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Abstract

This paper describes proof-carrying code (PCC), a
mechanism by which a host system can determine with
certainty that it is safe to execute a program supplied
(possibly in binary form) by an untrusted source. For
this to be possible, the untrusted code producer must
supply with the code a safety proof that attests to the
code’s adherence to a previously defined safety policy.
The host can then easily and quickly validate the proof
without using cryptography and without consulting any
external agents.

In order to gain preliminary experience with PCC,
we have performed several case studies. We show in this
paper how proof-carrying code might be used to develop
safe assembly-language extensions of ML programs. In
the context of this case study, we present and prove
the adequacy of concrete representations for the safety
policy, the safety proofs, and the proof validation. Fi-
nally, we briefly discuss how we use proof-carrying code
to develop network packet filters that are faster than
similar filters developed using other techniques and are
formally guaranteed to be safe with respect to a given
operating system safety policy.

1 Introduction

High-level programming languages are designed and im-
plemented with the assumption of a closed world. Tak-
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ing ML as an example, the programmer must normally
assume that all components of the program are written
in ML in order to establish that the program will have
the properties conferred by type safety. In practice,
however, programs often have some components writ-
ten in ML and others in a different language (perhaps
C or even assembly language). In such situations, we
lose the guarantees provided by the design of ML unless
extremely expensive mechanisms (such as sockets and
processes) are employed. In implementation terms, it is
extremely difficult to determine whether the invariants
of the ML heap will be respected by the foreign code,
and so we must use some kind of expensive firewall or
simply live dangerously.

This problem is exacerbated in the realms of dis-
tributed and web computing, particularly when mobile
code is allowed. In this kind of situation, agent A on one
part of the network might write a component of the soft-
ware system in ML, compile it to native machine code,
and then transmit it to an agent B on another node for
execution. How does agent A convince agent B that the
native code has the type-safety properties shared by all
ML programs, and furthermore that it respects the rep-
resentation invariants chosen for maintaining the state
of B’s heap?

There are many other manifestations of the same
problem. For example, in the realm of operating sys-
tems, it is often profitable to allow application programs
to run within the same address space as the operating-
system kernel. Once again, the problem is how can
the kernel know that the inherently untrusted applica-
tion code respects the kernel’s internal invariants. The
problem here seems even worse in practice, because the
kinds of properties required of the application code are
difficult in the sense that standard type systems cannot
express them easily. For example, in the SPIN ker-
nel [1], there are often basic requirements about the
proper use of synchronization locks that would be hard,
if not impossible, to express in the ML or Modula-3
type systems.



In the situations described above, a code consumer
must somehow become convinced that the code sup-
plied by an untrusted code producer has some (previ-
ously agreed upon) set of properties. Sometimes this
is referred to as establishing “trust” between the con-
sumer and producer. Cryptography can be used to en-
sure that the code was produced by a trusted person
or compiler [1, 13]. This scheme is weak because of its
dependency on personal authority—even trusted per-
sons, or compilers written by them, can make errors
occasionally or even act maliciously.

In this paper, we present proof-carrying code (PCC
for short), which is a mechanism for dealing with these
problems. With proof-carrying code, the code producer
is required to create a safety proof that attests to the
fact that the code respects a formally defined safety
policy. Then, the code consumer is able to use a simple
and fast proof validator to check, with certainty, that
the proof is valid and hence the foreign code is safe to
execute.

There is an analogy between safety proofs and types.
The analogy carries over to proof validation and type
checking. With this analogy in mind we note that most
attempts to tamper with either the code or the proof
result in a validation error. In the few cases when the
code and the proof are modified such that validation
still succeeds, the new code is also safe. This is why
we consider proof-carrying code to be intrinsically safe,
without need for external authentication or cryptogra-
phy.

In a previous paper [11], we have already shown how
proof-carrying code can be used to implement safe and
very fast network packet filters. In this paper, we pro-
vide more of the necessary technical details and theo-
rems that establish the soundness and adequacy of our
certification scheme, as well as present a second case
study involving the extension of a run-time system for
an ML implementation. We begin with an overview of
the stages involved in the creation and use of proof-
carrying code. Then, we present the case study of ex-
tending a simplified form of the run-time system of the
TIL compiler [15] for Standard ML. In doing so, we
show a sample formal system for PCC and state the
necessary theorems for soundness and adequacy of the
methodology. We continue with a brief description of
the network packet filter example from our previous pa-
per. After these case studies, we discuss some of the
problems involved in generating the proofs, as well as
some other engineering matters. Finally, we summarize
what has been accomplished so far and where we see
the most interesting directions for further research.

2 Proof-Carrying Code

Figure 1 shows the typical process of generating and us-
ing proof-carrying code. The whole process is centered
around the safety policy, which is defined and made
public by the code consumer. Through this policy, the
code consumer specifies precisely under what conditions
it considers the execution of a foreign program to be
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Figure 1: Overview of Proof-Carrying Code.

The safety policy consists of two main components:
the safety rules and the interface. The safety rules
describe all authorized operations and their associated
safety preconditions. The interface describes the calling
conventions between the code consumer and the foreign
program, that is the invariants holding when the con-
sumer invokes the foreign code and the invariants that
the foreign code must establish before calling functions
provided by the consumer, or before returning to the
consumer. In the analogy with types, the safety rules
are the typing rules and the interface is the signature
against which the foreign module is compiled.

The life of a PCC binary spans three stages. In
the first stage—called certification—the code producer
compiles (or assembles) and generates a proof that a
source program adheres to the safety policy. In the gen-
eral case, certification is essentially a form of program
verification with respect to the specification described
by the safety policy. In addition, a proof of successful
verification is produced and suitably encoded to yield
the safety proof, which together with the native code



component forms the PCC binary. The code producer
can store the resulting PCC binary for future use, or
can deliver it to code consumers for execution.

In the second stage—called wvalidation—a code con-
sumer validates the proof part of a PCC binary pre-
sented for execution and loads the native code compo-
nent for execution. The validation is quick and driven
by a straightforward algorithm. It is only the imple-
mentation of this simple algorithm that the consumer
must trust in addition to the soundness of its safety
policy.

The existence of the proof allows for the verification
process to be performed off-line and only once for a
given program, independently of the number of times
it is executed. This has important engineering advan-
tages, especially in cases where verification is hard and
time consuming or requires user interaction. In such
cases it would be undesirable to perform verification at
the consumer site.

Finally, in the last stage of the process the code
consumer executes the machine-code program possibly
many times. This stage can proceed without performing
additional run-time checks because the previous valida-
tion stage ensures that the code obeys the safety policy.

This completes our overview of the general proof-
carrying code technique. Before we can attempt a prac-
tical implementation of PCC, we must decide on con-
crete representations for the safety policy, safety proofs
and their validation procedure. We present next a sum-
mary of our current choices and continue in the next
section with the details and formal adequacy theorems.

In our current experiments we use extensions of first-
order predicate logic as the basis for formalizing the
safety policy. The extensions are predicates denoting
application-specific safety requirements, together with
their derivation rules. In this setup, the interface part
of the safety policy consists of a set of precondition
and postcondition predicates for the foreign function
and the functions exported by the code consumer. The
safety rules are expressed as a Floyd-style verification
condition generator, which given the program and a set
of preconditions and postconditions produces a verifi-
cation condition predicate (VC) in our logic. The VC
has the property that if it can be proved using the proof
rules in our logic, then the program satisfies the safety
invariants. In this case the safety proof is an appro-
priate encoding of a proof of the VC predicate, proof
is reduced to theorem proving in our logic and valida-
tion to proof checking. For the particular safety policy
of the extensions to the TIL run-time system, we show
that the above choices are adequate.

3 Case Study: Safe Extensions of the TIL
Run-Time System

The practice of software development in languages such
as ML and Haskell often involves extending the run-
time system, usually by writing C code, to implement
new primitive types and operations or functionality that
is not easily programmed in the high-level language.
This raises the question of how to ensure that the for-
eign code respects the basic assumptions of the run-time
system. Even without considering user-extensions, the
run-time systems of high-level languages usually include
a sizeable part written in unsafe languages such as C or
even assembly language. The mechanism that allows an
untrusted user to safely extend the run-time can also be
used by a small kernel of the run-time system to boot-
strap the rest, increasing the level of confidence in the
system.

We propose the use of proof-carrying code to allow
arbitrary untrusted users to safely link foreign functions
to a safe programming language run-time system. For
this to be possible the compiler designer defines the
safety policy, which is basically a formal description of
the data-representation invariants to be preserved and
calling conventions to be obeyed by foreign functions.
Then, the user produces and attaches to the foreign
code a safety proof attesting to the preservation of the
invariants.

To make the presentation more concrete we show
in detail how we use PCC to develop safe DEC Alpha
assembly-language [14] extensions to a simplified ver-
sion of the run-time system of the TIL [15] compiler
for Standard ML [8]. For the purposes of this paper, we
consider here only a small example and make some sim-
plifying assumptions about TIL. (These are described
later.) Scaling the technique to the entire Standard ML
language is subject of current research.

datatype T = Int of int | Pair of int * int
fun sum (1 : T list) =
let
fun foldr f nil a = a
| foldr £ (h::t) a = foldr £ t (f(a, h))
in
foldr (fn (acc, Int i) => acc + i
| (acc, Pair (i, j)) => acc + i + j)
10
end

Figure 2: The Standard ML source program.

Consider the Standard ML program fragment shown



in Figure 2. This program defines a union type T and
a function sum that adds all the integers in a T list.
The plan for the rest of this section is to define a safety
policy for extensions to the TIL run-time system and
then prove the type safety of a hand-optimized assembly
language version of the sum function.

Establishing a Safety Policy

The first order of business is to define the safety pol-
icy for the TIL run-time system in the presence of for-
eign functions. This is the job of the compiler de-
signer, or a trusted person that is familiar with the data-
representation conventions and basic invariants main-
tained by the TIL compiler and run-time system.

The safety policy in our case requires that foreign
code maintains the data-representation invariants cho-
sen by the TIL compiler. Data representation in TIL
is type directed and the types involved in our example
are the following:

Tu=int | 72 | m+7e | Tlist

For convenience we use T as an abbreviation for the
type int + (int *int). For this subset of ML types, the
TIL data-representation rules are as follows: an inte-
ger value is represented as an untagged 32-bit machine
word; a pair is represented as a pointer to a sequence of
two memory locations containing values of appropriate
types; a value of type 7 + 7» is represented as a pointer
to a pair of locations containing respectively the con-
structor value (0 for inj; and 1 for inj,) and the value
carried by the constructor; the empty list is represented
as the value 0 and the non-empty list as a pointer to a
list cell. See Figure 4 for examples of TIL representa-
tions of several SML values.

The compiler designer describes formally the data-
representation strategy by means of a typing judgment,
m F e : 7, where e is an expression and m is a mem-
ory state. The memory state is part of the judgment
because some of the types are represented as pointers,
which are only valid in certain states of the memory
(e.g., after the underlying value has been allocated).
The sets of expressions and memory states for our ex-
ample, are defined as follows:

e u= n | r; | sel(m,e) | e1 +eo
m = rm | upd(m,ei,es)

where n is a 32-bit integer literal, r; are the DEC Al-
pha machine registers, ry, is a pseudo register holding
the state of memory during the computation, sel(m, e)
denotes the contents of the location e in memory state
m, and upd(m, e, e3) denotes a memory state obtained
from the old state m after updating the location e; with

val rO : int = 5

val rl : int * int = (2, 3)
val r2 : T = Pair r1l

val r3 : T = Int 6

val r4 : T list = [r3, r2]

Figure 4: Data Representation in TIL. Each box repre-
sents a machine word.

es. To simplify the memory-safety aspect of the safety
policy, the compiler designer introduces an additional
type, called addr. This type is used for expressions
whose value is a memory address that can be safely
read.

Based on the known data-representation strategy
used by the TIL compiler, the compiler designer defines
the typing judgment by a set of inference rules, as shown
in Figure 3. We only show the elimination rules for the
typing judgment because for the example at hand we
are not concerned with constructing values of non-base
types. Also, for the purpose of this paper we ignore the
overflow semantics of addition in Standard ML.

There is more to the safety policy than just the typ-
ing rules presented so far. For illustration purposes, we
shall present the remaining mechanisms of the safety
policy in the context of a concrete example of a foreign
function.

The Foreign Function

In our experiment, the code producer writes a DEC Al-
pha assembly language implementation of the sum func-
tion, as shown in Figure 5. This code assumes that reg-
ister ro contains the argument of type T list on entry
and the integer result on exit. The registers rq, ro and
r3 are used as temporaries. The purpose of the INV in-
struction will be explained shortly. This code is written
to obey the TIL data-representation strategy, and it is
this fact that must be proved for the consumer.

Note that the above assembly-language program is
optimized by hand. One of our goals is to show that
proof-carrying code does not pose restrictions on using



mbte:m 7T

mbe:addr A mte+4:addr A mtselim,e):m A mbEsel(lm,e+4):7m

mbe:m +1

mbe:addr A mbFe+4:addr A sel(m,e) =0D mt sel(m,e+4): 71 A sel(m,e) #0 D mt sel(m,e+4): 1

mbe:Tlist

e#0

mbe:addr A mFe+4:addr A mFsel(m,e): 7 A mtsel(m,e+4): 7 list

mbt e :int

mbF ey :int

mk e +ey:int

mkE 0:int

Figure 3: The typing rules.

%I‘o isl

0 sum:INV rp, Frg:Tlist
%r, is acc

1 MOV ry,0 %Initialize acc

2 Ly INVrp,brg:Tlist Ary,bry:int
%Loop invariant

3 BEQ rg, L4 %Is list empty?

4 LD 19,0(rg) %Load head

5 LD r9,4(ro) %Load tail

6 LD r3,0(r2) %Load constructor
7 LD 19,4(rs) %Load data

8 BEQ r3, Lis %Is an integer?

9 LD r3,0(rz) %Load i

10 LD 1'2,4(1‘2) %Load J

11 ADD r3,r3,T5 %Add i and j

12 L12 ADD ry,ro,rq %DO the addition
13 BR L, %Loop

14 Ly, MOV 1o, 1, %Copy result in rg
15 RET %Result is in rg

Figure 5: DEC Alpha assembly language implementa-
tion of the sum function.

register allocation, scheduling or other low level opti-
mization techniques.

For the rest of this section we consider the foreign
program represented as a vector II of instructions. With
this convention a program point is an index in the vector
II.

Computing the Verification Condition

Our basic method to check compliance with the safety
rules is based on computing a Floyd-style verification
condition [4] for the foreign function. This is a predicate
in first-order logic with the property that its validity
with respect to the first-order logic rules and the typing

rules is a sufficient condition for ensuring compliance
with the safety policy. Both the code producer and
the code consumer compute the verification condition:
the code producer for the purpose of proving it, and
the code consumer to ensure that the foreign code is
accompanied contains a valid proof of it.

To use a Floyd-style verification condition generator,
all of the loop invariants must be given as well as the
interfaces for all functions being called. The invariant
associated with the loop starting at L is

'mbry:Tlist A ry b rp:int

and the interface for the function sum is given as a pre-
condition and a postcondition as shown below:

Pre
Post

= rpmbrg:Tlist
= rpybrg:int

In general, the loop invariant for type-safety policies
is the conjunction of all typing predicates for the regis-
ters that are live at the invariant point. The interfaces
are derived similarly from the function types.

For flexibility, we allow invariants to be associated
with arbitrary points in the program, not necessarily
part of loops. These points are marked in the program
by INV pseudo instructions,! and their set is denoted
by Inv. For such a point i, we write Inv; to denote
the corresponding invariant. To simplify the presenta-
tion, we assume that the code consumer prepends the
instruction INV Pre to each untrusted program before
analyzing it. With this convention we have that 0 € Inv
and Invg = Pre.

The verification condition generator defined in Fig-
ure 6 computes a vector VC of predicates, one for each
instruction. The notation [e/r;] P stands for the predi-
cate obtained from P by substituting the expression e
for all occurrences of r;.

1In practice the invariants are kept separate from the code, allow-
ing the code to be executed directly by the physical processor.



( [rs +op/rq] VCit1,

Post,
T

\ )

if II; = ADD ry, 0p,ryg

m F rs+n:addr A [sel(rm,rs +n)/rq) VCiv1, if II; =LD rg,n(rs)
VC; =< (1‘3 =0D> VCi+n+1) N (I‘s 75 0> VCH_l),

if II; = BEQ rg,n
if II; = RET
if I; =INV T

Figure 6: The verification condition generator.

The VC function is well defined if every loop in the
program contains at least one invariant instruction. Our
current implementation requires that every backward-
branch target be an invariant instruction. In these con-
ditions the entire vector VC can be computed in one
pass through the program.

Based on the vector VC, we define the verification
condition for the entire program as follows:

VC(II, Inv, Post) = Vr;. /\ Inv; D VO
i€Inv

For our example program, the VC predicate has two
conjuncts, one for the precondition and another for the
invariant associated with L,. The first conjunct cor-
responds to the control path from the function entry
point to the start of the loop. This conjunct says that
the loop invariant is established when the loop condi-
tional is first executed:

I'm Fro:Foolist D (rmt ro:Foolist A
rmF 0:int)

The second conjunct corresponds to the rest of the pro-
gram and says both that the the loop invariant is pre-
served around the loop and that it entails the post-
condition when the loop finishes. This part of the VC
predicate is more complicated and we do not show it
here.

Soundness of VC-based Certification

The VC predicate as defined above is proved by the
code producer and a proof of it constitutes the safety
proof. We discuss in this section the adequacy of using
the proof of the VC predicate as a safety proof, and we
defer to Sections 5 and 6 the more difficult problem of
proof search.

We write > P when the predicate P can be proved
using the inference rules from Figure 3 and the proof
rules of first-order predicate logic, a few of which are
shown in Figure 7. Note that the implication introduc-
tion rule is hypothetical in the assumption v and the V
introduction rule is schematic in v. These side condi-
tions must be satisfied for a proof to be valid.

—p U
>

u 1)
> P >R . >R . cu > [v/z]P .
sPAR 2ndd  popimpld >vg . p 2l

Figure 7: Fragment of the first-order predicate logic
proof rules.

In Appendix A we prove the soundness of using the
proof of the VC predicate as the basis for safety certi-
fication. We first formalize the execution of assembly-
language programs on the DEC Alpha processor using
an abstract machine. Then, we show that any program
with a valid verification condition, when executed on
the abstract machine starting in a state that satisfies
the precondition, will reference only memory locations
that are defined valid by the typing rules. Furthermore,
if the program terminates then the final state satisfies
the postcondition. This is stated here informally as
Theorem 3.1 and then formalized in Appendix A.

Theorem 3.1 For any program 11, set of invariants
Inv and postcondition Post such that IIg = INV Pre,
if > VO (I, Inv, Post) and the initial state satisfies the
precondition Pre, then the program reads only from
valid memory locations as they are defined by the typing
rules, and if it terminates, it does so in a state satisfying
the postcondition.

The proof of soundness of VC-based certification
from Appendix A is much simpler than other correct-
ness arguments for Floyd’s VC generators, mainly be-
cause of the more precise definition of programs, in-
variants and program points for assembly language pro-
grams than for flowcharts.

Safety Proofs

We argued in the previous section and we prove in Ap-
pendix A that a proof of validity of the VC predicate
is sufficient to ensure compliance with the safety policy.



The safety proof must therefore be a suitable encoding
of a derivation > VC(II, Inv, Post).

We use a two-stage encoding of derivations. In the
first stage we represent predicates and proofs as objects
in the Edinburgh Logical Framework (also referred to
as LF) [5]. In the second stage, we encode LF objects in
a compact binary format, suitable for storage or trans-
mission to code consumers. We shall discuss here in
detail only the LF representation.

LF has been designed as a meta language for high-
level specification of logics and provides natural support
for the management of binding operators and hypothet-
ical and schematic judgments. The LF type theory is a
language with entities of three levels: objects, types and
kinds. The abstract syntax of these entities is shown
below:

Kinds K == Type | Hz:AK
Types A == a | AM | Hz:A;.A,
Objects M == ¢ | =z | Mi My | M:AM

We represent our logic in LF by means of a signature
L that assigns types to a set of constants describing
the syntax of expressions and predicates, and the proof
rules of our logic. In LF, judgments are represented as
types and judgment derivations as objects whose type
is the representation of the judgments they prove. Type
checking in the LF type discipline can then be used to
check logic proofs.

We start now to present the signature L. First, we
define the LF types exp of expressions, pred of predi-
cates and tp of ML types. All of these are atomic LF

types:

exp : Type
pred : Type
tp : Type

For each expression and predicate constructor we define
an LF constant as shown below.

0 I exp

> : exp — exp — exp

+ ! exp — exp — exp
true : pred

and : pred—pred—pred
impl : pred—pred—pred
all : (exp—pred)—pred
hastype exp—exp—tp — pred

Note that binding predicate constructors are repre-
sented as higher-order LF constants, effectively shifting
the machinery related to bound variables and substitu-
tion from our logic to LF. This relies on representing
variables as LF variables.

The LF representation function "-7is inductively de-
fined on the structure of expressions and predicates. A

few definition cases are shown below:

"TPARY = and"P7"R"
"Vz. P = all (Az:exp."P7)
27 = =z

For the representation of derivations we define a type
family indexed by representation of predicates:

pf : pred — Type

Following the model of expressions and predicates we
define a constant for each proof schema. A few of these
constants are shown below:

and_i IIp:pred.llr:pred.

pftp = pfr — pf (andp r)
impl i IIp:pred.Ilr:pred.

(pf p— pfr)— pf (implp r)
alli IIp:exp — pred.

(Tlv:exp.pf (pv)) — pf (all p)

We then extend the representation function ™7 to
derivations. When doing so care must be taken with
hypothetical and schematic judgments, such as the im-
plication introduction and the universal quantification
introduction rules shown below. The representation of
the conjunction introduction is typical for most other
rules.

r "

Dy D,
> P1 > P2
> P1 A P2

r "

— U
> P

—and i PR, TD; T MDYy

: Dy
> P2
> P Db
r A
D,
> [v/z] Py
> Vx.P,
The implication introduction rule introduces the hy-
pothesis labelled u for the purpose of deriving Ps.
Checking an instance of this rule schema involves verify-
ing that it discharges properly the hypothesis u. Equiv-
alently, the derivation D, must be hypothetical in wu.
This is expressed naturally in LF by representing the
hypothesis as a variable bound in D,,. Finally, the LF
representation of our logic contains also the representa-
tion of the application-specific proof rules from Figure 3.
Their representation is straightforward because they do
not involve hypothetical judgments. As an example we

w=1impl i P "R (Au:pf "P."D,")

=all.i (Az:exp."P,") (\v:exp. " D,")



show below the LF representation of the typing rules
for lists:

tp_list : IIm:exp.lle:exp.Ilt: tp.
pf (hastype m e (1ist t)) — pf (neqe Q) —
pf (and (and (hastype m e addr)
(hastype m (sel me) t))
(and (hastype m (+ e 4) addr)
(hastype m (sel m (+ e 4)) (1ist t))))

The purpose of the LF representation is to use the
LF type-checking algorithm for checking the validity of
proofs. This has the advantage that the code consumer
need only trust one implementation of proof check-
ing. Other logics can be encoded and their derivations
checked by the same type checker just by changing the
signature. Furthermore, the LF typing rules are so sim-
ple that a naive implementation takes only a couple of
pages of code. This is important because it minimizes
the concern that the type checker must be trusted.

We do not show here the typing rules for full LF.
Instead we define in Appendix B a fragment of LF that
is expressive enough to encode first-order and higher-
order logics but is strictly simpler and less expressive
than full LF. For this fragment, called LFy, we show
the typing rules and the adequacy of the encoding of
predicates and derivations. The statement of the ade-
quacy theorem is shown below. The LFy typing judg-
ment I' b M :. A says that the object M is canonical of
type A with respect to the type assignment I' and the
signature L.

Theorem 3.2 (Adequacy for first-order logic)
There is a bijection " 7' between derivations D :: > P
with parameters v; (i = 1,...,n) and from hypotheses
uj > P; (j=1,...,m) and canonical LF objects "D
such that

Vi g €XP,Uj 1q PE TP "D i pf TP

The following corollary of the adequacy theorem
states that LF type checking is a sufficient procedure
for checking safety proofs.

Corollary 3.3 If P is a closed predicate and M 1is a
canonical LF object such that - & M :1r pf "P7, then
there exists a derivation of D :: > P, that is P is valid.
Furthermore, M = "D

A similar theorem is proved by Harper, Honsell and
Plotkin [5] for canonical forms in full LF. In LF, the
proofs are somewhat simpler because of the syntax di-
rected form of typing judgments and canonical forms.
A practical advantage of LF( over full LF is that defi-
nitional equality, responsible for the exponential worst
case complexity of LF type checking, is replaced with a

localized syntax-directed normalization judgment. For
the particular signature L, normalization is only in-
volved in checking instances of the universal quantifi-
cation elimination rule schema.

Quantitative Results

One motivation for our experiments was to measure the
size of safety proofs and the time it takes to validate
them for a few simple examples. The safety proof con-
tains the LF representations of the invariants—less the
precondition, which is supplied by the code producer—
and the proof of the VC predicate. All these LF objects
are encoded in a portable and compact binary format.

Recall that the PCC binary contains also the native
code. For the example presented in this section, the
size of the entire PCC binary is 730 bytes. Of these,
the safety proof occupies 420 bytes and the code 60
bytes. The rest (250 bytes) is a fixed-size overhead.

With our implementation of the LF, type-checking
algorithm, validating the proof for our example takes
1.9ms on a DEC Alpha workstation running at 175MHz.
This time is significantly less than it would take a
trusted optimizing compiler to generate the same safe
extension by compilation of SML source.

4 Case Study: Safe Packet Filters

In another case study, we used proof-carrying code to
implement a collection of network packet filters. The
details of this experiment are described elsewhere [11],
and so here we give only a brief summary of the exper-
iment and our results.

Many modern operating systems provide a facility
for allowing application programs to receive packets di-
rectly from the network device. Typically, an appli-
cation is not interested in receiving every packet from
the network, but only the small fraction that exhibit a
specific property (e.g., an application might want only
TCP packets destined for a Telnet port). In such cases,
it is highly profitable to allow the application program
to specify a boolean function on network packets, and
then have this filter run within the kernel’s address
space. The kernel can then avoid delivering uninterest-
ing packets to the application, thereby saving the cost
of many unnecessary context switches. Packet filters
are supported by most of today’s workstation operat-
ing systems [9].

The main technical problem is that application pro-
grams are inherently untrusted, and so the kernel must
employ some method for ensuring safety. One popular
solution, exemplified by the BSD Packet Filter architec-
ture (BPF) [6], is to define a safe programming language



for writing packet filters, and then use an interpreter in
the kernel to execute them. In the BPF language, for
example, filter programs are restricted to be loop-free,
and all references to memory are checked at run time
to be within the bounds of either the packet data or a
statically allocated scratch memory.

In our experiment, we were able to use PCC to de-
fine the same safety policy as defined by BPF, and then
write a collection of typical packet filters in hand-coded
DEC Alpha assembly language. (The VC generator and
the abstract machine we use are essentially the same as
those shown in Figures 6 and 8, but with branches re-
stricted to be forward-only.) Since the packet filters
are written in hand-tuned assembler instead of an in-
terpreted language, they are ten times faster than func-
tionally equivalent packet filters written using BPF, two
times faster than packet filters written in the safe subset
of Modula-3, and 30% faster than filters developed using
software fault isolation [16]. Furthermore, the proofs
are small, ranging from 300 to 900 bytes in size, and
the validation times are negligible, ranging from 0.3ms
to 1.3ms. Note that we use exactly the same implemen-
tation of LF type checking as the previous application,
with only the signature modified.

5 Generating Safety Proofs

The remaining aspect of our PCC experiment to be dis-
cussed is the generation of the safety proofs. There are
still many open questions about proof generation, such
as scalability to large programs. We currently obtain
the proofs by using a very simple theorem prover that
produces a witness for every successful proof. There are
other possible methods that are likely to work better,
especially for larger programs. We discuss some of these
in Section 6.

For our experiments, we use the programming lan-
guage EIf [12] to prove VC predicates and produce LF
representation of their proofs. EIf is a logic program-
ming language based on LF. A program in EIf is an LF
signature and execution in Elf is search for canonical
LF objects inhabiting an LF type in the context of a
signature. In our case the program is the signature L
and we are interested in finding a closed object M of
type pf " VC™ for some verification condition VC. If
such an object is found, according to Corollary 3.3, it
constitutes the canonical LF representation of a proof
> VC. Incidentally, this is exactly the required safety
proof.

Proof search in Elf is performed in depth-first fash-
ion, as in Prolog. With this operational view, the nat-
ural deduction style presentation of our logic is not ap-
propriate for proof search, because any of the elimina-

tion rules would lead to non-termination. Our solution
to this problem is based on the observation that all of
the VC predicates in our current experiments are ei-
ther first-order Horn clauses or first order hereditary
Harrop formulas. These fragments of first-order logic
admit a complete sequent-style proof system where the
declarative meaning of logical connectors coincides with
their search-related reading [7]. The resulting proofs
are called uniform. The LF representation of a uniform
proof system for our logic can then be used as a logic
program to perform proof search.

We represent in LF the uniform derivation rules for
our logic in a manner similar to the natural deduction
representation. We use this representation in Elf to per-
form a goal-directed search for a uniform derivation of
the validity of the VC predicate. We also represent
in LF the proof of soundness of uniform derivations
with respect to the natural deduction formulation of
our logic. We exploit the operational reading of this
soundness proof in Elf to convert the uniform deriva-
tion of the VC predicate to a natural deduction proof
of it.

Each of the LF signatures representing our logic, the
uniform proof derivations for it and the soundness of
uniform proofs, consist of about 15 constant declara-
tions.

6 Discussion and Future Work

For the type-safety example presented in this paper, we
were able to employ simple rules for finding sufficiently
strong loop invariants and the interfaces for all func-
tions called. However, in the general case, this is a very
difficult problem and the main factor that makes cer-
tification hard. One engineering advantage of PCC in
this regard is that all of the hard work is done off-line,
by the code producer who can employ a variety of tools
including costly program analyses or even user interac-
tion.

Another factor that makes the problem simpler than
general program verification is that the code producer
can allow the certification process to alter the code, per-
haps by inserting run-time checks in strategic locations.
This would have the tendency to make it easier to gen-
erate the proof automatically. For example, if we insert
run-time bounds checks before some array operations
then it becomes easy to verify that no out-of-bounds
array accesses are performed.

Still, it seems unlikely that such a verification-based
approach will scale up to programs of a more realis-
tic size. We believe that a more promising technique
for producing the proofs would be to rely on a com-
piler to prove that the target code preserves interesting



properties of the source program, such as termination,
lack of deadlock, or type safety. This would be gener-
ally achieved by instrumenting the compiler to generate
proofs of safety in parallel with code transformations.
Currently, we have very little experience with such
“certifying compilers.” We have implemented a com-
piler for a small type-safe imperative language with sum
and product types. The target language is similar to
the source language except that it has only products.
In target programs the sum-type values are represented
as pairs, in a manner similar to the TIL representa-
tion strategy. We employ typing rules similar to those
presented in this paper to prove type safety for the tar-
get program. We are able to implement the compiler
in such a way that the type-safety proof for the source
code is transformed into a proof in parallel with the
transformation of the code into the target language.
We are exploring the feasibility of extending a more
realistic compiler, such as TIL, to generate type-safety
proofs. TIL currently preserves the proof of type safety
through most of the high-level optimizations by means
of typed intermediate languages. To make TIL a cer-
tifying compiler, we would need to extend the safety
policy presented in this paper to the entire Standard
ML language, and then modify the compiler so that
it preserves the safety proof through all back-end op-
timizations and translations. While this seems quite
a daunting task, it is encouraging that code schedul-
ing and register allocation, when done correctly, do not
change the safety predicate. In fact, it may be a simple
correctness criterion for these optimizations that they
preserve any safety predicate that the code has initially.

Another aspect of our PCC experiments that de-
serves some discussion is the choice of the underlying
logic for the safety policy and the representation of
derivations. A somewhat delicate point is the choice of
axioms and proof rules for reasoning about arithmetic.
In our experiments, we have chosen the rules and ax-
ioms a bit haphazardly, extending the logic as the need
arose. While this approach might be workable in some
circumstances, widespread use of PCC for, say, safe ap-
plets would require that all proof validators adopt the
same logic. How to choose the right system may be a
difficult task, though in practice this amounts to estab-
lishing a kind of standard basis library.

Beyond the matter of arithmetic, we plan to ex-
periment with logics that are more expressive than
first-order logic, such as linear logic or temporal logic.
Such logics can provide more expressive mechanisms for
defining practical safety policies. For example, linear
logic might be useful for expressing revocation and sin-
gle threading of capabilities. Temporal logic could be
used possibly to express fairness or lack of deadlock.
Also, higher-order logic could be the basis for reasoning
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about code-generating code.

Working with more expressive logics might require
more meta-language machinery than provided by LF.
This is the case for linear logic, for example. Another
reason to experiment with other representation tech-
niques, is that there are no known decidable criteria for
ensuring that an LF signature is a proof of some the-
orem about a deductive system. If we could encode in
an easy-to-check representation theorems like “all type-
safe code is also memory safe”, then we would have a
mechanism by which untrusted users could safely define
safety policies.

7 Conclusion

We have presented proof-carrying code, a mechanism
that allows a code consumer to interact safely with na-
tive code supplied by untrusted code producers. PCC
does not incur the run-time overhead of previous so-
lutions to this problem. Instead, the code producer is
required to generate a proof that attests to the code’s
safety properties. The kernel can easily check the proofs
for validity, after which it is absolutely certain that the
code respects the safety policy. Furthermore, PCC bi-
naries are completely tamper-proof; any attempt to al-
ter either the native code or proof in an PCC binary is
either detected or harmless with respect to the safety
policy.

The main contribution of the work presented in this
paper is the principle of staging program verification
into certification and proof validation, with the proof
acting as a witness that the certification was performed
correctly. This staging has great engineering advan-
tages, all based on the intuition that proof checking is
believed to be much easier than proof generation.

Application-specific proving strategies—goal directed
search, interactive theorem proving or just brute-force
search guided by heuristics—and their associated com-
plexity and computational costs are moved off-line to
the certification stage. In the validation stage, we only
need a simple and reliable proof checker which in many
cases is inexpensive enough to be used in performance
critical paths. Moreover, the same proof checker covers
many practical applications, which increases the relia-
bility of the methodology. Lastly, the certification must
be done only once independently how many times the
code is used.

We have also shown a way to use standard verifica-
tion techniques to check type safety at the assembly-
language level. This is important for certifying exten-
sions to safe programming languages and as a main
building block in constructing certifying compilers.
Similar techniques have been applied to assembly lan-



guage before [2, 3] but neither as a basis for creating
safety proofs nor for checking type safety.

We show an encoding of safety proofs as first-order
logic derivations in LF. Our contribution in this area
is to identify a fragment of LF which is both sufficient
for many applications of PCC and also admits a simple
and fast type-checking algorithm.

Proof-carrying code is an application of ideas from
program verification, logic and type theory, in this case
to extend to low-level languages safety properties that
are normally enjoyed only by high-level languages. We
have shown that this technique is useful both for safe
interoperability of programming languages and operat-
ing system components. With the growth of interest
in highly distributed computing, web computing, and
extensible kernels, it seems clear to us that ideas from
programming languages are destined to become increas-
ingly critical for robust and good-performing systems.
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( (polrs +op/rq],pc+ 1), if
(po[sel(rm,rs +n)/rq],pc + 1), if

(pspc) > 4 (p,pc+n+1), if
(pspc+1), if

[ (p,pc+1), if

Hpc = ADDQ s, 0p,Tq

Hpc = LDQ rdan(rs)
II,. = BEQ r,,n
II,. = BEQ r,,n

and |rmFrs+n:addr

and 1, =0

and rs#0

M, =INV T

Figure 8: The abstract machine for the soundness proof.

A Soundness of the VC-based Certifica-

tion

In this appendix we prove that the VC predicate as
defined in the body of the paper is indeed sufficient to
ensure compliance with the safety policy. In the context
of our example, this means that every memory read
operation references a readable address—as defined by
the typing rules—and also that upon termination, the
postcondition holds. This soundness proof can be easily
extended to other examples.

In order to formalize the soundness property, we de-
fine an abstract machine that defines safety formally.
The state of the machine consists of the value of the
program counter (pc) and the state of the machine reg-
isters, including the pseudo register rpy,.

We view the current state of registers as a substitu-
tion (p) from register names to values. We write p(r;)
to denote the value of the register r; in state p. We
write p(e) and p(P) to express substitution of register
names with their values in state p. We write p o [e/r;]
for the state obtained after executing the assignment
r; := e in state p. By definition, a state p satisfies a
predicate P if and only if > p(P).

With this notation, we define the abstract machine
by the set of state transition rules shown in Figure 8.
There are several interesting aspects of this abstract
machine definition. Firstly, the machine specifies ex-
plicit safety conditions, shown boxed in Figure 8. For
example, the safety condition for the memory read rule,
r'm F rs +n : addr, is satisfied in the current state p
if > p(rm) F p(rs) + n : addr. This assumes that the
application-specific extension of predicate logic (the set
inference rules in Figure 3 for our example) is sound
with respect to the given safety policy.

Secondly, this machine does not return errors ex-
plicitly. Instead the execution halts—due to the lack of
appropriate rules—in cases when the safety conditions
are not satisfied or invalid instructions are encountered.
Lastly, the machine ignores the invariant instructions.
This is appropriate because a physical machine does not
know how to execute them. Therefore, if we ignore the
boxed safety condition in the memory read rule, we ob-
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tain a faithful abstraction of the DEC Alpha processor.
We show in the rest of this appendix that a valid VC
predicate for a program guarantees that, at any moment
during its execution, the safety conditions are satisfied,
or equivalently, the execution does not halt. Such a
program has the same effect if executed on the physical
machine, which does not perform the safety checks.

The central result in this appendix is the progress
lemma. Informally, this lemma says that if the current
state satisfies the VC predicate for the current instruc-
tion then either the execution terminates immediately
in a state the satisfies the postcondition, or else there is
a subsequent state (the execution does not halt there.)

Lemma A.1 (Progress) For any program II such
that 1l INV Pre, if > VC(II, Inv, Post) and
> p(VCp) then either:

o I, = RET, and > p(Post), or

o Ezists a new state p' such that (p,pc) — (p', pc’)
and > p'(VCpe).

Proof: The proof is by case analysis of the current in-
struction.

Case: II,, = RET. Because > p(VC,.) and VC,. =
Post, we conclude that > p(Post).

Case: II,. = ADD r,,o0p,rq. From hypothesis b p([rs +
n/rq] VC pey1). By simple substitution manipulation we
get that > (p o [rs + n/rg])(VCpet1). The conclusion
follows immediately if we pick p¢’ = pc + 1 and p' =
polrs +n/rq).

Case: II, = LD r4,n(rs). From hypothesis > p(rm F
rs +n:addr A [sel(tm,rs +n)/rq] VCpetr).

From here, using the conjunction elimination rules, it
follows that > p(rm F rs + n : addr), which means
that the side condition in the memory read rule of the
abstract machine is satisfied. If we pick pc’ = pc+1 and
p' = po[sel(rm,rs+n)/rq] we deduce that > p'(VC,er).
Case: II,, = BEQ r;,n. We distinguish two cases
depending on the value of p(rs). We only show here the
case when > p(ry; # 0). The other case is similar. From
the hypothesis we get > p(rs =0 D VCpet1 Ars #0D
VCpetnt1)- Using conjunction and then implication



elimination we get that > p(VCpetnt1), which is exactly
what we have to prove.

Case: Il = INV Z. From the hypothesis we have that
> p(Z). Now we use the validity of the VC predicate. By
universal quantification elimination (with the instantia-
tion p) and conjunction elimination on the proof of the
VC predicate we get that > p(Z O VCpet1). Now using
implication elimination we get the desired conclusion.

O

Lemma A.2 For any program I1, set of invariants Inv,
and postcondition Post such that Il INV Pre, if
> VC(IL, Inv, Post) and the initial state po satisfies the
precondition Pre, then for any subsequent state p of the
abstract machine such that (po,0) —=* (p,pc), we have
that > p(VCpe).

Proof: By induction on the length of the derivation
(p0,0) =* (p,pc). The base case follows immediately
from the hypothesis observing that VCy, = Pre. The
inductive case is Lemma A.1.
O

Lemmas A.2 and A.1 can be easily used to show
that at any point during the execution of a program
with a valid VC predicate, the safety check in the mem-
ory load rule is satisfied, and furthermore whenever the
program terminates, it does so in a state that satisfies
the postcondition. This proves Theorem 3.1 from the
main body of the paper.

B Adequacy of the LF Representation of

Proofs

In this appendix we introduce LFy, a fragment of full
LF as defined in [5]. The benefits of using LF, instead
of full LF for proof representation and validation is that
LF( admits a simpler type-checking algorithm.

When using LF for checking proofs, the signature
and the kinds involved can be trusted, as they are de-
signed by the code consumer. This eliminates the need
for type checking kinds in LFy . Also there are no de-
pendent kinds allowed in LF( . Another distinguishing
feature of LFy is that it only allows second-order con-
stants and first-order abstractions. This is enough for
representing a wide array of first-order and higher-order
logics [5]. The benefit gained is that the normalization
judgment is syntax directed and admits simple and ef-
ficient implementations.

Finally, by examination of the LF encoding func-
tions we notice that only LF objects in canonical form
are produced. This is in fact a crucial technical detail in
the proofs of adequacy in [5]. In LFy we define typing
judgments only for objects in canonical form, thus sim-
plifying the typing rules and the adequacy proofs. An
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object is in canonical form if it is in Sn-long-normal-
form. We write ' k; M :. A if the object M is in
canonical form of type A with respect to the type as-
signment " and the LF, signature ¥. This judgment
is defined in Figure 9 in terms of the atomic typing
judgment I' i M :; A. An object is atomic if it is
a constant or a variable applied to zero or more argu-
ments. Enough arguments must be present such that
the application has a non-functional (atomic) type.

One variation from typical presentations of LF is
that instead of a definitional equivalence judgment we
use a normalization judgment. Furthermore, use of nor-
malization is localized to the at_app rule. This makes
both the canonical and atomic typing judgments syntax
directed, which simplifies the adequacy proofs below.

Abstractions are restricted to first order by the
can_pi rule, because an atomic type cannot be func-
tional. This in turn, justifies the syntax-directed form
of the normalization judgment. In particular, in the
nm_beta rule, the term [N'/z]M' is known to be in
canonical form if M’ is canonical and N’ has an atomic
type.

The following theorem relates the typing judgments
of LFy with the typing judgment in LF and justifies the
claim that LFy is a fragment of LF.

Theorem B.1 (Soundness of LFj )
1. IfTE M: AthenTk M : A.
2. IfTEM: AthenT k5 M :pp A.
3. If T A: K thenT K A K.

4. IfT'k A :p Type and A | A’ then A = A' and
'k A':r Type.

5. IfT &k M :p A and M § M’ then M =, M’ and
Tk M . A.

Proof: The proof is by simultaneous induction on the
structure of LFy derivations.
O

We state below the adequacy theorems for expres-
sion, predicate and derivation representation as defined
by the signature L. The proofs for the adequacy theo-
rems follow closely the model of similar adequacy the-
orems in [5] and can be found in [10]. Technically,
the proofs are somewhat simpler for LFy because of
the syntax-directed form of the typing judgments and
canonical forms. If we extend the signature of first-
order predicate logic with first-order proof constants,
the adequacy still holds. This means that LF is an ad-
equate representation not only for first-order predicate
logic but for all first-order extensions of it.



Canonical Objects

z:wAx M: B 'k A:, Type

'k M:AM : . Ilz:A.B can-pi
'eEM:( A 'k A:, Type
Tk M. A can_at
Atomic Objects
Fz)=A Y()=A 'k M: Ilz:A.B 'EN: A [N/z]B | B’
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Figure 9: Typing rules for LF,

Theorem B.2 (Adequacy of Expression Repre-
sentation.) There is a compositional bijection ™ 7 be-
tween expressions e with free variables among x4, ..., T,
and atomic LF objects "e™ such that x1 :4 exp,..., Ty 14
exp kp "e:, exp. The bijection is compositional in the
sense that "[e1/x]ea = [Te1/x] ey

Theorem B.3 (Adequacy of Predicate Represen-
tation.) There is a compositional bijection ™7 between
predicates P with free variables among x1,...,z, and
canonical LF objects " P such that x1 :q xp,..., 2y g
exp b "P7:. pred. The bijection is compositional in
the sense that "[e/z] P = ["e/z]" P

Theorem B.4 (Adequacy of Derivation Repre-
sentation.) There is a bijection "7 between deriva-
tions D :: > P with parameters v; (i = 1,...,n) and
from hypotheses u; ::> P; (j =1,...,m) and canonical
LF objects "D such that v; :o exp,u; o Pf "F;7 |
D7 :. pf TP

The adequacy of derivation representation is the cen-
tral result that justifies the use of LFy type checking as
a sufficient procedure for checking validity of proofs.
This is stated formally in the following corollary.

Corollary B.5 If P is a closed predicate and M is a
canonical LF object such that - 5 M :. pf "P7, then
there exists a derivation D :: > P, that is P is valid.
Furthermore, M = "D
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