
GPUML: Graphical processors for speeding up

kernel machines

http://www.umiacs.umd.edu/~balajiv/GPUML.htm

Balaji Vasan Srinivasan, Qi Hu, Ramani Duraiswami

Department of Computer Science,

University of Maryland, College Park

Workshop on High Performance Analytics –

Algorithms, Implementations and Applications

Siam Conference on Data Mining, 2010

Large datasets

 Improved sensors – ease of data collection

 Large datasets

 Millions of samples (tall)

 Large number of attributes (fat)

 Objective: extract meaningful information from data

Extracting information from the data

 Raw data to an interpretable version

 Example: Speech signal speaker

 Function estimation: f: X Y

 Information extraction categories:

 Density estimation [evaluating the class membership]

 Regression [fitting a continuous function]

• Y = R

• Example: predicting temperature from historic data

 Classification [classify into one of the predefined classes]

• Y={-1,+1}

• Example: Object recognition, speaker recognition

 Ranking / Similarity evaluation [preference relationships between classes]

• Example: information retrieval

 Learn the underlying structure in data for a target application

Approaches to learning

 Parametric

 A priori model assumption

 Use training data to learn “model” parameters

 Training data discarded after learning

 Performance a priori assumptions

 Nonparametric

 No model assumption

 “Let the data speak for itself”

 Retain training data for prediction

 Better performance

 Computationally expensive

Kernel machines

Robust non-parametric machine learning approaches

At their core: linear algebra operations on matrices of kernel

functions

Given: data in Rd, X={x1,x2,…,xN};

 Kernel matrix similarity between pairs of data points

Each element given by a function; for example,

 Most of these kernel based learning approaches scale O(N2) or

O(N3) in time with respect to data

 There is also O(N2) memory requirement in many of these

 This is undesirable for very large datasets

Popular kernel machines

Computational bottlenecks in kernel machines

1. Weighted kernel summation

 Ex. Kernel density estimation

 O(N2) time and space complexity

2. Kernel matrix-vector product within iterative solvers

 Ex. kernel PCA, kernel ridge regression

 O(N2) time and space complexity per iteration

3. Kernel matrix decompositions (Cholesky/QR)

 O(N3) time and O(N2) space complexity

Objective

 Address the scalability issue (time and memory) using GPUs

 Illustrate in several learning applications

 Kernel density estimation

 Mean shift clustering

 Gaussian process regression

 Ranking

 Spectral regression kernel discriminant analysis (SRKDA)

Overview

 Graphical processors

 CUDA architecture

 Category1: Kernel summation

 Algorithm

 Application: Kernel density estimation

 Category2: Iterative formulation

 Application: Mean shift clustering

 Application: Gaussian process regression

 Application: Ranking

 Category3: Kernel decomposition

 Approach

 Application: Spectral regression kernel discriminant analysis

Graphical processing units (GPU)

Graphics processors

 Graphics processors were developed to cater to the demands of

real-time high definition graphics

 Graphics processing units (GPU)

 Highly parallel, multi-core processor

 Tremendous computational horsepower

 High memory bandwidth

 General purpose computation (GPGPU)

 Single program multiple data architecture

 High arithmetic intensity

Figure from: NVIDIA CUDA Programming Guide 3.0. 2010

CPU vs GPU

Compute Unified Device Architechture (CUDA)

 NVIDIA introduced CUDA in November 2006

 Resulted in GPUs to be viewed as a bunch of parallel coprocessors

assisting the main processor

 Result in more easier use of GPUs for general purpose problems

 Different GPU memories

 Global memory - access time: 400 clock cycles

• Cheaper to access consecutive memory locations

 Shared memory & Registers

• Cheapest access time, as less as an instruction execution time

 Main concerns in GPU

 Memory accesses

 Transfer to local cache and operate on this data.

CUDA Memory Model

Thread

Local Memory

Grid 0

. .

. Global
Memory

. . .

Grid 1

Block

Shared
Memory

Category1: Kernel summation

Kernel summation on GPU

 Data:

 Source points xi, i=1,…,N,

 Evaluation points yj, j=1,…,M

 Each thread evaluates the sum corresponding to one evaluation point:

 Algorithm:

Load yj corresponding
to the current thread in

to a local register

Load the first chunk of
source data to the
shared memory

Evaluate part of kernel
sum corresponding to xj

in the shared memory.

Store the result in a
local registerAll the source points

processed?

Write the sum in the
local register to the

global memory.

yj
Xi;i={1..k}

fj

Yes

GPU based speedups

Advantages:

Can be easily extended to any kernel

Performs well up to 100 dimensions

Disadvantages:

Memory restrictions

Quadratic time complexity

0 10 20 30 40 50
10

1

10
2

10
3

Dimension

S
p
e
e
d
u
p

Kernel summation on GPU

Gaussian

Epanechnikov

Matern

Periodic

CPU: Intel Quad core processor

GPU: Tesla C1060

FIGTREE

 Algorithmic acceleration of Gaussian summation

 Guaranteed ε-error bound

 Automatically tunes between two O(N) approaches

 Tree-based approach (low Gaussian bandwidths)

 Improved fast Gauss transform (large Gaussian bandwidths)

 Advantage: O(N)

 Disadvantage: time advantage only up to 10 data dimensions

Yang, C., Duraiswami, C., and Davis, L. Efficient kernel machines using the improved fast gauss transform.

In Advances in Neural Information Processing Systems, 2004.

D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss transforms. In Advances in Neural Information

Processing Systems 18, pages 747–754. 2006.

Raykar, V.C. and Duraiswami, R. The improved fast Gauss transform with applications to machine learning.

In Large Scale Kernel Machines, pp. 175–201, 2007.

Morariu, V., Srinivasan, B.V., Raykar, V.C., Duraiswami, R., and Davis, L. Automatic online tuning for fast

Gaussian summation. In Advances in Neural Information Processing Systems, 2008.

Available at: http://www.umiacs.umd.edu/~morariu/figtree/

http://www.umiacs.umd.edu/~morariu/figtree/

10
3

10
4

10
5

10
6

10
-2

10
0

10
2

Data Size

T
im

e
 t
a
k
e
n

Double precision (3-d data)

GPUML

FIGTREE

10
3

10
4

10
5

10
6

10
-2

10
0

10
2

Data Size

T
im

e
 t
a
k
e
n

Single precision (3-d data)

GPUML

FIGTREE

GPUML vs FIGTREE

10
0

10
1

10
2

10
-4

10
-2

10
0

10
2

Dimensions (10,000-sized data)

T
im

e
 t
a
k
e
n

GPUML - Single

FIGTREE - Single

GPUML - Double

FIGTREE - Double

Application1: Kernel Density Estimation

 Non-parametric way of estimating probability density function

of a random variable

 Two popular kernels: Gaussian and Epanechnikov

Application1: Results on standard distributions

 Performed KDE on 15 normal mixture densities from [1]

based on 10,000 samples:

1. J. S. Marron and M. P. Wand, “Exact Mean Integrated Squared Error”, The Annals of Statistics, Vol. 20,

No. 2, 712-736, 1992

Gaussian kernel

CPU time 25.14s

GPU time 0.02s

Mean absolute error ~10-7

Epanechnikov

kernel

CPU time 25.11s

GPU time 0.01s

Mean absolute error ~10-7

Category2: Iterative formulations

Application2: Mean shift clustering

 Mode seeking approach

 Gradient ascent with kernel density estimates

 Took only ~15s to converge against 1.7 hours by a direct

approach

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), pp. 603–619.

Application3: Gaussian Process Regression

 Bayesian regression

 Given data D = {xi, yi}, i=1..N

 Learn:

 Test point x*, need to find f(x*) or f*

 Gaussian process:

 f(x): zero-mean Gaussian process

 Process variance: K(x, x’) kernel function

 For Gaussian noise: P(f*|D,x*) = N(m,V)

 m=k*(x)(K+σ2I)-1y

 V= k(x*,x*) – k*(x) (K+σ2I)-1k*(x)

 K = kernel matrix of training data

 k* = kernel vector of test point w.r.t all training data

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005.

Application3: Gaussian Process Regression

 GPR model f*=k*(x)(K+σ2I)-1y

 Complexity – O(N3): solving the linear system

 Alternative1: Low ranked approximation1

 Train using a rank-m (m<N) approximation to matrix „K‟ to get O(m2N)

 Alternative2: Train on a subset (size m<N) of the actual data1

 Alternative3: O(kN2) using iterative solvers like Conjugate

gradient1

 Accelerate each iteration using GPU

 Have also designed a novel preconditioner for better convergence1

1. C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005

(chapter 8)

2. Srinivasan BV, Duraiswami R, Gumerov N, "Fast matrix-vector product based FGMRES for kernel

machines", 11th Copper Mountain Conference on Iterative Methods, April 2010

Application3: GPR using GPUML

Dataset d N CPU GPU
GPU with

preconditioner

Boston

housing
13 506

1.8s

(23)

0.11s

(23)

0.43s

(3)

Stock 9 950
6.6s

(28)

0.174s

(28)

0.786s

(4)

Abalone 7 4177
105s

(25)

0.6s

(26)

0.4s

(2)

Computer

activity
8 4499

920s

(48)

6s

(47)

3.5s

(3)

California

housing
9 950 --

28s

(84)

39s

(2)

Sarcos 27 44440 --
1399s

(166)

797s

(4)

Iterations to converge shown in braces

Application4: Ranking

 Information retrieval

 Given features Xi and Xj

 Learn preference relationships between Xi & Xj

 Ranking function: f: Rd
R

 f(Xi)>f(Xj) if Xi preferred over Xj

 Maximize Wilcoxon-Mann-Whitney statistic

G. Omer, R. Rosales, and B. Krishnapuram, “Learning rankings via convex hull separation”, in Advances in

Neural Information Processing Systems, 2006, pp. 395–402.

V. Raykar, R. Duraiswami, and B. Krishnapuram, “A fast algorithm for learning a ranking function from

large-scale data sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, pp. 1158–1170.

Application4: Ranking

Dataset d x N Raykar et al. GPU

Error in WMW statistic

Training

data
Test data

Auto 8 x 392 0.75s 0.52s ~10-4 ~10-4

California

housing
9 x 20640 105s 28s ~10-3 ~10-3

Computer

Activity
22 x 8192 5.6s 5.5s ~10-4 ~10-4

Abalone 8 x 4177 10s 5s ~10-3 ~10-3

V. Raykar, R. Duraiswami, and B. Krishnapuram, “A fast algorithm for learning a ranking function from

large-scale data sets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, pp. 1158–

1170.

Category3: Kernel decomposition

Cholesky / QR decompositions on GPU

 Several GPU-based approaches exist

 Can be used as is!

 As data size/dimension increase

 Kernel construction bottleneck

 Solution:

 Construct kernel matrix on GPU

 Use accelerated decompositions

V. Volkov and J. Demmel, “LU, QR and Cholesky factorizations using vector capabilities of GPUs”, Tech Rep.

UCB/EECS-2008-49, EECS Department, University of California, Berkeley, May 2008.

Kernel construction on GPU

Load a chunk of
evaluation point in a

local register

Load xj to the shared
memory by in blocks

Compute the
“distance” contribution
of the current chunk in

a local register and
load the next chunk.

Use the computed
distance for evaluating

the matrix entry

Write the final
computed kernel

matrix entries into
global memory

Use the kernel matrix
with "GPU-based
decompositions"

yj

Xii

i={1..k1}
j={1..k2}

Repeat until the entire

data is processed

 Data:

 Source points xi, i=1,…,N,

 Evaluation points yj, j=1,…,M

 Each thread evaluates one kernel matrix element

 Algorithm:

Kernel decomposition on GPU

10
1

10
2

10
3

10
4

2

3

4

5

6

7

8

9

Data dimension

S
p

e
e

d
u

p

Cholesky

QR

Application5: SRKDA

 Linear Discriminant Analysis (LDA):

 Maximize inter-class variance

 Minimize intra-class variance

 Kernel Discriminant Analysis (KDA)

 LDA in kernel space

 Eigen decomposition of kernel matrix

 SRKDA

 Cast KDA as a spectral regression problem

 Solve kernel system using Cholesky

decomposition

DataSize Direct GPU

1000 0.6s 0.3s

2500 4.4s 2.1s

5000 22s 12s

7500 60s 37s

D. Cai, X. He, and J. Han, “Efficient kernel discriminant analysis via spectral regression”, in IEEE

International Conference on Data Mining, IEEE Computer Society, 2007, pp. 427–432

Summary

 Kernel machines robust, but computationally expensive

 Lack of scalability

 Address this using GPUs

 Illustrated with:

 Kernel density estimation

 Mean shift clustering

 Gaussian process regression

 Ranking

 Spectral Regression KDA

 Released as an open source package, GPUML

 http://www.umiacs.umd.edu/~balajiv/GPUML.htm

GPUML: Graphical processors for speeding up

kernel machines

http://www.umiacs.umd.edu/~balajiv/GPUML.htm

Balaji Vasan Srinivasan, Qi Hu, Ramani Duraiswami

Department of Computer Science,

University of Maryland, College Park

Workshop on High Performance Analytics –

Algorithms, Implementations and Applications

Siam Conference on Data Mining, 2010

