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Abstract
Modern operating systems specialize in partitioning the physical
compute resources of a computer among software applications. Ef-
fective partitioning of physical resources enables multiple appli-
cations to securely execute on the same physical machine while
maintaining performance isolation. In a virtualized environment, a
hypervisor partitions physical resources, among virtual machines.
This enables virtual machines to securely execute on the same ma-
chine without affecting one another.

VMware R©’s ESX R© Server is a hypervisor that provides con-
trols for partitioning memory and CPU resources among virtual
machines. ESX implements a hierarchical partitioning of memory
and CPU resources using resource groups. Resources are hierar-
chically partitioned based on their placement in a tree structure.
Resource attributes such as reservation, limit and shares provide
users with fine-grained partitioning controls.

Hierarchical memory resource groups are a powerful tool en-
abling the partitioning of the physical memory resource of a com-
puter. This enables fine-grained partitioning of compute memory
among virtual machines in the datacenter. Partitioning can be de-
ployed by a user or by automated datacenter management software.

This article describes the memory partitioning scheme of ESX,
provides examples to demonstrate its use and empirically evaluates
its effectiveness.

General Terms memory management, memory partition, mem-
ory resource groups

Keywords ESX Server, memory resource management

1. Introduction
The operating system (OS) traditionally controls the amount of
resources that application software consumes on a single com-
pute node. Modern datacenters are equipped with an unprecedented
amount of compute resources, such as memory and CPU. Virtual-
ization of compute resources enables partitioning of the resources
available on a single compute node in the datacenter. Effective uti-
lization of the compute resources in a fair and efficient manner is an
important task for the virtualization software. The hypervisor [2, 5]
is software that virtualizes the physical compute resources from
a single compute node. A hypervisor equipped with a flexible re-
source partitioning scheme will enable efficient utilization of the
compute node.

Consider an example in which a virtualized compute node has
64GB of physical memory (pRAM). This memory is partitioned
into two fixed memory partitions – A with 32GB of pRAM and B
with 32GB of pRAM. Consider two virtual machines (VMs) – V1

and V2 – with virtual memory (vRAM) size of 24GB each. When
V1 is powered on under A, it receives 24GB of memory. If V2 is
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powered on under B, it also receives 24GB of memory. However, an
attempt to power on V2 under A will fail because the partition A has
only 32GB of total memory. This simple example highlights how
the physical memory resource of a compute node can be partitioned
by the hypervisor.

VMware’s ESX Server is a hypervisor that provides fine-
grained resource controls enabling users to partition physical mem-
ory and CPU resources among powered-on VMs [20]. This is done
using – (a) per-VM resource controls and (b) host-wide partitioning
of resources. ESX implements dynamic partitioning of resources
at both the per-VM and host-wide levels. A dynamic partitioning
scheme allows resources to flow between partitions while the hard-
ware is powered on.

Per-VM resource controls provide reservation, limit and shares
(RLS) attributes for controlling memory and CPU resources made
available to a VM. Host-wide partitioning is implemented using hi-
erarchical resource groups1 This is a software-based dynamic par-
titioning scheme whereby resources can flow from one partition to
another, if permitted, based on the RLS attributes of each partition.

This article describes hierarchical resource groups, for partition-
ing physical memory resources of ESX. ESX also provides similar
capabilities for partitioning physical CPU resources. A description
of CPU resource partitioning capabilities is not included in this arti-
cle. The remainder of this article is organized as follows. Section 2
provides information about memory partitioning schemes in con-
temporary OSs and hypervisors. Section 3 describes hierarchical
memory resource groups in the ESX Server. Section 4 shows em-
pirical results to demonstrate the effective use of memory resource
groups. Section 5 concludes the article.

2. Related work
There has been considerable academic interest in developing re-
source scheduling techniques for computing resources, for both
traditional OSs and contemporary hypervisors, over the past two
decades. An important goal was to develop controls for quality of
service and performance isolation between resource consumers.

Priority schedulers in OSs assign absolute priorities to resource
consumers, which can often be coarse-grained and ad-hoc [7].
Also, the priority assigned to one consumer could affect the re-
sources scheduled for another consumer. Fair schedulers [13, 14]
were found to be useful for coarse-grained controls but require
complex usage collection and fine-tuning. To address these short-
comings, Waldspurger et al. [21] developed Lottery Scheduling, a
proportional-share resource scheduler, to provide responsive con-
trol over resource scheduling. Stoica et al. [18] demonstrated how
a proportional-share resource scheduler could work with real-time
and non-real time requirements.

Hierarchical resource scheduling has also received attention.
Goyal et al. [9] show a hierarchical CPU scheduler for the Solaris

1 Resource groups are also known as resource pools in VMware’s vSphere
products.



kernel. It demonstrates how CPU resources can be partitioned,
in software, among different application classes. Each application
class can sub-divide its allocation to its own sub-classes.

Researchers have demonstrated reservation of compute re-
sources and limit controls as a means of implementing quality
of service. Bruno et al. [4] use Reservation Domains to guarantee
CPU, I/O, network and physical memory resources to processes.
Performance isolation in the IRIX OS has been shown by Vergh-
ese et al. [19]. In this work the authors use a software abstractions
called Software Performance Unit (SPU) to associate computing
resources, such as memory and I/O, with CPUs. The SPU imple-
ments the unit of isolation. Researchers have demonstrated perfor-
mance isolation in virtualization technologies such as Xen2 and
KVM3. Gupta et al. [11] shows improved VM performance isola-
tion with CPU resource limit controls in Xen Domains using the
SEDF-DC and ShareGuard mechanisms.

The Linux4 kernel and commercial OSs such as Microsoft5

Windows implement simple priority based scheduling for CPUs [3].
The Linux out-of-memory (OOM) killer contains a hint of memory
partitioning because it terminates processes that consume excessive
physical memory. FreeBSD6 implements OS-level partitioning of
execution environments, called Jail. This permits applications to
execute within a Jail without being able to access data belonging to
processes in another Jail. Jails, however, do not provide CPU and
memory resource partitioning and isolation between application
processes.

Hardware-based resource partitions have been implemented by
IBM and HP. IBM’s LPAR (Logical Partitioning) and HP’s nPar
(Hard Partitioning) use hardware techniques to electrically parti-
tion compute resource within a single server [10, 15]. An OS can
execute on one hardware partition with exclusive CPU and memory
resources assigned to the partition. However, because of physical
characteristics within each physical server, there are limited ways
to physically partition the hardware. Once a partition is configured,
resources can not be redistributed among partitions while the server
is powered on.

Software-based resource partitions augment the hardware parti-
tions. IBM’s PowerVM, a virtualization solution, introduced the
DLPAR (Dynamic Logical Partitioning) technology for dynami-
cally configuring CPU and memory resources among LPARs on a
server. HP’s vPar (Virtual Partitions) statically partitions compute
resources within a hardware partition (nPar).

Research on virtual machine monitors (VMM) and server
consolidation using hypervisors complemented compute resource
management. Bugnion et al. [5] developed Disco which enables
large-scale shared-memory multiprocessor machines to run un-
modified commodity OSs. They employed inexpensive software-
based virtualization on the IRIX OS to partition hardware re-
sources. Govil et al. [8] demonstrated fault tolerance using Cellu-
lar Disco. Techniques for workload consolidation, for hypervisors,
have also been developed. Memory page de-duplication [12, 17]
reduces the memory footprint of VMs. Live migration [6, 16, 22]
of VMs balances workloads across multiple hypervisors.

Software-based resource partitions offer the flexibility of dy-
namically distributing hardware resources among partitions. ESX
implements a software-based resource partitioning scheme. It
draws upon resource partitioning concepts such as reservation,
limits and shares to provide fine-grained control over the distri-

2 www.xenproject.org
3 www.linux-kvm.org
4 www.linux.org
5 www.microsoft.com
6 www.freebsd.org
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Figure 1. Memory resource groups form a tree-like structure in
ESX. Vertices represent resource group and edges connect parent
groups to their children. Five resource groups are shown in this
figure – G0–G4. ESX considers VMs (VM0, VM1) and user-worlds
(UW0) as resource groups with the same set of attributes. The
rectangle shape represents the special container resource group.
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Figure 2. The resource hierarchy below the USER resource group
is made visible to the user in vSphere products. The remaining
resource groups are used for book-keeping by ESX and are not
visible to users in vSphere products.

bution of resources among partitions. This is implemented using
hierarchical resource groups.

3. Hierarchical memory resource groups
This section describes the layout and configuration of hierarchical
memory resource groups in ESX.

3.1 Resource tree
Physical memory and CPU resources available to ESX are orga-
nized in the form of a tree. This is called the resource tree. A single
resource tree is used by ESX for organizing both memory and CPU
resources. This article describes the organization and partitioning
of memory resources based on the resource tree.

Figure 1 illustrates the concept of a resource tree in ESX.
The resource tree is a directed graph, whose vertices are resource
groups. A directed edge originates from a parent group and ter-



minates at one of its child groups. In Figure 1, vertices G0–G4
are resource groups. ESX also considers VMs and user-worlds
(UWs) as a resource group and creates special container resource
groups as leafs in the resource tree. VMs and UWs are memory
consumers because they allocate and use physical memory. The re-
source groups themselves do not consume, store or hoard memory.

A resource group has four associated memory attributes and
four CPU attributes. The memory attributes are mem.resv, mem.limit,
mem.shares and mem.resvLimit. These attributes are config-
urable by the user. They do not change until explicitly altered by
the user.

mem.resv indicates the amount of memory that is guaranteed
to be distributed to memory consumers placed under that resource
group. Memory consumers are typically VMs and UWs. The guar-
anteed memory is not reserved up-front for the consumers. How-
ever, ESX will make this amount of memory available by reclaim-
ing an appropriate amount from other memory consumers when
needed. For safe operation of ESX, ESX performs admission con-
trol on the mem.resv attribute when its value is altered on any re-
source group or when a new resource group is created.

mem.limit indicates the maximum memory that can be con-
sumed by all memory consumers placed under a resource group.
If memory consumers under a resource group attempt to consume
more memory, then ESX will reclaim memory from memory con-
sumers under that group. The amount of memory to reclaim from
each memory consumer will be determined by ESX based on their
RLS attributes and other consumption patterns of those memory
consumers. For a resource group mem.limit is always greater than
or equal to its mem.resv.

mem.shares indicates a relative priority of memory distribu-
tion between a resource group and its siblings. Typically, if the
total memory consumption below a resource group exceeds its
mem.limit, then mem.shares of its child resource group come
into play. Memory is distributed to its child resource groups based
on their mem.shares.

ESX can sometimes implicitly increase the value of mem.resv
at a resource group. The mem.resvLimit attribute indicates the
maximum value mem.resv can have at a given resource group.
It acts as an upper bound during this implicit increase. These
attributes are available for each resource group, including VMs and
UWs.

Figure 2 shows an example of a resource tree instantiated in
ESX. The HOST resource group is assigned all the physical memory
resources available to ESX. For example, on a 64GB ESX Server
the HOST resource group will have mem.resv = mem.resvLimit
= mem.limit = 64GB7.

The HOST resource group has four children – VIM, SYSTEM,
USER, IDLE. VMware’s vSphere R© products place all powered-on
VMs under the USER resource group. vSphere does not place non-
VM memory consumers under this resource group. The remain-
ing three resource groups are used by ESX for executing UWs,
for placing kernel modules and for other book-keeping purposes.
These three resource groups can be configured automatically by
ESX to contain memory resources to be made available to con-
sumers within them.

For the purpose of simplicity in the remainder of this section,
the resource tree model from Figure 1 will be used. In this model,
the G0 resource group is equivalent to the HOST resource group in
an ESX Server. The following subsections describe operations on
the resource tree.

7 The actual value may be slightly lower owing to memory pages being set
aside for booting ESX.

3.2 Structural operations
The resource tree allows structural operations – add, move and
delete – to be performed on it. Figure 3 (a) shows an example of
a resource tree with two resource groups, G0 and G1. Figures 3 (b),
3 (c) and 3 (d) show changes being made relative to the immedi-
ately precediing figure. All structural operations performed on the
resource tree are atomic in nature. That is, if an operation fails, the
resource tree will retain the structure and properties that were in
effect before the operation was initiated.

In Figure 3 (b), an add operation adds a new resource group G2
to the resource tree as a child of G0. The new resource group will
contain all the attributes described in Figure 1. For the operation to
succeed, G2, will undergo admission control (see Section 3.1).

In Figure 3 (c), a move operation has moved resource group
G2 to a new location as a child of group G1. The attributes of G2
remain unchanged with this operation. However, for the operation
to succeed, G2 will undergo admission control as a child of G1. If
admission control fails, then the operation is reverted.

In Figure 3 (d), a delete operation has deleted the resource group
G2. Only leaf resource groups can be deleted. The delete operation
on a leaf resource group does not fail.

3.3 Attribute operation and semantics
This section describes the four memory attributes of resource
groups. It also describes how ESX interprets and uses these at-
tributes for admission control and memory distribution among re-
source groups and memory consumers.

3.3.1 mem.resv

The mem.resv resource group attribute specifies the amount of
memory that is guaranteed to memory consumers under that re-
source group. This memory will be made available to the memory
consumers when required. It is not stored at the resource group.

Admission control is performed at a resource group G when
(1) the value of mem.resv is changed at one of its children and
(2) a new resource group is added as a child of G. The following
condition must be true before the above two operations are declared
to be successful.

parent.mem.resv >=
∑

child∈children

child.mem.resv (1)

In Equation 1, children includes the group being added to G.
Admission control is performed when a new group is added to the
resource tree as well as when a group is being moved within the
tree. The admission control ensures that a parent group always has
enough reservation to distribute to its children. The left-hand-side
of the equation is replaced with effective mem.resvwhen the parent
has a configured finite mem.resvLimit (see Section 3.3.2).

Figure 4 shows admission control being performed when mem.resv
is changed. For simplicity of explanation, it is assumed that
mem.resvLimit = mem.resv. This assumption is not always true
in ESX. Section 3.3.2 shows a realistic example in which both
mem.resv and mem.resvLimit are considered during admission
control. In Figure 4, resource groups are shown with their names
and values of mem.resv.

Figure 4 (a) shows the initial state of the resource tree. In this
state, Equation 1 is satisfied for every resource group. In Fig-
ure 4 (b), mem.resv for G3 is raised to 20. This change succeeds
because Equation 1 is satisfied by G3’s parent, G2. In Figure 4 (c),
an attempt is made to raise G3 to 40. This change fails because
Equation 1 fails at G2 (shaded). Similarly, Figure 4 (d) shows the
failure to raise G2’s mem.resv from 30 to 60.
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Figure 3. Structural operations on a resource tree – add, move and delete. (a) Initial state of the resource tree. Each subsequent figure is
relative to the immediately preceding figure. (b) G2 is added (c) G2 is moved (d) G2 is deleted.
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Figure 4. Operation on the mem.resv attribute. Resource groups are shown with their name and mem.resv values. Admission control with
Equation 1 is always performed at each resource group when mem.resv is changed. (a) Initial state of the resource tree. Subsequent figures
are relative to this figure. (b) G3 raised to 20 and succeeds (c) Attempted increase of G3 to 40 fails owing to admission control at G2 (d)
Attempted increase of G2 to 60 fails owing to admission control at G0.

3.3.2 mem.resvLimit

When an attempt is made to increase the mem.resv value of a
resource group G, admission control might fail the operation owing
to a failure of Equation 1 at a resource group. This will require
users to appropriately configure the value of mem.resv at one or
more ancestor resource groups of G.

ESX provides an expandable reservation scheme to automati-
cally perform this increase at all required ancestor resource groups
of G. It is implemented using the mem.resvLimit attribute. The
mem.resvLimit attribute provides ESX with a safe method of au-
tomatically and implicitly increasing the value of mem.resv at a
resource group to satisfy admission control. The mem.resvLimit
provides an upper bound on how much ESX can implicitly raise the
value of mem.resv.

Expandable reservation works by permitting ESX to implicitly
raise the mem.resv of a resource group, G, up to mem.resvLimit.
The implicitly computed value is called effective mem.resv of
G. After doing so, ESX must perform admission control, using
Equation 1, at G’s parent using the effective mem.resv. ESX can
continue to move up the resource tree until it reaches the top-most
resource group.

Figure 5 shows a resource tree to illustrate the use of mem.resvLimit.
In Figure 5, each resource group is labeled with its name and val-
ues of mem.resv and mem.resvLimit, separated by /. Figure 5 (a)
shows the initial state of the resource tree. In this state, all resource
groups satisfy Equation 1. Figures 5 (b), 5 (c), 5 (d), 5 (e) and 5 (f)
show changes being made relative to Figure 5 (a). In these figures,
resource groups can have different mem.resv and mem.resvLimit
values unlike Figure 4, in which all resource groups are assumed to
have mem.resvLimit = mem.resv.

In Figure 5 (b), an attempt is made to raise the mem.resv
of resource group G3 to 30. Without expandable reservation, the
admission control would have failed at group G2 using Equation 1
because an additional mem.resv of 10 is required at G2. However,
mem.resvLimit at G2 permits its mem.resv to be increased by
10. ESX implicitly attempts to increase mem.resv of G2 by 10 to
40. This is permissible at G0 using Equation 1. ESX first internally
computes an effective mem.resv for G2 as 40 and permits the
mem.resv of G3 to be increased to 30.

Figure 5 (c) shows that it is possible to configure mem.resvLimit
with any value. Admission control is not performed when the value
of mem.resvLimit is altered. In Figure 5 (c), the mem.resvLimit
of G1 and G2 are set to 80. It might or might not be possible to
implicitly raise the mem.resv of either resource group in future.
That will be known only when an attempt is made to increase their
mem.resv or the mem.resv of one of their children.

Figure 5 (d) shows an attempt to raise mem.resv of G3 to 40.
As before, admission control using Equation 1 fails at G2, because
an additional 20 mem.resv is required. However, mem.resvLimit
of G2 permits its mem.resv to be implicitly raised by only 10.
Hence, the implicit increase of mem.resv at G2 fails, and so does
the admission control.

Figure 5 (e) shows an attempt to raise the mem.resv of G3 to
50 after raising the mem.resvLimit of G2 to 80. Equation 1 at G2
would require an additional 30 of mem.resv at G2 to succeed. This
would implicitly raise the effective mem.resv of G2 to 60. However,
doing so would cause Equation 1 to fail at G0. Owing to this failure
at G0, admission control is deemed to have failed.

Figure 5 (f) shows an example in which G1 and G2 are altered,
followed by G3. It is left to the reader to determine why the change
to G3 succeeds.
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Figure 5. Operation on the mem.resv attribute in the presence
of mem.resvLimit. Each resource group contains its name and
(mem.resv / mem.resvLimit). (a) Initial state of resource tree.
Subsequent figures are relative to this figure. (b) Change to G3
succeeds owing to sufficient mem.resvLimitat G2 (c) Change to
mem.resvLimit always succeeds (d) Change to G3 fails owing to
insufficient mem.resvLimit at G2 (e) Change to G3 fails owing to
insufficient mem.resv at G0 (f) Change to G3 succeeds. Why?

These examples show how mem.resv and mem.resvLimit
work together to reserve memory for resource groups.

3.3.3 mem.shares

When distributing memory to a resource group, ESX works in a
top-down manner, starting from the root of the resource tree. ESX
takes all the memory at a given resource group and distributes it
among its children. ESX first distributes the mem.resv memory
for each child. This will always succeed at every level, because the
parent of a resource group always has enough memory to satisfy
the mem.resv of all its children (Equation 1). Thereafter, ESX will
distribute a parent’s memory to its children based on the children’s
relative memory shares8.

The relative share of a resource group determines the amount
of memory that a resource group will receive from its parent’s
distribution amount, relative to its sibling resource groups. The
mem.shares attribute enables the user to configure the relative
memory shares of a resource group.

Because mem.shares is a relative quantity, its absolute value is
not important. When a new resource group is added, the memory
distribution among its siblings is automatically adjusted. A user can
consider this quantity as a relative priority among sibling resource
groups. Figure 6 illustrates the use of mem.shares. Figure 6 (a)
is the initial state of the resource tree. In Figure 6 (a), the relative

8 ESX combines other usage factors such as activeness with relative shares

priority of resource groups G1 and G2 are indicated with 100 and
200 respectively. Mathematically, the memory distribution of their
parent, G0, will be distributed between them in the ratio 1:2 or 1/3
and 2/3 using fractional representation.

Figures 6 (b), 6 (c) and 6 (d) are each relative to the immediately
preceding figure. In Figure 6 (b), a new resource group G3, with
relative shares of 300 has been added to G0. As a result, the relative
distributions of G1 and G2 are automatically adjusted, relative to
G3. Similarly, in Figure 6 (c), G1 has been removed. The relative
distributions of the remaining groups are automatically adjusted
according to their relative shares. In Figure 6 (d), G4 and G5 have
been added to G3. The relative shares of the leaf-level resource
groups are shown. This example illustrates that relative shares
determine relative priority among siblings. Their absolute value is
not relevant at other levels of the resource tree.

3.3.4 mem.limit

The memory limit on a resource group is given by mem.limit.
This value determines the maximum amount of memory that can be
distributed to a resource group. It has a lower bound of mem.resv.
When distributing memory to a resource group based on its shares,
ESX will stop when the total memory distributed to that resource
group reaches its mem.limit.

When value of mem.limit on a resource group is configured,
there are no admission control steps to be performed. A resource
group can be given any value of mem.limitthat is greater than or
equal to its mem.resv.

3.4 Memory demand and distribution
The previous sections described attributes of resource groups –
mem.resv, mem.resvLimit, mem.shares and mem.limit. These
attributes are used by ESX to translate memory demands, from
memory consumers in resource groups, into memory distribution
to those consumers.

Configuration and use of the resource tree does not require
knowledge of the configured memory size of a memory consumer.
The configured memory size of a VM is the virtual address space
of the VM, while for a UW, it is the mmaped size. VMs and UWs,
which are memory consumers, allocate and consume memory from
the free memory pool in ESX. The amount of memory consumed
by a memory consumer is its demand. From time to time and when
free memory is low, ESX uses the memory resource tree and the
memory usage characteristics, such as activeness, of the memory
consumers to determine the appropriate distribution9 of memory
for each consumer. This is the step that translates a memory con-
sumer’s demand into its distribution. If a memory consumer is con-
suming more than its distribution, then the excess memory is re-
claimed from it by using a memory reclamation technique [1] such
as memory ballooning, memory compression or hypervisor-level
swapping.

Figure 7 shows an example in which all the memory resource
attributes and memory demand from consumers are considered.
ESX takes the configuration attributes and memory demand as
the input and produces the memory distribution for each resource
group as the output. For simplicity, it is assumed that the memory
usage characteristics, such as activeness, of all memory consumers
are identical.

Figure 7 assumes that memory demands are generated by mem-
ory consumers located in the leaf-level resource groups only. Other
resource groups are assumed to have no memory consumers di-
rectly attached to them. The root resource group, G0, is assigned all
the physical memory available to ESX – 1024 units. For this group,

9 Also known as entitlement and allocation target in vSphere
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mem.resv, resvLimit and mem.limit are all identical and equal to
1024.

To compute the memory distribution for each resource group in
the resource tree, ESX executes the following steps:
1. Traverse the tree in a bottom-up manner, calculating the total

memory demand at each resource group. The total demand
at each resource group is the sum of the demands from its
children.

2. Traverse the tree in a top-down manner, distributing memory
to each resource group based on its resource attributes, total
demand and usage characteristics.

In Step 1, ESX computes the demand at each non-leaf resource
group. This is simply the sum of their respective children. In Step
2, ESX distributes memory to each resource group in a top-down
manner.

This section presented hierarchical memory resource groups in
ESX. It described attributes that control distribution of memory to
resource groups. The next section uses controlled experiments to
evaluate the effectiveness of memory resource groups in distribut-
ing memory.

4. Evaluation
This section evaluates the effectiveness of hierarchical memory
resource groups in partitioning physical memory among VMs.
Specifically, the following are demonstrated:

1. Functional evaluation – Three experiments are conducted using
simple memory-consuming workloads as follows:
resv Show that mem.resv guarantees memory to memory con-

sumers under a resource group
shares Show that mem.shares distributes memory to memory

consumers under a resource group in a fair manner.
limit Show that mem.limit bounds the maximum memory

distributed to memory consumers under a resource group
2. Benchmarks – A complex hierarchical resource tree is used to

demonstrate the effectiveness of the mem.resv, mem.shares
and mem.limit attributes.

4.1 Functional evaluation
The mem.resv, mem.shares and mem.limit attributes are eval-
uated using three independent experiments. The evaluation shows
that these attributes provide a method to enforce guaranteed mem-
ory, fair distribution and an upper bound of memory distribution to
memory consumers.

Experiments are conducted on a 16-core, hyper-threaded, 128GB
RAM, 256GB SSD ESX Server with a development build of ESX
6.0. All VMs contain an Ubuntu 64-bit OS. VMs are stored on
local 900GB, 10K hard drives. VMs in these experiments execute
a memory-intensive workload. This workload allocates a specified
amount of memory and writes a random pattern into it. It then
accesses all the allocated memory in a round-robin manner for a
specified time. In these experiments, memory ballooning, transpar-
ent page sharing and memory compression are disabled. The only
method of memory reclamation is hypervisor-level memory swap-
ping. In addition, memory distribution to VMs by ESX is based
only on the VM’s demand. Other factors, such as activeness of the
workload are disabled10.

Figure 8 shows the resource trees for the three experiments. The
experiments are described below.

10 Advanced memory configuration option IdleTax is set to 0

4.1.1 mem.resv

Figure 8 (a) shows the resource tree for evaluating the behavior of
mem.resv. Resource groups are shown with the same format as in
Figure 7. In Figure 8, resource groups G1 and G2 are children of
user. G2 is configured with a mem.resv of 64GB. VM1 has a con-
figured virtual memory size of 96GB while VM2 has 64GB. Based
on this resource tree configuration, memory consumers placed un-
der G2 are guaranteed 64GB of memory, irrespective of memory
demands from other (namely G1) resource groups.

In the experiment, VM1 and VM2 are powered on and the mem-
ory intensive workloads, described above, of size 90GB and 60GB
respectively, are executed for 1, 200 seconds. The total memory
consumption, including guest OS components inside the VMs, is
about 94GB and 64GB respectively. Figure 9 shows the memory
consumptions of VM1 and VM2. In Figure 9, the X-axis shows
time in seconds and the Y-axis shows the consumed and swapped
memory. It can be seen that VM2 is able to allocate and consume
64GB memory throughout the experiment. VM1, on the other hand,
is able to consume the remaining memory. Although VM1 attempts
to consume as much as 94GB of memory, it is distributed about
60GB memory. The remaining demand is met by reclaiming about
30GB of VM1’s virtual memory to the swap space. This experiment
demonstrates that the mem.resv attribute of resource group G2 is
able to guarantee memory distribution to its memory consumers,
namely VM2.

4.1.2 mem.shares

Figure 8 (b) shows the resource tree for evaluating the behavior of
mem.shares. In Figure 8 (b), resource groups G1, G2 and G3 are
children of user. Their mem.shares are 100, 200 and 300 respec-
tively. This means that ESX will attempt to distribute memory to
them in the ratio 1 : 2 : 3. Each of the three VMs has a configured
memory size of 64GB.

In the experiment, VM1, VM2 and VM3 are powered on and
the memory-intensive workload, described above, of size 64GB is
executed in each VM. Figure 10 shows the memory consumed by
each of the VMs. In Figure 10, the X-axis shows the time in sec-
onds and the Y-axis shows consumed and swapped memory. It can
be seen that the memory consumption of the VMs at steady state
is about 21GB, 42GB and 63GB respectively. About 43GB, 22GB
and 1GB are reclaimed from VM1, VM2 and VM3 respectively.
This experiment demonstrates that the mem.shares attribute of re-
source groups is able to distribute memory based on the configured
relative shares of the VMs.

4.1.3 mem.limit

Figure 8 (c) shows the resource tree for evaluating the behavior of
mem.limit. In Figure 8 (c), resource groups G1 and G2 are chil-
dren of user. G1 is configured with a mem.limit of 32GB. VM1
and VM2 are configured with 96GB and 64GB of virtual memory.
Based on this resource tree configuration, memory consumers un-
der resource group G1 will be distributed at most 32GB of memory.

In this experiment, VM1 and VM2 are powered on and the
memory-intensive workloads, described above, of size 90GB and
60GB respectively, are executed for 1, 200 seconds. The total mem-
ory consumption, including guest OS components, inside the VMs
total about 94GB and 64GB. Figure 11 shows the memory con-
sumption of VM1 and VM2. In Figure 11, the X-axis shows time in
seconds and the Y-axis shows the consumed and swapped memory.
It can be seen that VM1’s distribution is limited to 32GB, although
it attempts to allocate 94GB. The experiment is terminated before
96GB is allocated. The memory consumption in excess of 32GB
is reclaimed using hypervisor-level swapping. VM2 is able to con-
sume 64GB of the remaining memory. This experiment demon-
strates that the mem.limit attribute of resource group G1 is able
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Figure 8. Functional experiments demonstrating the use of (a) mem.resv (b) mem.shares (c) mem.limit.
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Figure 9. Evaluation of the behavior of mem.resv. VM2 is guaranteed 64GB of memory by G2.
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Figure 11. Evaluation of the behavior of mem.limit. VM1 is limited to 32GB by G1.

to limit the memory distribution to its memory consumers, namely
VM1.

These three simple experiments demonstrated how memory re-
source attributes – mem.resv, mem.shares, mem.limit – can be
effectively used to control distribution of physical memory to VMs.
The next section describes an experiment with a complex resource
tree.

4.2 Benchmarks
In this section, an experiment is conducted to demonstrate complex
partitioning of physical memory among VMs, using a larger mem-

ory resource tree and the mem.resv, mem.limit and mem.shares
attributes.

The experiment was conducted using an ESX Server with 64GB
of physical memory, 16-cores with hyperthreads spread across 4
NUMA nodes, 200GB SSD (of which 64GB was used as a swap
space for VMs) and a 900GB 10K local disk. A development build
of ESX 6.0 was used as the hypervisor.

Two different workloads were used in this experiment.
SPECjbb05 A VM with configured memory size of 4GB running

64-bit Ubuntu OS. SPECjbb0511 with 5GB heap, 8 warehouses

11 http://www.spec.org/jbb2005/
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Figure 10. Evaluation of the behavior of mem.shares. VM1,
VM2 and VM3 consume memory in the ratio 1:2:3.

and 1800 seconds of execution time was executed continuously.
The steady-state memory demand from this workload VM was
observed to be 2, 500MB, when independently executed with
ample memory resources.

Kernel compile A VM with configured memory size of 4GB
running 64-bit CentOS 6. Kernel compile workload was exe-
cuted continuously. The steady-state memory demand from this
workload VM was observed to be 3, 080MB when indepen-
dently executed with ample memory resources.

The resource tree shown in Figure 12 was instantiated on the
ESX Server. The user resource group had two children – Sales
and R&D. Sales had two children – US and APAC. The R&D resource
group contained 6 kernel compile VMs. The US and APAC resource
groups contained 8 and 10 SPECjbb05 VMs respectively. In addi-
tion, the Sales resource group had a mem.limit of 43, 008MB. A
single SPECjbb05 VM with mem.resv = 4GB was placed under
Sales. All other resource group parameters were set to the default
values. The idle, system and vim resource groups are shown for
completeness.

In Figure 12, four unique categories of VMs are present. 1)
VMs under the US resource group 2) VM under the APAC resource
group 3) The single VM placed directly under the Sales resource
group 4) VMs under the R&D resource group. All VMs in each of
the above four categories will behave in a similar manner.

group VMs VM demand total demand distribution

user - 65, 980 61, 865 (D0)
Sales 1 2500 47, 500 41, 111 (D1)

US 8 2500 20, 000 19, 128 (D3)
APAC 10 2500 25, 000 19, 197 (D4)
R&D 6 3080 18, 480 20, 758 (D2)

(a)

S1 S2–S7 S8
2372 2372 2374

Total (T1)
18,982

S11 S12–S20
1901 1902

Total (T2)
19,019

Admin
2768

Total (T3)
2,768

R1 R2 R3 R4 R5 R6
3414 3441 3442 3444 3446 3448

Total (T4)
20,635

(b)

Table 1. Steady state (6, 000 second mark) memory demand and
distribution with mem.shares of US and APAC set to 100. (a) Mem-
ory demand from workloads under each resource group (total
demand) and memory distribution by ESX to each resource group
(distribution) (b) The memory distribution to individual VMs
received from its parent resource group.

The following three hypotheses are made about this resource tree.
The results of the experiments will be used to validate them.
H1 The mem.limit attribute will limit distribution of memory to

the Sales resource group.
H2 The mem.shares attribute will proportionately distribute mem-

ory between sibling resource groups US and APAC.
H3 The mem.resv attribute will guarantee memory distribution to

the Admin VM.

To simplify the experiments and reduce randomness of execu-
tion, memory reclamation using transparent page sharing, memory
compression and memory ballooning were disabled. Also, mem-
ory distribution is based solely on demand. Other factors such as
activeness are not considered during memory distribution by ESX.

4.2.1 Equal resource attributes
In this experiment, ESX was instantiated with the resource tree
shown in Figure 12. The relative shares of the US and APAC resource
groups were set to 100 each. VMs were powered on, as shown
in Figure 12. The workloads in the VMs were allowed to execute
continuously for 12, 000 seconds. The VMs were then powered off.
The memory distributed by ESX to each resource group and to each
VM was recorded at intervals of 1 second.

The total steady state memory demand under each resource
group, calculated from the steady state demand of each VM, is
shown in Table 1 (a) (total demand). This is the memory demand
generated by the workload and the OS inside the respective VMs.

During execution, ESX distributes memory to resource groups
and VMs based on their memory demands and the resource group
attributes. Because the Sales resource group has a mem.limit
of 43, 008MB, ESX will distribute a maximum of this amount of
memory to Sales. The remaining memory will be distributed to
the R&D resource group. The Sales resource group will first meet
the memory demand of Admin and then distribute the rest in equal
proportion to the US and APAC resource groups.

Figure 13 (a) shows the memory distributed by ESX to each
resource group and Figre 13 (b) shows the memory distributed by
ESX to the S1, S11, Admin and R1 VMs during the experiment. In
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Figure 12. Memory resource tree for demonstrating mem.resv, mem.limit and mem.shares attributes. The Sales resource group has
mem.limit = 43, 008MB. The Admin VM has mem.resv = 4GB. Relative shares of the US and APAC resource groups are varied in successive
experiments.

Figure 13, the X-axis shows time in seconds and the Y-axis shows
the amount of memory distribution in MB. From this figure, it can
be seen that the workloads take about 900 seconds to stabilize. The
memory distribution at steady state (chosen as the 6, 000 second
mark) from Figure 13 (a) is added to Table 1 (a) (distribution)
for comparing with the memory demands at the respective resource
groups.

From Figure 13 (a) it can be seen that hypotheses H1 and H2 hold
true:
H1 Distribution to Sales does not exceed 43, 008MB at any time.

This shows that the mem.limit resource group attribute can
be effectively used to limit the total memory distribution to a
resource group.

H2 Distribution to US and APAC always remain in equal proportion.
This shows that the mem.shares resource group attribute can
be effectively used to proportionately distribute memory among
resource groups.

From Figure 13 (b), hypothesis H3 holds true:
H3 Memory demand of 2, 500MB by Admin is always met with

a distribution of 2, 768MB. This shows that the mem.resv
resource group attribute can be effectively used to guarantee
memory distribution to a resource group.

From Table 1 (a), it can be seen that:
• Distributable memory at the user resource group is 65, 865MB.
• Distribution to the R&D resource group is always more than its

demand, because memory is left over after the required amount
is distributed to Sales. Memory demands from R&D’s VMs will
always be met and they will not undergo memory reclamation.

• Distribution to Sales, US and APAC is less than their demand.
When VMs placed under these resource groups attempt to ac-
cess their full demand, ESX will reclaim memory from these
VMs.

• Distribution to US and APAC are always in equal proportion.
This is shown by D3 =̃ D4.

Table 1 (b) shows the memory distributed, by ESX, to individual
VMs. It can be seen that:
• Memory distributed to VMs under US are in equal proportion

and are fully distributed, shown by D3 =̃ T1. Similarly, for
APAC, it is shown by D4 =̃ T2 and for R&D, by D2 =̃ T4

• Memory available at Sales is fully distributed, shown by D1 =̃
D3 + D4 + T3. Similarly, for user, it is shown by D0 =̃ D1 + D2

This section showed an experiment with a complex resource tree
and equal mem.shares for the US and APAC resource groups. The
following section demonstrates memory distribution when these
resource groups have different mem.shares.

4.2.2 Modified resource attributes
A set of two experiments were conducted by assigning different
values of mem.shares to the US and APAC resource groups. Each
experiment was similar to the one presented in Section 4.2.1. They
are described as follows:

150–100 mem.shares of US and APAC were set to 150 and 100
respectively. The US and APAC resource groups will receive
memory from their parent group Sales in the ratio 150::100,
or 3:2.
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Figure 13. Memory distribution by ESX to resource groups and
VMs, based on demand and resource group attributes. Values at
steady state (6, 000 second mark) are labelled. (a) Distribution to
the Sales, US, APAC and R&D resource groups (b) Distribution to
the S1, S11, Admin and R1 VMs.

100–150 mem.shares of US and APAC were set to 100 and 150
respectively. The US and APAC resource groups will receive
memory from Sales in the ratio 100::150, or 2:3.

The memory distribution to different resource groups and to dif-
ferent VMs was recorded as before. Figure 14 (a) and (b), respec-
tively, show the memory distribution to resource groups and to VMs
in those resource groups. In Figure 14, the X-axis identifies each of
the three sets of experiments; the left-Y-axis shows memory distri-
bution in MB. The right-Y-axis in Figure 14 (a) shows SPECjbb05
score and kernel compile time in minutes. The data for experiment
100-100 is identical to the one presented in Figure 13.

From Figure 14 (a), using the left-Y-axis, it can be seen that
US and APAC receive memory distribution in the ratios 3:2, 1:1 and
2:3 for the mem.shares settings of 150:100, 100:100 and 100:150
respectively. This is the key result from of this set of two exper-
iments. At 150:100 they receive 21, 566MB and 14, 373MB, at
100:100 they receive 19, 128MB and 19, 197MB, and at 100:150
they receive 14, 419MB and 21, 545MB. This shows that the
mem.shares resource group attribute effectively controls mem-
ory distribution to resource groups. The distribution to Sales is
the sum of distributions to US, APAC and Admin. The remaining
memory is distributed to R&D.

Sales receives a distribution of 38, 972MB, 41, 111MB and
39, 004MB respectively. The distribution is less than the mem.limit
of 43, 008MB. This might be because, at steady state, the SPECjbb05
workloads in the VMs might have slowed down owing to mem-
ory reclamation. This allowed the JVM to execute garbage col-
lection in time to meet the workload requirements. Similarly, R&D
resource group received a distribution of 22, 285MB, 20, 758MB
and 22, 826MB respectively.
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Figure 14. Memory distribution to resource groups and VMs for
mem.shares of US and APAC set to 150–100, 100–100 and 100–
150. (a) shows memory distribution to resource groups; average
SPECjbb05 score for US, Sales and Admin; and average kernel-
compile time for R&D. Average is taken across all VMs in the
respective resource group, across 10 executions during steady state
(b) shows memory distribution to the S1, S11, Admin and R1 VMs.

Performance of workloads is shown in Figure 14 (a), using
the right-Y-axis. From this figure, it can be seen that the kernel
compile times for all three configurations are almost constant at
1000 seconds. This is because the R&D resource group receives
sufficient memory distribution in all cases. These VMs do not
experience any memory reclamation.

The SPECjbb05 score for VMs under the US resource group
progressively decreases from 21, 364 to 14, 852 and 10, 716. This
is because the memory distributed to this resource group, and hence
to its VMs, progressively decreases as shown on the same figure. At
the same time, the score for VMs under APAC increases from 1311
to 12, 023 and 14, 619. This is because the memory distribution
to this resource group, and hence to its VMs, increases. The score
for the Admin VM decreases from 22, 564 to 15, 318 and 16, 028.
Although, this VM has full memory reservation and receives its
full memory demand, its performance is reduced owing to the
growing CPU demands from VMs in the APAC resource groups.
CPU resources were not altered from the default values in this
experiment.

Figure 14 (b) shows the memory distribution to the S1, S11,
Admin and R1 VMs from the US, APAC, Sales and R&D re-
source groups respectively. S1 receives 2677MB, 2373MB and
1785MB respectively from the US resource group. Similarly, S11
receives 1419MB, 1902MB and 2136MB from APAC. Admin re-
ceives 3014MB, 2768MB and 3022MB from Sales. R1 receives



3776MB, 3442MB and 3797MB from R&D. Figure 14 (b) shows
that VMs placed under resource groups receive equal memory dis-
tribution from their respective parent resource groups. This is be-
cause the relative shares of VMs are all equal.

Hypotheses H1, H2 and H3 also hold true at all times in these
two experiments. They demonstrate fine-grained control over mem-
ory distribution among VMs by altering the attributes of the mem-
ory resource tree.

The experiments conducted in this section show how a com-
plex memory resource tree can be used to effectively partition
the physical memory of an ESX Server. Resource tree attributes
– mem.resv, mem.shares and mem.limit – provide fine-grained
control over the distribution of memory.

5. Conclusion
This article describes hierarchical memory resource groups in the
ESX Server. It shows how memory resource group attributes –
mem.resv, mem.resvLimit, mem.shares and mem.limit – can
be used to dynamically partition the memory resources of ESX
among powered-on virtual machines. Memory resource groups are
a powerful tool for partitioning hardware memory among virtual
machines in a flexible, scalable and fine-grained manner.
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