
Java Security: From HotJava to Netscape and Beyond
�

Drew Dean Edward W. Felten Dan S. Wallach
ddean@cs.princeton.edu felten@cs.princeton.edu dwallach@cs.princeton.edu

Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract

The introduction of Java applets has taken the World Wide
Web by storm. Information servers can customize the pre-
sentation of their content with server-supplied code which
executes inside the Web browser. We examine the Java lan-
guage and both the HotJava and Netscape browsers which
support it, and find a significant number of flaws which
compromise their security. These flaws arise for several
reasons, including implementation errors, unintended inter-
actions between browser features, differences between the
Java language and bytecode semantics, and weaknesses in
the design of the language and the bytecode format. On a
deeper level, these flaws arise because of weaknesses in the
design methodology used in creating Java and the browsers.
In addition to the flaws, we discuss the underlying tension
between the openness desired by Web application writers
and the security needs of their users, and we suggest how
both might be accommodated.

1. Introduction

The continuing growth and popularity of the Internet has
led to a flurry of developments for the World Wide Web.
Many content providers have expressed frustration with the
inability to express their ideas in HTML. For example, be-
fore support for tables was common, many pages simply
used digitized pictures of tables. As quickly as new HTML
tags are added, there will be demand for more. In addition,
many content providers wish to integrate interactive features
such as chat systems and animations.

�

To appear in the 1996 IEEE Symposium on Security and Privacy, Oak-
land, CA, May 6–8, 1996. Copyright 1996 IEEE. Personal use of this
material is permitted. However, permission to reprint/republish this mate-
rial for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copy-
righted component of this work in other works must be obtained from the
IEEE.

Rather than creating new HTML extensions, Sun popu-
larized the notion of downloading a program (called an ap-
plet) which runs inside the Web browser. Such remote code
raises serious security issues; a casual Web reader should
not be concerned about malicious side-effects from visit-
ing a Web page. Languages such as Java[9], Safe-Tcl[3],
Phantom[8], and Telescript[10] have been proposed for run-
ning downloaded code, and each has varying ideas of how
to thwart malicious programs.

After several years of development inside Sun Microsys-
tems, the Java language was released in mid-1995 as part of
Sun’s HotJava Web browser. Shortly thereafter, Netscape
Communications Corp. announced they had licensed Java
and would incorporate it into version 2.0 of their market-
leading Netscape Navigator Web browser. With the support
of at least two influential companies behind it, Java appears
to have the best chance of becoming the standard for exe-
cutable content on the Web. This also makes it an attractive
target for malicious attackers, and demands external review
of its security.

Netscape and HotJava1 are examples of two distinct ar-
chitectures for building Web browsers. Netscape is written
in an unsafe language, and runs Java applets as an add-on fea-
ture. HotJava is written in Java itself, with the same runtime
system supportingboth the browser and the applets. Both ar-
chitectures have advantages and disadvantages with respect
to security: Netscape can suffer from being implemented in
an unsafe language (buffer overflow, memory leakage, etc.),
but provides a well-defined interface to Java. In Netscape,
Java applets can name only those functions and variables
explicitly exported to the Java subsystem. HotJava, imple-
mented in a safe language, does not suffer from potential
memory corruption problems, but can accidentally export
too much of its environment to applets.

In order to be secure, such systems must limit applets’

1Unless otherwise noted, “HotJava” refers to the 1.0 alpha 3 release of
the HotJava Web browser from Sun Microsystems, “Netscape” refers to
Netscape Navigator 2.0, and “JDK” refers to the Java Development Kit,
version 1.0, from Sun.



access to system resources such as the file system, the CPU,
the network, the graphics display, and the browser’s internal
state. The language’s type system should be safe – prevent-
ing forged pointers and checking array bounds. Addition-
ally, the system should garbage-collect memory to prevent
memory leakage, and carefully manage system calls that
can access the environment outside the program, as well as
allow applets to affect each other.

The Anderson report[2] describes an early attempt to
build a secure subset of Fortran. This effort was a failure
because the implementors failed to consider all of the con-
sequences of the implementation of one construct: assigned
GOTO. This subtle flaw resulted in a complete break of the
system.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses the Java language in more detail, section 3
gives a taxonomy of known security flaws in HotJava and
Netscape, section 4 considers how the structure of these
systems contributes to the existence of bugs, section 5 dis-
cusses the need for flexible security in Java, and section 6
concludes.

2. Java Semantics

Java is similar in many ways to C++[31]. Both pro-
vide support for object-oriented programming, share many
keywords and other syntactic elements, and can be used to
develop standalone applications. Java diverges from C++
in the following ways: it is type-safe, supports only single
inheritance (although it decouples subtyping from inheri-
tance), and has language support for concurrency. Java
supplies each class and object with a lock, and provides
the synchronized keyword so each class (or instance
of a class, as appropriate) can operate as a Mesa-style
monitor[21].

Java compilers produce a machine-independent byte-
code, which may be transmitted across a network and then
interpreted or compiled to native code by the Java runtime
system. In support of this downloaded code, Java distin-
guishes remote code from local code. Separate sources2 of
Java bytecode are loaded in separate naming environments to
prevent both accidental and malicious name clashes. Byte-
code loaded from the local file system is visible to all applets.
The documentation[15] says the “system name space” has
two special properties:

1. It is shared by all “name spaces.”

2. It is always searched first, to prevent downloaded code
from overriding a system class.

2While the documentation[15] does not define “source”, it appears to
mean the machine and Web page of origin. Sun has announced plans to
include support for digital signatures in a future version.

However, we have found that the second property does not
hold.

The Java runtime system knows how to load byte-
code only from the local file system. To load code from
other sources, the Java runtime system calls a subclass
of the abstract class ClassLoader, which defines an
interface for the runtime system to ask a Java program
to provide a class. Classes are transported across the
network as byte streams, and reconstituted into Class
objects by subclasses of ClassLoader. Each class
is tagged with the ClassLoader that loaded it. The
SecurityManager has methods to determine if a class
loaded by a ClassLoader is in the dynamic call chain,
and if so, where. This nesting depth is then used to make
access control decisions.

Java programmers can combine related classes into a
package. These packages are similar to name spaces in
C++[32], modules in Modula-2[33], or structures in Stan-
dard ML[25]. While package names consist of components
separated by dots, the package name space is actually flat:
scoping rules are not related to the apparent name hierar-
chy. A (package, source of code) pair defines the scope of
a Java class, method, or instance variable that is not given
a public, private, or protected modifier. In Java,
public and private have the same meaning as in C++:
Public classes, methods, and instance variables are acces-
sible everywhere, while private methods and instance vari-
ables are only accessible inside the class definition. Java
protected methods and variables are accessible in the
class or its subclasses or in the current (package, source
of code) pair; private protected methods and vari-
ables are only accessible in the class or its subclasses, like
C++’s protected members. Unlike C++, protected
variables and methods can only be accessed in subclasses
when they occur in instances of the subclasses or further
subclasses. For example:

class Foo {
private protected int i;
void SetFoo(Foo o) { o.i = 1; } // Legal
void SetBar(Bar o) { o.i = 1; } // Legal

}

class Bar extends Foo {
void SetFoo(Foo o) { o.i = 1; } // Illegal
void SetBar(Bar o) { o.i = 1; } // Legal

}

The definition of protected was different in some
early versions of Java; it was changed during the beta-test
period to patch a security problem.

The Java bytecode runtime system is designed to enforce
the language’s access semantics. Unlike C++, programs are
not permitted to forge a pointer to a function and invoke it di-
rectly, nor to forge a pointer to data and access it directly. If
a rogue applet attempts to call a private method, the runtime
system throws an exception, preventing the errant access.



Thus, if the system libraries are specified safely, the runtime
system assures application code cannot break these specifi-
cations.

The Java documentation claims that the safety of Java
bytecodes can be statically determined at load time. This is
not entirely true: the type system uses a covariant[5] rule
for subtyping arrays, so array stores require run time type
checks3 in addition to the normal array bounds checks. Un-
fortunately, this means the bytecode verifier is not the only
piece of the runtime system that must be correct to ensure
security. Dynamic checks also introduce a performance
penalty.

2.1. Java Security Mechanisms

In HotJava, all of the access controls were done on an ad
hoc basis which was clearly insufficient. The beta release
of JDK introduced the SecurityManager class, meant
to be a reference monitor[20]. The SecurityManager
defines and implements a security policy, centralizing all ac-
cess control decisions. Netscape also uses this architecture.

When the Java runtime system starts up, there is no se-
curity manager installed. Before executing untrusted code,
it is the Web browser’s or other user agent’s responsibility
to install a security manager. The SecurityManager
class is meant to define an interface for access control;
the default SecurityManager implementation throws
a SecurityException for all access checks, forcing
the user agent to define and implement its own policy in a
subclass of SecurityManager. The security managers
in both JDK and Netscape typically use the contents of the
call stack to decide whether or not to grant access.

Java uses its type system to provide protection for the
security manager. If Java’s type system is sound, then the
security manager should be tamperproof. By using types,
instead of separate address spaces for protection, Java is em-
beddable in other software, and performs better because pro-
tection boundaries can be crossed without a context switch.

3. Taxonomy of Java Bugs

We now present a taxonomy of Java bugs, past and
present. Dividing the bugs into classes is useful because
it helps us understand how and why they arose, and it alerts
us to aspects of the system that may harbor future bugs.

3For example, suppose that A is a subtype of B; then the Java typing
rules say that A[] (“array of A”) is a subtype of B[]. Now the following
procedure cannot be statically type-checked:
void proc(B[] x, B y)

�

x[0] = y;�

Since A[] is a subtype of B[], x could really have type A[]; similarly, y
could really have type A. The body of proc is not type-safe if the value of
x passed in by the caller has type A[] and the value of y passed in by the
caller has type B. This condition cannot be checked statically.

3.1. Denial of Service Attacks

Java has few provisions to thwart denial of service at-
tacks. The obvious attacks are busy-waiting to consume
CPU cycles and allocating memory until the system runs out,
starving other threads and system processes. Additionally,
an applet can acquire locks on critical pieces of the browser
to cripple it. For example, the code in figure 1 locks the
status line at the bottom of the HotJava browser, effectively
preventing it from loading any more pages. In Netscape,
this attack can lock the java.net.InetAddress class,
blocking all hostname lookups and hence all new network
connections. Both HotJava and Netscape have several other
classes suitable for this attack. The attack could be pre-
vented by replacing such critical classes with wrappers that
do not expose the locks to outsiders. However, the CPU
and memory attacks cannot be easily fixed; many genuine
applications may need large amounts of memory and CPU.

There are two twists that can make denial of service
attacks more difficult to cope with. First, an attack can be
programmed to occur after some time delay, causing the
failure to occur when the user is viewing a different Web
page, thereby masking the source of the attack. Second, an
attack can cause degradation of service rather than outright
denial of service. Degradation of service means significantly
reducing the performance of the browser without stopping
it. For example, the locking-based attack could be used to
hold a critical system lock most of the time, releasing it only
briefly and occasionally. The result would be a browser that
runs very slowly.

Sun has said that they consider denial of service attacks
to be low-priority problems[14].

3.2. Two vs. Three Party Attacks

It is useful to distinguish between two different kinds of
attack, which we shall call two-partyand three-party. A two-
party attack requires that the Web server the applet resides on
participate in the attack. A three-party attack can originate
from anywhere on the Internet, and might spread if it is
hidden in a useful applet that gets used by many Web pages
(see figure 2). Three-party attacks are more dangerous than
two-party attacks because they do not require the collusion
of the Web server.

3.3. Covert Channels

Various covert channels exist in both HotJava and
Netscape, allowing applets to have two-way communica-
tion with arbitrary third parties on the Internet.

Typically, most HotJava users will use the default net-
work security mode, which only allows an applet to connect



synchronized (Class.forName("net.www.html.MeteredStream")) {
while(true) Thread.sleep(10000);

}

Figure 1. Java code fragment to deadlock the HotJava browser by locking its status line.

applet

Web
requests

CharlieBob

Alice

covert
channel

applet

Figure 2. A Three Party Attack — Charlie pro-
duces a Trojan horse applet. Bob likes it and
uses it in his Web page. Alice views Bob’s
Web page and Charlie’s applet establishes a
covert channel to Charlie. The applet leaks
Alice’s information to Charlie. No collusion
with Bob is necessary.

to the host from which it was loaded. This is the only se-
curity mode available to Netscape users. In fact, HotJava
and Netscape fail to enforce this policy through a number of
errors in their implementation.

The accept() system call, used to receive a network
connection initiated on another host, is not protected by the
usual security checks in HotJava. This allows an arbitrary
host on the Internet to connect to a HotJava browser as
long as the location of the browser is known. For this to
be a useful attack, the applet needs to signal the external
agent to connect to a specified port. Even an extremely
low-bandwidth covert channel would be sufficient to com-
municate this information. The accept() call is properly
protected in Netscape, but the attack described in section 3.7
allows applets to call accept().

If the Web server which served the applet is running
an SMTP mail daemon, the applet can connect to it and
transmit an e-mail message to any machine on the Internet.
Additionally, the Domain Name System (DNS) can be used
as a two-way communication channel to an arbitrary host
on the Internet. An applet may reference a fictitious name
in the attacker’s domain. This transmits the name to the
attacker’s DNS server, which could interpret the name as a
message, and then send a list of arbitrary 32-bit IP numbers
as a reply. Repeated DNS calls by the applet establish a
channel between the applet and the attacker’s DNS server.
This channel also passes through a number of firewalls[7].

In HotJava, the DNS channel was available even with the
security mode set to “no network access,” although this
was fixed in JDK and Netscape. DNS has other security
implications; see section 3.5 for details.

Another third-party channel is available with the URL
redirect feature. Normally, an applet may instruct the
browser to load any page on the Web. An attacker’s server
could record the URL as a message, then redirect the browser
to the original destination.

When we notified Sun about these channels, they said
the DNS channel would be fixed[26], but in fact it was still
available in JDK and Netscape. Netscape has since issued a
patch to fix this problem.

As far as we know, nobody has done an analyis of storage
or timing channels in Java.

3.4. Information Available to Applets

If a rogue applet can establish a channel to any Internet
host, the next issue is what the applet can learn about the
user’s environment to send over the channel.

In HotJava, most attempts by an applet to read or write
the local file system result in a dialog box for the user to
grant approval. Separate access control lists (ACLs)4 spec-
ify where reading and writing of files or directories may
occur without the user’s explicit permission. By default, the
write ACL is empty and the read ACL contains the HotJava
library directory and specific MIME mailcap files. The
read ACL also contains the user’s public html directory,
which may contain information which compromises the pri-
vacy of the user. The Windows 95 version additionally al-
lows writing (but not reading) in the \TEMP directory. This
allows an applet to corrupt files in use by other Windows
applications if the applet knows or can guess names the files
may have. At a minimum, an applet can consume all the
free space in the file system. These security concerns could
be addressed by the user editing the ACLs; however, the
system default should have been less permissive. Netscape
does not permit any file system access by applets.

In HotJava, we could learn the user’s login name, machine
name, as well as the contents of all environment variables;
System.getenv() in HotJava has no security checks.

4While Sun calls these “ACLs”, they actually implement profiles — a
list of files and directories granted specific access permissions.



By probing environment variables, including thePATH vari-
able, we can often discover what software is installed on the
user’s machine. This information could be valuable either
to corporate marketing departments, or to attackers desir-
ing to break into a user’s machine. In JDK and Netscape,
System.getenv() was replaced with “system proper-
ties,” many of which are not supposed to be accessible by
applets. However, the attack described in section 3.7 allows
an applet to read or write any system property.

Java allows applets to read the system clock, making
it possible to benchmark the user’s machine. As a Java-
enabled Web browser may well run on pre-release hardware
and/or software, an attacker could learn valuable informa-
tion. Timing information is also needed for the exploitation
of covert timing channels. “Fuzzy time”[18] should be in-
vestigated to see if it can be used to mitigate both of these
problems.

3.5. Implementation Errors

Some bugs arise from fairly localized errors in the im-
plementation of the browser or the Java subsystem.

DNS Weaknesses A significant problem appears in the
JDK and Netscape implementation of the policy that an
applet can only open a TCP/IP connection back to the server
it was loaded from. While this policy is sound (although
inconvenient at times), it was not uniformly enforced. This
policy was enforced as follows:

1. Get all the IP-addresses of the hostname that the applet
came from.

2. Get all the IP-addresses of the hostname that the applet
is attempting to connect to.

3. If any address in the first set matches any address in
the second set, allow the connection. Otherwise, do
not allow the connection.

The problem occurs in the second step: the applet can ask
to connect to any hostname on the Internet, so it can control
which DNS server supplies the second list of IP-addresses;
information from this untrusted DNS server is used to make
an access control decision. There is nothing to prevent an
attacker from creating a DNS server that lies. In particu-
lar, it may claim that any name for which it is responsible
has any given set of addresses. Using the attacker’s DNS
server to provide a pair of addresses (machine-to-connect-to,
machine-applet-came-from), the applet can connect to any
desired machine on the Internet. The applet can even encode
the desired IP-address pair into the hostname that it looks
up. This attack is particularly dangerous when the browser
is running behind a firewall, because the malicious applet

hotjava.props.put("proxyHost",
"proxy.attacker.com");

hotjava.props.put("proxyPort", "8080");
hotjava.props.put("proxySet", "true");
HttpClient.cachingProxyHost =

"proxy.attacker.com";
HttpClient.cachingProxyPort = 8080;
HttpClient.useProxyForCaching = true;

Figure 3. Code to redirect all HotJava HTTP
retrievals. FTP retrievals may be redirected
with similar code.

can attack any machine behind the firewall. At this point, a
rogue applet can exploit a whole legion of known network
security problems to break into other nearby machines.

This problem was postulated independently by Steve
Gibbons[11] and by us. To demonstrate this flaw, we pro-
duced an applet that exploits an old sendmail hole to run
arbitrary Unix commands as user daemon.

As of this writing, Sun and Netscape have both issued
patches to fix this problem. However, the attack described
in section 3.7 reopens this hole.

Buffer Overflows HotJava and the alpha release of JDK
had many unchecked sprintf() calls that used stack-
allocated buffers. Because sprintf() does not check for
buffer overflows, an attacker could overwrite the execution
stack, thereby transferring control to arbitrary code. Attack-
ers have exploited the same bug in the Unix syslog()
library routine (via sendmail) to take over machines from
across the network[6]. In Netscape and the beta release of
JDK, all of these calls were fixed in the Java runtime. How-
ever, the disassembler was overlooked all the way through
the JDK 1.0 release. Users disassembling Java bytecode us-
ing javap are at risk of having their machines compromised
if the bytecode has very long method names.

Disclosing Storage Layout Although the Java language
does not allow direct access to memory through pointers,
the Java library allows an applet to learn where in memory
its objects are stored. All Java objects have a hashCode()
method which, unless overridden by the programmer, casts
the address of the object’s internal storage to an integer and
returns it. While this does not directly lead to a security
breach, it exposes more internal state than necessary.

Public Proxy Variables Perhaps the strongest attack we
found on HotJava is that we can change the browser’s HTTP
and FTP proxy servers. We can establish our own proxy



attacker.comvictim.org

DNS

Web proxy

DNS

Web server

Trusted mail
 server

Mail server

F
irew

all hostname lookup

applet

information leak
Internal mail

 server

User

applet exploits
sendmail bug

applet

hostname
lookup

applet

Figure 4. DNS subversion of Java: an applet travels from attacker.com to victim.org through normal
channels. The applet then asks to connect to foo.attacker.com, which is resolved by attacker.com’s
DNS server to be victim.org’s internal mail server which can then be attacked.

server as a man-in-the-middle. As long as the client is using
unencrypted HTTP and FTP protocols, we can both watch
and edit all traffic to and from the HotJava browser. All this
is possible simply because the browser state was stored in
public variables in public classes. While this attack com-
promises the user’s privacy, its implementation is trivial
(see figure 3). By using the property manager’s put()
method, we store our desired proxy in the property man-
ager’s database. If we can then entice the user to print a
Web page, these settings will be saved to disk, and will be
the default settings the next time the user starts HotJava. If
the variables and classes were private, this attack would fail.
Likewise, if the browser were running behind a firewall and
relied on proxy servers to access the Web, this attack would
also fail.

We note that the same variables are public in JDK, al-
though they are not used. This code is not part of Netscape.

3.6. Inter-Applet Security

Since applets can persist after the Web browser leaves
the page which contains them, it becomes important to sep-
arate applets from each other. Otherwise, an attacker’s
applet could deliberately sabotage a third party’s applet.
More formally, the Java runtime should maintain non-
interference[12, 13] between applets. In many environ-
ments, it would be unacceptable for an applet to even learn
of the existence of another applet.

In Netscape, AppletContext.getApplets() is
careful to only return handles to applets on the same Web
page as the caller. However, an applet may easily get a
handle to the top-level ThreadGroup and then enumer-
ate every thread running in the system, including threads
belonging to other arbitrary applets. The Java runtime en-

codes the applet’s class name in its thread name, so a rogue
applet can now learn the names of all applets running in
the system. In addition, an applet can call the stop()
or setPriority() methods on threads in other applets.
The SecurityManager only checks that applets cannot
alter system threads; there are no restraints on applets alter-
ing other applet threads.

An insidious form of this attack involves a malicious ap-
plet that lies dormant except when a particular target applet
is resident. When the target applet is running, the malicious
applet randomly mixes degradation of service attacks with
attacks on the target applet’s threads. The result is that the
user sees the target applet as slow and buggy.

3.7. Java Language and Bytecode Differences

Unfortunately, the Java language and the bytecode it com-
piles to are not as secure as they could be. There are sig-
nificant differences between the semantics of the Java lan-
guage and the semantics of the bytecode. We discuss super-
class constructors and David Hopwood’s attack[17] based
on package names as examples of language versus bytecode
differences. We then discuss related security weaknesses.

Superclass Constructors The Java language[9] requires
that all constructors call either another constructor of
the same class, or a superclass constructor as their
first action. The system classes ClassLoader,
SecurityManager, and FileInputStream all rely
on this behavior for their security. These classes have
constructors that check if they are called from an applet,
and throw a SecurityException if so. Unfortunately,
while the Java language prohibits the following code, the
bytecode verifier readily accepts its bytecode equivalent:



class CL extends ClassLoader {
CL() {

try { super(); }
catch (Exception e) {}

}
}

This allows us to build (partially unini-
tialized) ClassLoaders, SecurityManagers, and
FileInputStreams. ClassLoaders are the most in-
teresting class to instantiate, as any code loaded by a
ClassLoader asks itsClassLoader to load any classes
it needs. This is contrary to the documentation[15] that
claims the system name space is always searched first;
we have verified this difference experimentally. For-
tunately from the attacker’s viewpoint, ClassLoaders
don’t have any instance variables, and the actual code in
ClassLoader’s constructor only needs to run once —
and it always runs before the first applet is loaded. The
result of this attack, therefore, is a properly initialized
ClassLoader which is under the control of an applet.
Since ClassLoaders define the name space seen by other
Java classes, the applet can construct a completely cus-
tomized name space.

We have recently discovered that creating a
ClassLoader gives an attacker the ability to defeat Java’s
type system. Assume that classes � and � both refer to a
class named � . A ClassLoader could resolve � against
class � , and � against class ��� . If an object of class �
is allocated in � , and then is passed as an argument to a
method of � , the method in � will treat the object as hav-
ing a different type, ��� . If the fields of ��� have different
types or different access modifiers (public, private,
protected) than those of � , then Java’s type safety is
defeated. This allows an attacker to get and set the value of
any non-static variable, and call any method (including
native methods). This attack also allows an applet to mod-
ify the class hierarchy, as it can set variables normally only
writable by the runtime system. Java’s bytecode verification
and class resolution mechanisms are unable to detect these
inconsistencies because Java defines only a weak correspon-
dence between class names and Class objects.

We discovered this attack just before the submission
deadline for this paper. We have implemented all of the
type-system violations described above, but have not had
time to investigate the full ramifications of this attack.

Illegal Package Names Java packages are normally
named java.io, java.net, etc. The language prohibits
‘.’ from being the first character in a package name. The
runtime system replaces each ‘.’ with a ‘/’ to map the pack-
age hierarchy onto the file system hierarchy; the compiled
code is stored with the periods replaced with slashes. David
Hopwood found that if the first character of a package name

was ‘/’, the Java runtime system would attempt to load code
from an absolute path[17], since absolute pathnames begin
with a ‘/’ character. Thus, if an attacker could place com-
piled Java in any file on the victim’s system (either through
a shared file system, via an incoming FTP directory, or via
a distributed file system such as AFS), the attacker’s code
would be treated as trusted, since it came from the local file
system rather than from the network. Trusted code is per-
mitted to load dynamic link libraries (DLLs, written in C)
which can then ignore the Java runtime and directly access
the operating system with the full privileges of the user.

This attack is actually more dangerous than Hopwood
first realized. Since Netscape caches the data it reads in the
local file system, Netscape’s cache can also be used as a
way to get a file into the local file system. In this scenario,
a normal Java applet would read (as data) files containing
bytecode and DLL code from the server where the applet
originated. The Java runtime would ask Netscape to retrieve
the files; Netscape would deposit them in the local cache.
As long as the applet can figure out the file names used by
Netscape in its cache, it can execute arbitrary machine code
withouteven needing prior access to the victim’s file system.

3.8. Java Language and Bytecode Weaknesses

We believe the the Java language and bytecode definitions
are weaker than they should be from a security viewpoint.
The language has neither a formal semantics nor a formal
description of its type system. The module system is weak,
the scoping rules are too liberal, and methods may be called
on partially initialized objects[16]. The bytecode is in lin-
ear form rather than a tree representation, it has no formal
semantics, it has unnaturally typed constructors, and it does
not enforce the private modifier on code loaded from
the local file system. The separation of object creation and
initialization poses problems. We believe the system could
be stronger if it were designed differently.

Language Weaknesses The Java language has neither a
formal semantics nor a formal description of its type system.
We do not know what a Java program means, in any formal
sense, so we cannot formally reason about Java and the secu-
rity properties of the Java libraries written in Java. Java lacks
a formal description of its type system, yet the security of
Java relies on the soundness of its type system. Java’s pack-
age system provides only basic modules, and these modules
cannot be nested, although the name space superficially ap-
pears to be hierarchical. With properly nested modules,
a programmer could limit the visibility of security-critical
components. In the present Java system, only access to vari-
ables is controlled, not their visibility. Traditional capability
systems[24] treat capabilities as hidden names with associ-
ated access control rights. Java object references are less



flexible than capabilities — they must give either all access
rights or no access rights to an object. Java also allows
methods to be called from constructors: these methods may
see a partially initialized object instance.

Bytecode Weaknesses The Java bytecode is where the
security properties must ultimately be verified, as this is what
gets sent to users to run. Unfortunately, it is rather difficult
to verify the bytecode. The bytecode is in a linear form, so
type checking it requires global dataflow analysis similar to
the back end of an optimizing compiler[34]; this analysis
is complicated further by the existence of exceptions and
exception handlers. Type checking normally occurs in the
front end of a compiler, where it is a traversal of the abstract
syntax tree[28]. In the traditional case, type checking is
compositional: the type correctness of a construct depends
upon the current typing context, the type correctness of
subexpressions, and whether the current construct is typable
by one of a finite set of rules. In Java bytecode, the verifier
must show that all possible execution paths have the same
virtual machine configuration — a much more complicated
problem, and thus more prone to error. The present type
verifier cannot be proven correct, because there is not a
formal description of the type system. Object-oriented type
systems are a current research topic; it seems unwise for
the system’s security to rely on such a mechanism without
a strong theoretical foundation. It is not certain that an
informally specified system as large and complicated as Java
bytecode is consistent.

Object Initialization Creating and initializing a new ob-
ject occurs in an interesting way: the object is created as an
uninitialized instance of its class, duplicated on the stack,
then its constructor is called. The constructor’s type signa-
ture is uninitialized instance of class � void; it mutates the
current typing context for the appropriate stack locations to
initialized instance of their class. It is unusual for a dynamic
function call to mutate the static typing context.

The initialization of Java objects seems unnecessarily
baroque. First, a newly-allocated object sets all instance
variables to either null, zero, or false. Then the appropriate
constructor is called. Each constructor executes in three
steps: First, it calls a another constructor of its own class, or
a constructor of its superclass. Next, any explicit initializers
for instance variables (e.g. int x = 6;) written by the
programmer are executed. Finally, the body of the construc-
tor is executed. During the execution of a constructor body,
the object is only partially initialized, yet arbitrary meth-
ods of the object may be invoked, including methods that
have been overridden by subclasses, even if the subclasses’
constructors have not yet run. It seems unwise to have the
system’s security depend on programmers’ understanding
of such a complex feature.

Information Hiding We also note that the bytecode ver-
ifier does not enforce the semantics of the private mod-
ifier for code loaded from the local file system. Two
classes loaded from the local file system in the same pack-
age, have access to all of each other’s variables, whether
or not they are declared private. In particular, any code
in the java.lang package can set the system’s security
manager, although the definition of System.security
and System.setSecurityManager()would seem to
prevent this. The Java runtime allows the compiler to in-
line calls toSystem.getSecurityManager(), which
may provide a small performance increase, but with a secu-
rity penalty.

The Java language definition could be altered to reduce
accidental leaks of information from public variables, and
encourage better program structure with a richer module
system than Java’s package construct. Public variables in
public classes are dangerous; it is hard to think of any safe ap-
plication for them in their present form. While Java’s pack-
ages define multiple, non-interfering name spaces, richer
interfaces and parameterized modules would be useful ad-
ditions to the language. By having multiple interfaces to a
module, a module could declare a richer interface for trusted
clients, and a more restrictive interface for untrusted clients.
The introduction of parameterized modules, like Standard
ML’s functors[25], should also be investigated. Parame-
terized modules are a solution to the program structuring
problem that opened up our man-in-the-middle attack (see
section 3.5).

4. Security Analysis

We found a number of interesting problems in both Hot-
Java, an alpha release, and Netscape 2.0, a released product.
More instructive than the particular bugs we and others have
found is an analysis of their possible causes. Policy enforce-
ment failures, coupled with the lack of a formal security
policy, make interesting information available to applets,
and also provide channels to transmit it to an arbitrary third
party. The integrity of the runtime system can also be com-
promised by applets. To compound these problems, no audit
trail exists to reconstruct an attack afterward. In short, the
Java runtime is not a high assurance system.

4.1. Policy

The present documents on Netscape[29] and HotJava do
not formally define a security policy. This contradicts the
first of the Orange Book’s Fundamental Computer Security
Requirements, namely that “There must be an explicit and
well-defined security policy enforced by the system.”[27]
Without such a policy, it is unclear how a secure imple-
mentation is supposed to behave[22]. In fact, Java has two



entirely different uses: as a general purpose programming
language, like C++, and as a system for developing untrusted
applets on the Web. These roles will require vastly different
security policies for Java. The first role does not demand
any extra security, as we expect the operating system to treat
applications written in Java just like any other application,
and we trust that the operating system’s security policy will
be enforced. Web applets, however, cannot be trusted with
the full authority granted to a given user, and so require that
Java define and implement a protected subsystem with an
appropriate security policy.

4.2. Enforcement

The Java SecurityManager is intended to be a refer-
ence monitor[20]. A reference monitor has three important
properties:

1. It is always invoked.

2. It is tamperproof.

3. It is verifiable.

Unfortunately, the Java SecurityManager design
has weaknesses in all three areas. It is not always in-
voked: programmers writing the security-relevant portions
of the Java runtime system must remember to explic-
itly call the SecurityManager. A failure to call the
SecurityManager will result in access being granted,
contrary to the security engineering principle that danger-
ous operations should fail unless permission is explicitly
granted. It is not tamperproof: the original beta imple-
mentation of the SecurityManager had a protected
variable, which could be modified by any subclass of
SecurityManager. This error was fixed by chang-
ing the semantics of protected. Using the super-
class constructor attack to create a ClassLoader, an at-
tacker can change any variable in the system, including the
SecurityManager’s private variables. The attacker can
also change the variable used by the SecurityManager
to determine where a class was loaded from, thereby tricking
the SecurityManager into believing a class is trusted.
Finally, it is not verifiable: it is written in a language,
Java, that does not have precisely defined semantics. Un-
fortunately, the JDK and Netscape implementations of the
SecurityManager had faulty logic (see section 3.5).

4.3. Integrity

The architecture of HotJava is inherently more prone
than that of Netscape to accidentally reveal internal state
to an applet because the HotJava browser’s state is kept in
Java variables and classes. Variables and methods that are
public or protected are potentiallyvery dangerous: they give

the attacker a toe-hold into HotJava’s internal state. Static
synchronized methods and public instances of objects with
synchronized methods lead to easy denial of service attacks,
because any applet can acquire these locks and never release
them. These are all issues that can be addressed with good
design practices, coding standards, and code reviews.

Java’s architecture does not include an identified trusted
computing base (TCB)[27]. Substantial and dispersed parts
of the system must cooperate to maintain security. The byte-
code verifier, and interpreter or native code generator must
properly implement all the checks that are documented. The
HotJava browser (a substantial program) must not export any
security-critical, unchecked public interfaces. This does not
approach the goal of a small, well defined, verifiable TCB.
An analysis of which components require trust would have
found the problems we have exploited, and perhaps solved
some of them.

4.4. Accountability

The fourth fundamental requirement in the Orange Book
is accountability: “Audit information must be selectively
kept and protected so that actions affecting security can be
traced to the responsible party.”[27] The Java system does
not define any auditing capability. If we wish to trust a
Java implementation that runs bytecode downloaded across
a network (i.e. HotJava or Netscape), a reliable audit trail is
a necessity. The level of auditing should be selectable by the
user or system administrator. As a minimum, files read and
written from the local file system should be logged, along
with network usage. Some users may wish to log the byte-
code of all the programs they download. This requirement
exists because the user cannot count on the attacker’s Web
site to remain unaltered after a successful attack. The Java
runtime system should provide a configurable audit system.

5. Flexible Security for Applets

A major problem in defining a security policy for Java
applets is making the policy flexible enough to not unduly
limit applets, while still preserving the user’s integrity and
privacy. We will discuss some representative applications
below and their security requirements. We will also suggest
some mechanisms that we feel will be useful for implement-
ing a flexible and trustworthy policy.

5.1. Networking

The Java runtime library must support all the protocols
in current use today, including HTTP (the Web), FTP (file
transfer), Gopher, SMTP (email), NNTP (Usenet news), and
Finger (user information). Untrusted applets should be able
to use network services only under restricted circumstances.



FTP presents the most difficulties. While FTP normally
has the server open a connection back to the client for each
data transfer, requiring the client to call listen() and
accept(), all FTP servers are required to support passive
mode, where the client actively opens all the connections.
However, a FTP client must be carefully designed to ensure
an applet does not use it to perpetrate mischief upon third
parties. In particular, an applet should not be able to control
the PORT commands sent on its behalf.

5.2. Distributed Applications

Other applications that would be desirable to imple-
ment as applets include audio/video conferencing, real-time
multi-player games, and vast distributed computations like
factoring. Games require access to high-speed graphics li-
braries; many of these libraries trade speed for robustness
and may crash the entire machine if they are called with bad
arguments. The Java interfaces to the libraries may have
to check function calls; with proper compiler support some
of these checks could be optimized away. Games also re-
quire the ability to measure real time, which makes it more
difficult to close the benchmarking hole. For teleconfer-
encing, the applet needs access to the network and to the
local video camera and microphone — exactly the same ac-
cess one needs to listen in on a user’s private conversations.
An unforgeable indicator of device access and an explicit
“push to talk” interface would provide sufficient protection
for most users.

Providing a distributed computation as a Java applet
would vastly increase the amount of cycles available: “Just
click here, and you’ll donate your idle time to computing
����� .” But this requires that a thread live after the user moves
on to another Web page, which opens up opportunities for
surreptitious information gathering and denial of service
attacks. While many applets have legitimate reasons to con-
tinue running after the Web browser is viewing a new page,
there should be a mechanism for users to be aware that they
running, and to selectively kill them.

5.3. User Interface

The security user interface is critical for helping the aver-
age user choose and live with a security policy. In HotJava,
an applet may attempt any file or network operation. If the
operation is against the user’s currently selected policy, the
user is presented an Okay / Cancel dialog. Many users will
disable security if burdened with repeated authorization re-
quests from the same applet. Worse, some users may stop
reading the dialogs and repeatedly click Okay, defeating the
utility of the dialogs.

Instead, to minimize repetitive user interaction, applets
should request capabilities when they are first loaded. The

user’s response would then be logged, alleviating the need
for future re-authorization. To associate the user’s prefer-
ences with a specific applet or vendor will likely require
digital signatures to thwart spoofing attacks.

Another useful feature would be trusted dialog boxes. An
untrusted applet could call a trusted File Save dialog with no
default choice which returns an open handle to the file chosen
by the user. This would allow the user to grant authorization
for a specific file access without exposing the full file system
to an untrusted applet[19]. A similar trusted dialog could
be used for initiating network connections, as might be used
in chat systems or games. An applet could read or write the
clipboard by the user selecting Cut from Applet and Paste
to Applet from the Edit menu, adjacent to the normal cut
and paste operations. By presenting natural interfaces to
the user, rather than a succession of security dialogs, a user
can have a controlled and comfortable interaction with an
applet. By keeping the user in control, we can allow applets
limited access to system resources without making applets
too dangerous or too annoying.

6. Conclusion

Java is an interesting new programming language de-
signed to support the safe execution of applets on Web
pages. We and others have demonstrated an array of at-
tacks that allow the security of both HotJava and Netscape
to be compromised. While many of the specific flaws have
been patched, the overall structure of the systems leads us
to believe that flaws will continue to be found. The ab-
sence of a well-defined, formal security policy prevents the
verification of an implementation.

We conclude that the Java system in its current form can-
not easily be made secure. Significant redesign of the lan-
guage, the bytecode format, and the runtime system appear
to be necessary steps toward building a higher-assurance
system. Without a formal basis, statements about a system’s
security cannot be definitive.

The presence of flaws in Java does not imply that com-
peting systems are more secure. We conjecture that if the
same level of scrutiny had been applied to competing sys-
tems, the results would have been similar. Execution of
remotely-loaded code is a relatively new phenomenon, and
more work is required to make it safe.

7. Acknowledgments

We wish to thank Andrew Appel, Paul Karger and the
referees for reading this paper and making many helpful
suggestions. We are grateful to Paul Burchard, Jon Riecke
and Andrew Wright for useful conversations about this work.
We also thank Sun Microsystems for providingfull source to



the HotJava browser and the Java Development Kit, making
this work possible.

Edward W. Felten is supported in part by an NSF National
Young Investigator award.

References

[1] S. R. Ames, Jr., M. Gasser, and R. G. Schell. Security ker-
nel design and implementation: An introduction. Computer,
pages 14–22, July 1983. Reprinted in Tutorial: Computer
and Network Security, M. D. Abrams and H. J. Podell, edi-
tors, IEEE Computer Society Press, 1987, pp. 142–157.

[2] J. P. Anderson. Computer security technology planning
study. Technical Report ESD-TR-73-51, U.S. Air Force,
Electronic Systems Division, Deputy for Command and
Management Systems, HQ Electronic Systems Division
(AFSC), L. G. Hanscom Field, Bedford, MA 01730 USA,
Oct. 1972. Volume 2, pages 58–69.

[3] N. S. Borenstein. Email with a mind of its own: The Safe-Tcl
language for enabled mail. In IFIP International Working
Conference on Upper Layer Protocols, Architectures and
Applications, 1994.

[4] D. F. C. Brewer and M. J. Nash. The Chinese wall security
policy. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy, pages 206–214, 1989.

[5] G. Castagna. Covariance and contravariance: Con-
flict without a cause. Technical Report LIENS-94-18,
Département de Mathématiques et d’Informatique, Ecole
Normale Supérieure, Oct. 1994. ftp://ftp.ens.fr/
pub/reports/liens/liens-94-18.A4.ps.Z.

[6] CERT Coordination Center. Syslog vulnerability -
a workaround for sendmail. CERT Advisory CA-
95:13, Oct. 1995. ftp://ftp.cert.org/pub/
cert advisories/CA-95%3A13.syslog.vul.

[7] W. R. Cheswick and S. M. Bellovin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley, 1994.

[8] A. Courtney. Phantom: An interpreted language for dis-
tributed programming. In Usenix Conference on Object-
Oriented Technologies, June 1995.

[9] D. Flanagan. Java in a Nutshell. O’Reilly & Associates,
Inc., 1st edition, Feb. 1996.

[10] General Magic, Inc., 420 North Mary Ave., Sunnyvale,
CA 94086 USA. The Telescript Language Reference, Oct.
1995. http://www.genmagic.com/Telescript/
TDE/TDEDOCS HTML/telescript.html.

[11] S. Gibbons. Personal communication, Feb. 1996.
[12] J. A. Goguen and J. Meseguer. Security policies and security

models. In Proceedings of the 1982 IEEE Symposium on
Security and Privacy, pages 11–20, 1982.

[13] J. A. Goguen and J. Meseguer. Unwinding and inference
control. In Proceedings of the 1984 IEEE Symposium on
Security and Privacy, pages 75–86, 1984.

[14] J. Gosling. Personal communication, Oct. 1995.
[15] J. Gosling and H. McGilton. The Java Language Environ-

ment. Sun Microsystems Computer Company, 2550 Gar-
cia Avenue, Mountain View, CA 94043 USA, May 1995.
http://java.sun.com/whitePaper/
javawhitepaper 1.html.

[16] L. Hasiuk. Personal communication, Feb. 1996.
[17] D. Hopwood. Java security bug (applets can load

native methods). RISKS Forum, 17(83), Mar. 1996.
ftp://ftp.sri.com/risks/risks-17.83.

[18] W.-M. Hu. Reducing timing channels with fuzzy time. In
Proceedings of the 1991 IEEE Symposium on Research in
Security and Privacy, pages 8–20, 1991.

[19] P. A. Karger. Limiting the damage potential of discretionary
trojan horses. In Proceedings of the 1987 IEEE Symposium
on Security and Privacy, pages 32–37, 1987.

[20] B. W. Lampson. Protection. In Proceedings of the Fifth
Princeton Symposium on Information Sciences and Systems,
pages 437–443, Princeton University, Mar. 1971. Reprinted
in Operating Systems Review, 8(1):18–24, Jan. 1974.

[21] B. W. Lampson and D. D. Redell. Experience with pro-
cesses and monitors in Mesa. Communications of the ACM,
23(2):105–117, Feb. 1980.

[22] C. E. Landwehr. Formal models for computer security. Com-
puting Surveys, 13(3):247–278, Sept. 1981.

[23] L. Lemay and C. Perkins. Yes, Java’s Secure. Here’s Why.
Datamation, 42(5):47–49, March 1, 1996.

[24] H. M. Levy. Capability-Based Computer Systems. Digital
Press, 1984.

[25] R. Milner, M. Tofte, and R. Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, MA, 1990.

[26] M. Mueller. Regarding java security. RISKS Fo-
rum, 17(45), Nov. 1995. ftp://ftp.sri.com/
risks/risks-17.45.

[27] National Computer Security Center. Department of Defense
Trusted Computer System Evaluation Criteria. National
Computer Security Center, 1985.

[28] S. L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages. Prentice Hall, 1987.

[29] J. Roskind. Java and security. In Netscape Internet De-
veloper Conference, Netscape Communications Corp., 501
E. Middlefield Road, Mountain View, CA 94043 USA,
Mar. 1996. http://home.netscape.com/misc/
developer/conference/.

[30] J. M. Rushby. Design and verification of secure systems. In
Proceedings of the Eighth Symposium on Operating Systems
Principles, pages 12–21, Dec. 1981.

[31] B. Stroustrup. The C++ Programming Langauge. Addison-
Wesley, 2nd edition, 1991.

[32] B. Stroustrup. The Design and Evolution of C++. Addison-
Wesley, 1994.

[33] N. Wirth. Programming in Modula-2. Springer-Verlag, 2nd
edition, 1983.

[34] F. Yellin. Low level security in Java. In
Fourth International World Wide Web Conference,
Boston, MA, Dec. 1995. World Wide Web Consortium.
http://www.w3.org/pub/Conferences/WWW4/
Papers/197/40.html.

Online For more information related to this paper, please
visit our Web page:
http://www.cs.princeton.edu/˜ddean/java/


