive
= Lack of scalability

» Address this using GPUSs

> Illustrated with:

= Kernel density estimation
Mean shift clustering
Gaussian process regression
Ranking
Spectral Regression KDA

» Released as an open source package, GPUML
= http://www.umiacs.umd.edu/~balajiv/GPUML.htm
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