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Abstract

Network worms, simple slang terminology for automated intrusion agents, represent a persis-
tent threat to a growing Internet in an increasingly networked world. However, their evolution
has been somewhat limited, and they still rely on the same basic paradigms, which contain
fundamental flaws. We analyze the basic components of a worm and apply this analysis to three
worms found in the wild on the Internet. We then proceed to analyze the limiting factors of
existing worm paradigms and outline new ideas which we expect to become prevalent. These
new worms will prove to be more difficult to identify and eradicate. It is our intention in sharing
this knowledge to stimulate the development of strategies to detect and counteract the threat
of smarter network worms.

*This is a draft edition, please visit http://www.crimelabs.net/ for the final version after July 20, 2001.



1 Disclaimer

The material contained in this paper represents a double edged sword. It is the result of ongoing
research within Crimelabs to identify weaknesses in current worms and various strategies they
may adopt to counteract current eradication techniques.

This information can be utilized, however, to build such a worm.

Crimelabs has chosen to release this information in the spirit of full disclosure, knowing
full well that the malicious use of this information is feasible. However, if we are to develop
strategies to detect and react to such worms, the defense community must give serious thought
to how such a threat may evolve.

We at Crimelabs will not release or build such a worm system, even for research purposes.
The risk is too great that it may be adopted for malicious use.

1.1 Copyright

This material is copyright (©2001 Jose Nazario and Crimelabs. It may not be reproduced, in
whole or in part, without the express written permission of Jose Nazario. All rights reserved.

2 Introduction

Autonomous intrusion agents, commonly referred to as ‘worms’, are fast becoming a popular
method of network and system compromise. The most famous start to the history of network
worms is the Morris worm, which quickly crippled a substantial portion of the 1988 Internet.
Worms have been a persistent security threat on the Internet, though for most of this hostory
they focused on Windows hosts. Recent variations on the worm theme have been made using
electronic mail virii, which abuse the MUA API’s to propagate quickly. Other than causing a
flooded network and mail server queue, they usually don’t do damage to the system they’re on.
They rarely provide for unauthorized external control of the system or the release of sensitive
information.

At the beginning of this research and writing in the late part of 2000 and early 2001, the
Ramen worm was infecting Linux hosts in an automated fashion, followed quickly by worms
such as the Solaris/MicroSoft IIS infecting ‘sadmind’ worm, the Linux worms ‘1lon’; ‘adore’ and
‘cheese’; and the vigilante worm ‘noped’. These represent, we feel, the tip of the iceberg and a
glimpse of what a future of widespread intrusion will be. What we envision will be forthcoming
is a more generic and dynamically configurable worm system, far more difficult to track and
remove.

This paper begins by exploring worm theory, discussing the six components of worms. Several
worms found in the wild are then dissected in terms of this six component model. We then
examine the limiting factors of current worm paradigms from several standpoints. Before we
begin to design any hypothetical systems, we discuss several considerations that should be taken
into account to preserve the system’s integrity. We then outline hypothetical worm systems and
then describe how one could readily implement this scenario. It is simply the application of
current methodologies, coupled to a basic intelligence system that simulates an Al engine. Parts
of the system are modeled after Internet infrastructure components, allowing for the creation
of an alternet network consisting of the nodes of the worm system, growing in resistance to
detection and shutdown.



We define a worm as a software component that is capable of, under its own means, infecting
one computer system and using it, in an automated fashion, to infect another system. This cycle
is then repeated and the population of worm infected hosts grows exponentially. A virus, by
contrast, spreads rapidly to a large number of hosts but cannot do so under it’s own power. It
has to spread using the assistance of another program. This includes MUA software and word
processing suites.

This definition mirrors an official definition used in the aftermath of the Morris Worm. From
U.S. v. Morris!, the court defined a computer ‘worm’:

FN1. In the colorful argot of computers, a “worm” is a program that travels from
one computer to another but does not attach itself to the operating system of the
computer it “infects.” It differs from a “virus,” which is also a migrating program,
but one that attaches itself to the operating system of any computer it enters and
can infect any other computer that uses files from the infected computer.

These two definitions are compatable, and will be the basis for most of our discussions of
worms and how they differ from computer viruses.

We will frequently make mention of a ‘worm network” and the ‘node’ machines of this network.
A worm network is nothing more than a network of systems which have been compromised by
a particular worm and may communicate with eachother through the network. A node is,
therefore, any of these machines, just as a node on a network is a machine on the network.

2.1 Why Worm Based Intrusions?

Given the relative stealth of a good manual intrusion, and the noise that most worms generate,
this is a very good questions to ask. Two main reasons for worms will continue to exist, however:

e Fase. In this area, automation cannot be beaten. While there is a somewhat significant
overhead to writing the worm software, it continues to work while the developers are away.
Due to its nature of propagation, growth is exponential, as well.

e Penetration. Due to the speed and aggressiveness of most worms, infection in some of the
more difficult to penetrate networks can be achieved. This is usually through serendipity,
but could, with some work, be programmed into the worm system.

These are the two main benefits of using a worm based attack model, as opposed to concerted
efforts done manually. And, for the foreseeable future, they will continue to be strong reasons
to consider worm based events as a high threat.

2.2 Two Possible Futures

This paper is concerned with the future of Internet worms and the structure these attacks may
take. We anticipate two likely futures for Internet worms.

The first is a simple increase in the application of existing capabilities to hide itself and
evade detection on the target system. This includes the increased use of kernel modifications
and rootkits, an increase in the use of encrypted network traffic, and an increase in the number

I Please see the court document 928 F.2d 504, 59 U.S.L.W. 2603 from the 1991 appeal by Morris of his sentence
for the release of the worm that has come to bear his name.



of attack methods, either directly included as a payload or in ‘dead drop’® sites. This is nothing
more than an increased utilization of known techniques, and can be readily identified through
intrusion detection techniques and code analysis of captured machines.

We will not be discussing this type of worm scenario much in this paper, as we feel that a
new paradigm will emerge which provides greater challenges for defense, detection and along
with this an increased capability for a large scale threat. It is this second future that we will
describe in detail in this paper.

3 Worm Theory

We first begin by discussing, from a theoretical standpoint, the components of a worm. It
is important to remember that the term ‘worm’ is simply a shorter term for an ‘autonomous
intrusion agent’. With this in mind, we are able to dissect the properties of a worm and map
them to categories.

3.1 The Six Components

At the core of any worm system are six components. A worm may contain any or all of these
components, usually in some combination. Most worms at this time, in early 2001, have been
monolithic, meaning each copy of the worm was identical to its parent.

These components are:

e reconnaissance capabilities

specific attack cabilities
e a command interface

e communications capabilities

intelligence capabilities

e unused attack capabilities

While there may appear to be some overlap within these categories, it is intentional and the
appearant overlap is misleading. We define these categories as such because it lends itself to the
greatest flexibility in design of new worms and strategies. Furthermore, detection and prevention
strategies can be developed more thoroughly when a worm or worm system’s structure is broken
into these components.

Here we begin to elaborate on the definitions of these components. In later sections we will
discuss past and present worms, and then present hypothetical worm systems which build upon
these components.

2A ‘dead drop’ site is nothing more than an unmanaged location where one party leaves something, such as
a package or a payload, for another party, who will stop by sometime to pick it up. The two parties do not
communicate directly, but have agreed prior to the drop to use a particular site.



3.2 Reconnaissance

We begin our elaboration of worm components by examining the reconnaissance, or information
gathering, capabilities of a worm system. Simply put, this is the mechanism by which the
system extends its view of the world around itself, determines information about the systems
and networks around it, and identifies targets.

When an attacker performs these actions, they have at their disposal a suite of methodologies.
By identifying the characteristics which define a system tobe of one type, or more importantly
of a vulnerability, they can identify systems which will become targets.

This component of the worm performs these same processes, but in an automated fashion.
This includes scans and sweeps, such as port scans of a block of machines or service sweeps of
a network, which are usually active in nature. The system sends stimuli at a possible target,
and based upon the responses received it can determine what hosts are active and listening,
what ports are open and accessible, and even what operating system the target is running. The
configuration of the machine may also be examined by the worm to determine trusted hosts, a
technique utilized by the Morris worm.

Having analyzed the network and hosts around itself, the system node can identify targets on
a variety of criteria. This includes the capabilities available to the system, position in a network
in relation to a goal, or the system profile, such as a poorly configured, rarely monitored target.

Currently, a variety of methods exist to obtain this information in a manual fashion. This can
be readily scripted to perform wide area intelligence gathering, but the data is usually manually
analyzed. By incorporating these techniques into a worm system component, the system can gain
information as it progresses. This information can be shared using communications channels
and stored in the intelligence component, if so desired.

3.3 Specific Attack Capabilities

This component is one of the most prominent in a worm’s phenotype. This is the methods which
a node of a worm system gains entry and, if need be, escalates privilidged on another system.
This includes standard remote exploits, such as buffer overflows, cgi-bin errors, or the like. This
can also include techniques like Trojan Horse injections and similar methods.

One concern, and the main reason why this is a separate component of a worm system, is the
system type being targeted. Attach capabilities that are limited to one platform or method rely
on finding vulnerable hosts of the same type with the same vulnerability. Supporting multiple
methods of compromise, or multiple platforms on which to run these attack vetors, requires a
significantly larger worm.

The attack portion of the code can be further subdivided into two distinct portions: the
component which runs on the infecting host, and the portion that runs on the host that is being
attacked. This can be binary executable code, or some sort of interpreted script. It usually will
utilize network code to attach itself to a remote host, but can, in some situations, simply append
the remote attack code into another network delivery mechanism, such as a mail message or a
file transfer.

3.4 Command Interface

A system of nodes is only worthwhile if they are able to be controlled by some means. This can
either be an interactive control mechanism, where a user is able to direct actions of the node,
or through some channel for the system itself to control a node.



In this part, worm networks are akin to a network of systems in a distributed denial of service
(DDoS) ring. Usually these nodes have two types of command interfaces, one interactive, where
a remote control shell is obtained, and one that is automatic, where the node is in control of
some master.

Traditionally the attacker has placed some form of a backdoor entry into the system. On
UNIX systems this can include a trojanned login daemon which is configured to accept a special
passphrase that grants administrative access. On desktop systems, such as Windows PC’s and
Macintosh systems, this can be a simple ‘Trojan Horse’ program, which listens on a network
socket for commands.

The objective is quite simple, to allow for the system itself, using a master-slave node rela-
tionship, to have an extended reach or capability, or more simply to allow an intruder unfettered
access to the system to manually command it. In one form or another, most worm systems have
some form of a command interface. This prevents the worm system from lacking any structure,
so that it may be used in a controlled fashion. Commands such as file uploads or downloads,
status reports, or actions such as ‘attack this target” have all been possible through this interface.

The command interface can be connected to by another node of the worm network, such as
the parent or a child, or manually by an attacker. The command interface is tightly coupled to
the communications channels, but is separate as different communications mechanisms can be
used to contact the same command interface.

3.5 Communications Capabilities

Because the nodes of the worm network reside on different systems, they must have some form
of communications. This allows for the transfer of information. For reconnaissance information,
network vulnerability and mapping information must be distributed to nodes which can use
this information in an attack. For commands, they must be able to send requests to the action
nodes, to initiate a scan, an attack, or other activities.

Communications channels are usually hidden by the worm using the same techniques hackers
use when they have manually compromised a machine, such as rootkits?.

They typically include network clients to various services or transport mechanisms such as
ICMP packets.

3.6 Intelligence Capabilities

The worm system maintains a record of its members and their locations in some form or another.
This is useful so that the nodes can brough together for some additional action. Control, through
the command interface, can be taken by a person or by another node of the worm system.
However, this requires knowing how to contact the nodes, which requires knowing their network
locations.

The simplest fashion for this to occur is via an update message from a newly acquired node.
The new member’s address, and any pertinent information, and sent to a some facility and
recorded.

This information can manifest itself in intangible ways, as well. For example, many Windows
worms use their presence on a network chat room, such as IRC, an an intelligence mechanism.
They arrive once infected, announce their location and any passphrases needed to gain entry,

3A rootkit is a collection of modified system programs that allows the attacker to hide and usually regain
entry through a back door program.



and simply sit and wait. In this fashion, the worm network knows about its members, their
location and potentially any capabilities they possess.

3.7 Unused Attack Capabilities

This is both one of the more difficult to distinguish components of a worm system as well as
one that lends itself to system flexibility the most. By maintaining a set of capabilities, usually
for an attack, the worm is able to adapt itself to new targets. Furthermore, this reduces the
amount of payload that must be carried, allowing for a leaner worm base.

Currently all known worms carry with them their collection of exploits, including ones that
are not used.

Other, non-attack capabilities fit into this category as a ‘catch all’. These would include the
Distribute.net RC5-64 challenge client in the “Win32.Bymer worm” which affects the Windows
operating system®.

3.8 Assembling the Pieces

Having outlined the six components of a worm as above, it should now be shown how they
fit together to form an active worm system. Already it can be seen that this breakdown of a
worm’s components is useful for dissecting behavior, as well as developing more powerful worms.
We will elaborate upon these ideas later in the paper when we discuss considerations for future
worm development.

4 Analysis of Three Worms

Now we apply this strategy to three network worms which have been developed in the wild. These
exemplify various historical worm strategies and the real world use of the above components.

4.1 Ramen Worm Analysis

Using the above described worm structure, we can map the components of the Ramen worm
(late 2000, early 2001) and characterize this instance. Max Vision has written an excellent
dissection of the Ramen worm®, along with a life cycle, which should also be studied.

Ramen is a monolithic worm, which is to say that each instance of an infected host has
the same files placed on it and the same capabilities. There exists some flexibility by using 3
different attack possibilities, and compiling the tools on both RedHat Linux versions 6.2 and
7.0, but each set of files (obtained as the tar package ‘ramen.tgz’) is carried with each instance
of the worm.

The reconnaissance portion of the Ramen worm is a simple set of scanners for the vulnerabil-
ities known to the system (below). Ramen combines TCP SYN scanning with banner analysis to
determine the potential for infection of the target host. A small random class B (/16) network
generator is used to determine what networks to scan.

4See http://project.honeynet.org/papers/worm/ for an analysis of this worm.
®Please see http://www.whitehats.com/library/worms/ramen /index.html.



The specific attacks known to Ramen are threefold: FTPd string format exploits against wu-
ftpd 2.6.0 6, RPC.statd Linux unformatted strings exploits’, and LPR string format attacks®.

The command interface of the Ramen worm is limited. No rootshell is left listening, and
no modified login daemon is left, either. The minimal command interface is reduced to the
small server ‘asp’, which listens on port 27374/TCP and dumps the tarball ‘ramen.tgz’ upon
connection.

Communications channels are all TCP based, including the use of the text based web browser
‘lynx’ issuing a ‘GET’ command to the Ramen asp server on port 27374/ TCP, the mail command
to update the database, and the various attacks which all utilize TCP based services for attack.
Aside from DNS lookups, no UDP communications channels are used. No other IP protocols,
including ICMP, are directly used by the worm system. All communications between the child
machine and the parent (the newly infected machine and the attacking machine), along with the
mail communications to servers at hotmail.com and yahoo.com, are all fully connected socket
based communications.

The intelligence database of the system is updated using electronic mail messages from the
system once it is infected to two central email addresses’. The email contains the phrase ‘Eat
Your Ramen!” with the subject as the network address of the infected system. The mail spool
of the two accounts is therefore the intelligence database of infected machines.

Unused capabilities can be summarized as the other two exploits not used to gain entry
into the system, which allow for some flexibility in targeting either RedHat 6.2 or 7.0 default
installations.

A brief comment on the complexity of the Ramen worm: the author has cobbled together
several well known exploits and worm components, as well as methods, utilizing only a few novel
small binaries. Examination of the shell scripting techniques used show low programming skills
and a lack of efficiency in design.

These findings has two ramifications. First, it shows how easy it is to put together an
effective worm with minimal coding or networking skills. Simply put, this is certainly within
the realm of a garden variety ‘script kiddy’ and will be a persistent problem for the foreseeable
future. Secondly, it leaves, aside from any possible ownership or usage of the yahoo.com and
hotmail.com email accounts, very little hard evidence to backtrack to any author of this worm.

4.2 PrettyPark Windows Worm

This worm illustrates two interesting facets of emerging worms on the Windows platform: the
abuse of the highly integrated Windows and Office components, and the remote control of the
system via a simple interface. In the strictest of senses PrettyPark is not a worm, as it is not
able to spread under its own volition. Aside from lacking an independent transport layer, it
exhibits all of the other traits of a worm.

PrettyPark is, like most other worms found in the wild, monolithic. Each instance carries
with it a compressed copy of the main program, carried to the next instance by electronic mail
(and is delivered as the MIME attachment ‘PrettyPark.exe’, a trojan which masks itself as a
diversion based on the ‘South Park’ television show).

6CVE-2000-0573, BID 1387

7CVE-2000-0666, BID 1480

8no entry in CVE, BID 1712
9¢h31337@Qyahoo.com and gh31337@hotmail.com



The PrettyPark worm performs a basic reconnaissance function by scanning the address
book of the infected machine for potential victims to contact. This is done through the MAPI
functionality built into some popular electronic mail clients.

Attacks carried out by PrettyPark are somewhat basic and of limited destructive power to
the machine infected. Aside from infection routines, the program can scour for passwords, phone
numbers and perform file manipulations, such as creation, deletion and transport. All of this
can be communicated to a central site via the IRC command interface.

The command interface to PrettyPark is a simple IRC client, which is capable of receiving
commands. These can include file operations, such as send and receive, as well as destructive
commands like file deletions.

The intelligence database for machines infected with PrettyPark is a minimalist setup. In-
fected machines join an IRC network on a private, passphrase protected channel. Their presence
not only gives a command interface and serves as a communication mechanism, but notifies a
central point when nodes are added. It does not appear that other nodes know about eachother.

The major modes of communication for Prettypark are twofold: the IRC channel for a
command interface and intelligence updates, and the use of electronic mail as an infection
vector.

Due to its small size and simple nature, PrettyPark appears to have no unutilized capabilities
in its normal attack vector. This limits its range and its adaptability.

Examination of the PrettyPark code shows a reasonable degree of programming savvy. While
most electronic mail worms in the past two years have focused on using the Visual Basic Script
language, PrettyPark is a compiled binary which was written in the Borland Delphi language.
Secondly, it works at a more reasonable pace than its cousins Melissa and ILOVEYOU, spreading
only after 30 minutes rather than as quickly as possible. In this way detection can be made
more difficult and would require some more dedicated traffic analysis.

Theoretically, PrettyPark could be updated via its IRC interface and an upload of a new
executable. This could allow for a continued presence after widespread dissemination of removal
routines, such as those from anti-virus companies.

The use of an TRC channel as a command interface is a step forward in the evolution of
worms. Furthermore, it is one of the more sophisticated worms to make use of the increasingly
interconnected and networked desktop system software, and most definitely a sign of things to
come.

4.3 The Morris Worm

We next move on to an analysis of one of the most damaging worms, as well as historically sig-
nificant automated intrusions systems, the Morris Worm, which was active on the 1988 Internet.

The Morris Worm was also a monolithic worm, and each node carried with it a full payload.
Of particular note was the distribution of itself in source code form and calling the system’s
compiler to build the new binary.

The reconnaissance methods used by the Morris Worm are themselves impressive. Utilizing a
combination of scanning and trusted host analysis of the machine upon which it found itself, the
worm was able to spread rapidly. By finding vulnerable Sendmail servers and finger daemons, the
worm exploited programming errors and delivered its payload to the next system. Furthermore,
the worm would look for Berkeley r-command indications of a trusted host relationship, as
well as a user’s .forward file (used in electronic mail forwarding on UNIX systems) to find new
vulnerable hosts.



The attacks used by the Morris Worm were also elegant. The Sendmail attack'® worked by
throwing the server into DEBUG mode and sending a maliciously formatted command which
would be processed by the system’s shell (/bin/sh). The finger daemon exploit worked by
exploiting a buffer overflow on the VAX architecture in the BSD code. Dictionary and username
information attacks on passwords were also carried out using custom, high speed routines. This
information was then used to compromise additional accounts on the networked systems.

The intelligence database of infected machines was quite simple. After a successful infection,
the newly acquired node would send a one byte packet to 128.32.137.13 (which resides in the
University of California at Berkeley network). Presumably if this station is listening, the source
could be added to the list of known infected hosts.

What is absent from the Morris Worm is any true command interface. The worm only moves
along infecting other hosts. Although a root shell is created, no backdoor of access is left. All
of the worm’s operations are carried out in binary programs, which do, among other things,
process hiding techniques.

Communications channels are also minimal in the Morris Worm. Updates to the database
of associated machines are done via a one byte IP packet (see above), but after an attack, the
child node doesn’t communicate with the parent node.

Again, like we saw with Ramen, the unused attack code was what was left over and not used.
For example, if the attacked system was a VAX, the Sun3 specific attacks and code remained
unused. Additional capabilities that may not have been used included password cracking, had
there been some means of sending passwords to crack to the machines.

A review of the code of the Morris Worm reveals a sophisticated approach to worm engi-
neering. Again, three different attack methods are used, which proved devastating in a more
homogenous Internet. Furthermore, the trust relationships present in the 1988 Internet were
extensive, and their abuse allowed for efficient spread of the worm in less than a week.

It is both frustrating and interesting to note that a good number of the basic problems abused
by the Morris Worm persist in one form or another. Trust relationships are still significantly
based on implicit hopes that the situation hasn’t changed and intentions still manifest themselves
as realities. Poorly engineered code still contains a multitude of unchecked input calls, allowing
for buffer overflows or other input handling mistakes such as the poor string formatting exploits
which Ramen used. And lastly, despite the growth of a cottage industry devoted to strong
authentication mechanisms, passwords, typically poorly chosen, remain the dominant scheme
used for authentication and authorization.

The code quality, even after a cursory examination, shows proper coding style, including
error handling and even an efficient DES password cracking program. At the time the exploits
used were known but the code, and wrappers, were developed specifically for this worm.

5 Problem Characteristic of Current Worms

We outline here several of the existing problems that will make the continued detection of
network worms possible, and prevention achievable as well. Coupled to the specific nature of
individual worms is the structure of typical worm networks, their behavior, and the consequences.

10CVE-1999-0095
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5.1 Limited Capabilities

This is, by far, one of the greatest limitations of the continued success of the spread of any
current worm network. These limited capabilities are used to identify the worms, giving them
a particular network or system signature. With an understood set of behaviors, the worm can
become quickly revealed.

The limited attack capabilities of the worm network’s members will quickly become a hin-
drance. As the vulnerabilities become well known and patched, the number of potential targets
for inclusion into the worm system decreases, and the worm will eventually come under control,
having nowhere to run.

This also leads to a signature for host based intrusion detection, using logfile entries or filesys-
tem modifications as a basis of infection. For network based intrusion detection the signatures
of the remote attacks can quickly be identified and associated with the spread of the worm.

A finite set of reconnaissance capabilities will also quickly become a problem for the worm
network. As nodes are added, each will generate increased traffic. This reconnaissance traffic
will also be associated with the worm, identifying the source nodes as compromised.

5.2 Growth Rates and Traffic

The growth of a worm network is typically exponential in nature. This arises from the fact that
each instance of a worm network node operates independently of its siblings, identifying targets
and infecting new nodes. This operates in parallel, and scales rather quickly.

Consider a worm network which is capable of adding 5 new hosts every round. After five
rounds, 3125 systems are infected and active participants. After five more rounds, ten rounds
total, 9,765,625 hosts are members of the worm network.

The growth of two different types of worm networks differs wildly. In a common scenario,
where the infecting agent removes the vulnerabilities used to gain entry, the worm network will
grow in a manner that mirrors biological systems. In theory, the growth rate of such a worm
network should reach a steady state value before trickling off, and finally ceasing growth. This
would occur even in the absence of removal of infected machines from the network. As the
number of targets available to the known attack methods decreases, the ‘food supply’ for the
worm system is depleted and growth will slow. Eventually the growth rate will stop as no new
nodes available for addition are found, as all of the vulnerabilities usable by the worm network
are removed.

If, instead, the worm leaves itself still vulnerable to attack by another instance of the worm
system, the growth of infected machines will reach a plateau, and the rate of infection will mirror
that for the above situation, but the number of infections will continue to rise as multiply infected
machines are attacked. Eventually network capacities will be reached and saturated with nodes
scanning for and infecting new nodes. Only then will the worm network growth stop.

The second case may seem to be a pointless repeat of the cycle of target acquisition and
assimilation, but this is usually not of great concern. Members of the worm network will always
remain a minority of the total number of systems on the Internet, so the probability of finding
an already infected node is slim.

This exponential growth has the impact on the worm’s profile as time passes. As more
systems are introduced to the worm network and begin their attempts to identify new targets,
the number of systems actively scanning increases. This leads to an exponential increase in the
amount of traffic produced. All of this traffic is nearly identical in nature in worm networks
with a limited capability set.
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The problems of this design are immediately obvious: first, the food supply will quickly
run out; secondly, the profile of the worm network will increase rapidly with time as increasing
amounts of signature traffic is generated.

5.3 Network Structure

Additionally, the structure of the worm network has two important consequences. First, it
rapidly fans out, communicating with as many machines as it can, often as rapidly as possible.
Basic network monitoring of a host or a network will reveal that the infected system is suddenly
communicating with a great deal of new hosts, usually in a predictable fashion. If this system is
high in the chain of heirarchy in the worm network, as more hosts are added its traffic load will
increase as they send updates to this host or receive direct communications from this node. This
also leaves an audit trail which can be followed to determine the paths of infection, identifying
hosts which may have remained otherwise undiscovered.

Secondly, it affords no control over the direction which the worm will take and the capabilities
it can utilize. Worms so far have worked to spread as rapidly as possible and as disperse as
possible. Any penetration of a particularly valuable network (such as a corporate network) is
purely the result of serendipity. While deep penetrations into traditional strongholds of security
can occur, it cannot be an explicit goal with this technique.

5.4 Intelligence Database

To date, all of the major worms that have utilized a reporting mechanism as new nodes are
added have relied on a centralized facility for the reciept of such updates. This includes email
drop boxes, the presence on a specific IRC chat room, or a simple packet to a particular IP
address.

This has two disadvantages. First, it becomes possible to identify the complete, or nearly
complete, membership list of the worm network by obtaining that database. When the system
that receives the updates is under the control of cooperative administrators, this can be readily
accomplished. Alternatively, an operation could be performed and the main intelligence machine
compromised by those attempting to erradicate the worm network, with the attackers obtaining
the database.

Secondly, it becomes possible to block the updates if they have a predictable form. Using
central email servers, it can be possible to block outbound mail to the known accounts. With a
firewall a block on the network traffic that indicates a new node has been added. This is even
without the cooperation of the network that is hosting the database, which may be difficult to
obtain.

In either case, a centralized database which contains a full, or nearly complete, list of the
nodes in the worm network is a risky proposition. It leaves the entire worm network open to
discovery with one mistake.

6 Considerations of Future Worms

Having outlined several of the dominant limitations of current worm paradigms, we can now
develop some of the considerations of improved worms.

12



We will not discuss here strategies such as process hiding, the use of kernel modules or
rootkits, all of which are based on older, existing techniques. Zalewski has covered many of
these in his earlier paper on WormNet!!.

6.1 Infection Mechanisms

True inspiration for novel mechanisms of the spread of a worm network come from living systems.
Many of the ideas can be adopted into the world of network computer systems.

The life cycle of an infection begins first with the attachment of the infecting particle, a virus
or phage, to the cell which will be infected. This usually comes as a result of a complementarity
between the infecting agent and the target host. This is then followed by the entry of the
infecting material, such as DNA and accessory proteins, into the cell. This material is then used
to hijack the cell into becoming a virus production factory, increasing the number of viruses
and, ultimately, the number of infected cells.

Worms act in much the same way, as do computer viruses. However, one facet that has long
been overlooked is the difference between passive and active methods of finding new hosts to
infect.

The passive nature of biological infection is due to the ability for the infecting agent to exist
in the transport medium, be it blood, water or air. This is the substantial problem, however,
in applying this paradigm to computer worm infections: infectivity agents cannot exist in the
transport medium alone (the network), they have to exist on a host (or even a network device,
such as a router). This problem exists for two reasons: first, the capacity of the network is
transient, meaning that the network itself is not a storage medium. While we speak of Gbps
networks, the bits reside ‘on the wire’ for only a brief period of time. Secondly, for any section
of code to operate it must be executed by some processor, at the very least. Aside from network
infrastructure equipment (ie the processors on switches, routers), there is nothing to interpret
and execute the worm programs.

To utilize this idea, the infected machine can become opportunistic about infections and
observe the traffic as it goes by. In this manner targets are identified with a minimal amount
of traffic generated by the reconnesance node. Traffic analysis can be utilized to determine the
type of machines on the network, server vs workstation vs network component, and the services,
with resulting vectors of entry.

Passive infection methods include insertion into a file transfer stream, such as over Windows
file sharing, MacOS file sharing, or NFSv3. In this manner one of the simplest attacks would
be a hijacking condition, where the server is ‘bumped’ off the network and malicious date is
substituted.

6.2 Network Topology

As described above, the structure of a typical worm in existing instances has been a rapidly
branching tree. This has the effect of assimilating a large number of machines quickly into the
worm network and generating an ever increasing amount of associated traffic. Two alternative
structures to a worm network can be utilized to provide stealth, survivability to the worm
network, and maintain an effective penetration strategy.

14T Don’t Think I Really Love You, Or Writing Internet Worms for Fun and Profit”, Michal Zalewski, 2000.
Available at http://lcamtuf.coredump.cx/worm.txt.
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6.2.1 Guerilla Structure

The guerilla method takes many aspects from the organization of guerilla armies and coup d’etats
as mentioned in the books “1984” by George Orwell, “Guerilla Warfare” by E. Che Guevara,
and “The Moon is a Harsh Mistress” by Robert Heinlein. Basically, the guerilla method takes
the features of the broadcast method (e.g. exponential growth speed and redundancy) and
augments this by using intelligence gathering techniques along with compartmentalization to
protect the safety of the whole network.

This method extends the metaphor of a rogue assault (the worm) on an established entity
(host machines) in a semi-transparent, complicated terrain (the network). Upon introduction,
the worm needs to survey the terrain. This can be done via many means, some as simple as
basic traffic analysis, via sniffing the network, to identify NIDS machines or central servers, or
as complex as reading DHCP packets to learn network layouts, or actively probing machines in
a subnet. Once some semblance of the terrain is gathered, the worm can then make decisions
as to how to behave in the network environment. Based on this information, it may want to
simply fan out and broadcast or run a few parallel chains. If it is in a hostile environment, it
may want to lay low for a while or simply cease to spread if the risk of exposing itself is too
dangerous'?.

Another key feature to guerilla tactics is compartmentalization. In a guerilla war, discovery of
the rogues is a severe risk. To ensure the safety of all of it’s members, nodes isolate knowledge
of each other to a functionally minimal level. Assuming that an intelligent worm wants to
communicate with other instances, it would need to store contact information about other
nodes. This is a problem, as if one node is compromised and its data analyzed, it can supply
information about other nodes. We discuss below communications topologies which can help
mitigate these risks.

One way to control the damage of captured nodes is to compartmentalize subsets of the nodes
so that you have fully connected isolated sub-graphs of nodes that only know about themselves.
This can work via out of band communication to an anonymous source (e.g. Freenet or Usenet)
or a predetermined marking method (e.g. leave this randomly assigned UDP port open on
infected machines for this cluster). Alternatively the worm could use objectives (say, infect n
machines) and you generate a fixed number of node members such that the compartment is
created and jettison all knowledge of the other nodes. Then all child nodes from that parent are
part of your compartment. That way, there will be little chance to destroy all instances of the
worm, especially if it starts out in several networkologically distant places.

6.2.2 Directed Tree

This topology differs from the traditional fan network or the guerilla topology in that instead
of trying to spread out to as many hosts as possible, the worm limits it’s search to one host
at a time. This has the effect of creating a chain of infection as mere jumps from machine to
machine. External detection will be much more difficult from the perspective of monitoring for
an activity spike, however, this has several important disadvantages.

First, the spread time for the network is taken from exponential to linear time. This is a
severe slowdown and detriment to the effectiveness of a worm. Secondly, it will leave a direct
audit trail, if there is any deterministic method the chain uses to go from machine to machine,
it can easily be backtracked (even pseudo-random number generators). Thirdly, it would create

12Though such a turn-off mechanism could be a severe weakness in the spread of the worm. Imagine a scenario
where false traffic is generated which triggers the shutdown reaction for the worm node.
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a running single point of failure for the lifespan of the worm. Simply stated, if the worm jumps
into a system where it can be contained, such as a honeypot or a machine that is about to
shutdown, the worm will effectively die.

6.3 Communications Topology

Two major points must be addressed when considering worm communication topologies: latency
of communications, and the resistance to discovery of the network by traffic analysis. Each of
these will have a significant impact and must be balanced. This mix, and the resulting topology
and communications methods, can be altered for the purpose of the worm network.

Latency is introduced when the communications model is designed. Two methods of com-
municating, for updates to the nodes or to the member database, are intuitively obvious. The
first is a broadcast mechanism. In this case, a central node sends a message to all nodes si-
multaneously. Utilizing the list of member nodes, a master site sends messages to each node
with a payload. This can include a capability injection point announcing a new component, the
database requesting an updated status from the member nodes, or a master node directing an
attack, for example in a DDoS ring.

This model introduces the lowest latency, as all nodes are contacted at the same time, and
the time to send the message from the first node to the last is a fixed value. However, it has
various features which makes it unattractive when the traffic is analyzed.

Basic traffic analysis would immediately show one system sending a flurry of communications,
followed by a period of high return traffic directed at or in the vicinity of the source host. Due
to the widespread deployment of traffic monitoring tools such as NIDS systems and generic
network accounting tools (ie network flows on routers), this becomes unattractive due to the
high profile that would be incurred as the network scales.

An alternative model is to step down the tree of member nodes, from a central position to
the edge machines. In this case, each node acts in a store and forward routine, receiving the
traffic from its parent and passing it on to its children.

The latency here would scale as the depth of the worm tree of infection. Furthermore, due
to protections incurred, such as sending traffic at optimal times, the delay in moving from the
source to the furthest edge of the tree could be several days'®. Under optimal conditions this
is only a few minutes, depending on the number of nodes and the time it takes the parent to
determine whom to communicate with.

This would be advantageous, however, from a traffic standpoint. At any one time a minimal
amount of traffic is used to communicate between parents and children. Traffic analysis would
not reveal anything other than a normal flow of traffic, assuming stealth channels were used as
described below.

The high latency, store and forward mechanism would be most suited for a highly connected
worm network, such as the traditional fan network with many branches or the directed tree
with minimal branches. This also adds a cellular type of structure to the intelligence database,
where each node knows only about its immediate parent and children. This is very similar to the
routing tables of networks, where each router doesn’t have to know the entire network topology,

13 Assume a situation where the node is smart enough to monitor its usage and knows to send traffic via HTTP
channels when use of the web is at its highest. This point may be the lunch hour for a workplace. If the update is
received shortly after this period, and HTTP traffic is low and the node’s traffic would stand out more, it would
have to wait until the next peak period to transmit its update, nearly one day later. The worst case scenario is
where every node is in a similar situation.
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only how to reach its neighbors. A guerilla network would require some form of broadcast,
however, to communicate across worm cells. Techniques to communicate using covert or stealth
channels are discussed below.

6.4 Communications Methods

Due to the great intelligence needed by the worm to achieve a specific objective, receive updates
from various sources, such as scouts and new capabilities, communications channels have to
exist. Furthermore, to protect the integrity of the worm network, the existence of the sender
and the receiver, and their participation in a larger network, must be guarded. To do this, we
will utilize various covert communications methods.

It is tempting to employ the use of encryption for communications methods. There is a
problem with this use, however. When the entropy of the bits is evaluated for normal traffic,
it shows a non-random distribution for standard, unencrypted sessions. While encrypted traffic
such as SSH or SSL traffic will indeed be present on the wire, the bulk of the data will be
unencrypted. Following the same methods as used by Shamir'#, the variance in the entropy of the
bits on the wire can be evaluated. In this manner, simple traffic analysis will highlight interesting
traffic, traffic worth observing. When correlated with other analysis, infected machines will be
readily identifiable.

Hence, we feel that the use of steganography is more preferable. By hiding the presence of the
data in traffic that appears normal, the presence of the worm can be hidden as well. Furthermore,
by utilizing simple analysis of the traffic, the infected machine can begin transmitting during a
burst of traffic in its local network segment. This will further hide its presence.

Data can be hidden in a significant number of places on network traffic. One such strategy
draws upon the method discussed by Simple Nomad'®. The methods described use promiscuous
mode listening stations which have the data sent near them from spoofed addresses. Data is
then hidden in a variety of fields, such as HT'TP requests, DNS information, and SMTP message
ID values. The key is that by sending the data mear the intended recipient, investigators will
have difficulty in finding the compromised machines, as they would have to search all machines
in a network segment.

Our overriding paradigm for stealth communications for a small worm will be to use an
existing infrastructure as much as possible. This will lessen the communications overhead of
the worm system and allow for a small payload for either endpoint of the communication.
Furthermore, it helps to ensure that the traffic is likely to look legitimate for the network the
worm finds itself on.

Infrastructure components that can be employed to communicate across wide areas using
broadcasts yet remain undiscovered include the Usenet network, web cached mailing lists, DNS
servers and various web boards.

Spam makes an effective covert channel for minimal information. Usenet and mailing list
spam'® can be utilized by a central system to notify the nodes of an updated condition. This
could include directives concerning new capabilities or an update concerning directives. Image
data and embedded communications would be useful on Usenet groups as well. Spam messages
in those cases usually go unchecked, providing that cross posting thresholds have not been

147 Playing hide and seek with stored keys”, Adi Shamir and Nicko van Someren, September 1998.

15Tn a talk entitled ”Stealth communications across networks”, at the SANS Technical Workshop, May, 2001,
as well as at the July, 2000, Blackhat Briefings.

16This is best done using lists which have no moderator and are cached on the web.

16



crossed and spam detection has been tripped.

Nodes then need only peek at the posted communication and, if needed, decipher it to obtain
the updated information. Usenet spam makes an attractive node notification scheme due to the
sheer bulk of data in a typical Usenet stream.

This kind of mechanism makes for an attractive, and low profile, broadcast mechanism for
updates and communications from one node to many. Furthermore, the use of spam messages
or data embedded in binary content (ie image data) on a medium like Usenet, which contains
thousands of similar images, can be utilized by the nodes to communicate with a central site.

Additional communications mediums include the use of peer-to-peer networking models such
as Napster, the DC Freenet, the Gnutella network and their clones. The DC Freenet is an
especially attractive network to use as a communications medium for content updates (see
below). The persistence of data on such a network is dependent upon the perceived value of
it, which is simply a measure of its popularilty!”. The use of a popular game or pornographic
images to deliver the update, using embedding techniques, would facilitate the persistence of
such data. Nodes could then obtain the data from this pool upon receiving notification. We
elaborate on this topic below.

6.5 Target Selection

There are two aspects to target focus that are worth noting. The first is the nature of the
specific hosts targetted by the worm, and the second is the type of targets.

In the past several years, the rise of consumer broadband, coupled to the increased number
of devices utilizing full OS installations on embedded devices, has created an attractive number
of targets. This leaves a network target that is both always online and difficult to secure. While
a consumer can readily patch and remedy an exposure on their desktop or server system, the
nature of embedded devices makes it difficult to upgrade for a typical consumer.

One popular situation is the adoption of a nearly complete Linux distribution for a specific
task. Devices that may be targetted include cable modem routers and DSL devices, printers,
small appliance firewalls, and even some television devices which lie on the network (such as a
cable modem). These are often based on outdated distributions of an operating system which
contain well known security flaws.

By specifically targetting these devices, a number of worm nodes can be assimilated, which
may prove valuable for target identification or other high profile tasks. These systems can be
disposable, and new ones acquired readily. Furthermore, they rarely have logs that are examined,
so they would make excellent points to create anonymity.

The second problem is made increasingly larger through the use of networks such as Akamai
and other distributed content systems'®. For various reasons, maintaining a comprehensive
security plan, including keeping a large number of systems up to date, and accepting the strategy
used to inject content into the Akamai system, the security level of the system can never be
high.

This also makes an attractive political or financial target. With heavily used sites like Yahoo!
and CNN utilzing networks such as Akamai, the ability to rapidly spread a message of political

17"The paper ‘What’s on Freenet?’, available at http://www.openp2p.com/pub/a/p2p/2000/11/21/freenetcontent.html,
examined the content and persistence of varius files on Freenet.

18 As this paper was being finialized for BlackHat, reports began circulating that a hacker had gained access
to the SourceForge, themes.org, and Apache systems, and had also gained a list of Akamai account passwords.
A mirror was placed at http://66.92.75.28/ vladimir/themes-org.html but deleted the passwords
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content is large. Furthermore, through various mechanisms, including technical and social,
financial havoc can be achieved in a short timespan.

The serendipity used by a worm can help it to gain access to networks that are normally not
prone to security attacks. If the worm system is capable of identifying a goal, such as an internal
network like Yahoo!, and taking a specific action, this chance entry can be used for a specific
purpose. While a worm could have a significant radar profile for intrusion detection systems, an
oportunity such as this could warrant the possible discovery if motivation was sufficient enough.

Other politically minded worms include the Noped worm!? and the Cheese worm?° . Noped
infects Windows systems and attempts to weed out child pornography and alert legal authorities.
Chese attempts to remedy the damage caused by the L1lon worm, though it has been found to
leave a backdoor entrance machanism. These vigilante style worms follow a call for action after
various Outlook worms decimated many corporate email infrastructures.

6.6 Dynamic Behavior

So far our definition of worms has focused on a complete replication of the worm from one host
to another. Thus, every instance of the worm is identical. However, there is no need for each
member of the worm network to be indentical, as they can have specific roles or capabilities.
This variation in the worm network can occur on two different levels: the microscale, where
the worm programs behave in a constantly changing fashion, and on a macroscale, where the
members of the worm network do not appear to be identical on different hosts.

6.6.1 Microscale Possibilities

A great deal of work has gone into studying computer viruses which utilize polymorphic behavior,
whereby they become more difficult to track and identify. Computer worms so far have not yet
adopted these strategies, but by including them, they become more difficult to identify as a
larger instance of malicious code.

Some virii have utilized encryption, in a self decrypting and extracting fashion, to evade
detection. By using varying keys, the virus body changes with each infection. Worm components
could also do this, obscuring their true nature. However, just as for network data, encryption
can be used in a scan to highlight interesting data?'. As such, simple encryption schemes that
preserve the entropy of the underlying bits should be used.

In a basic sense, this would include dynamic capabilities which can be modified as the
situation warrants. This has been observed in a limited sense with two well known malicous
code examples, BO2K and TFN2K. Each of these had the possibility of utilizing any of a
few methods to communicate, including TCP, ICMP and UDP, and hooks to provide optional
encryption. This is one simple example of the type of polymorphism that would make a worm
component more difficult to track. These adjustments could be made by the worm, either using
a statistical analysis of the traffic it observes, chosing to blend in to the surrounding network
traffic or to utilize available mechanisms (ie GRE), or randomly chosen protocols and ports,
negotiated with a communicating partner.

One more interesting trick would be to utilize a multithreaded engine, possbly even using
nonsense threads, that would assist in masking the tracing of the application’s behavior.

Yhttp: / /www.symantec.com/avcenter /venc/data/vbs.noped.a@mm.html
20http:/ /www.symantec.com/avcenter /venc/data/linux.cheese.worm.html
21Gee the Shamir paper listed above on stored keys.
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An additional method to obfuscate the application’s execution, and thus mask the behavior
from detection schemes, would be to have a variety of methods to chose from, either at build-
time or run-time, such as searching and sorting algorithms, encryption algorithms, and data
processing algorithms.

6.6.2 Network Scale Behavior

So far we have witnessed worms that work in a monolithic fashion, which is to say that each
node of the worm network contains the same code as every other node. This is, in fact, one of
the parts of the definition of a worm. However, this does not have to be the case.

The six components of the worm as we outlined in Section 2 can be fitted together in a
variety of ways to provide for a dynamic worm network. Within that, there can be a variety of
modules to accomplish each of those tasks.

For example, there can be several reconnessaince modules, some of which perform various
types of network scans, fingerprint systems in a variety of ways, and some which are passive and
analyze traffic. This can be combined with a variety of methods for communication, along with
varying attack capabilities, to create a dynamic network of worms.

This can be expanded upon to adopt a strategy of worms where they adopt various roles,
rather than being complete systems unto themselves. For instance, a worm node could lack
attack routines but be rich in methods to identify targets, becoming a scout node. Others
could be attack nodes, with several methods to gain entry to a remote target included with
them. Lastly, an intelligence node would lack both the reconnesance and attack components,
and focus instead on communications techniques.

6.7 Dynamic Updates to the Worm Nodes

As we stated above, the ability to adopt new capabilities into the worm infrastructure has been
an as yet underutilized function of most worms observed in the wild.

There are, however, some considerations that must be taken into account. New capabili-
ties must be propogated, and their exietence first communicated to the nodes, through some
mechanism. The communications concerns are addressed above (Communications Methods),
but the capability distribution mechanisms represent a larger problem with two concerns that
must be addressed: the size of the message is larger than a simple communications update, and
the trustworthiness of these updates.

The size concern can be addressed with a reasonable design of the worm instances. By using
a mechanism that is friendly to modules from the beginning, only small modules will have to
be distributed. For example, if it were a new buffer overflow exploit, the socket code wouldn’t
have to be rewritten, only a few parameters, such as the connecting port and shell code.

By utilizing this modular approach, small updates can be made, which can then be hidden
in several places, such as embedded in web or Usenet images which are then extracted by the
clients.

This system easily leaves the worm network open to injection of malicious code, designed
to subvert the goals of the worm network. To overcome this, the use of encryption and digital
signatures can be used. A minimal PKI can be established with the worm network to provide
a mechanism for authentication of the modules using a minimal RSA scheme. The key pairs of
the issuing machines could be used to authenticate the source of the update.
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The encryption functions could be used also to protect the contents from analysis. As noted
previously, the bit entropy should not be maximized so that it can blend in to the neighboring
data on the network.

7 A Hypothetical Worm

This section is under heavy review. Please see the final version of the paper for this
information.

Based on the above analysis, the problems in existing worms networks and the evaluation of
the considerations in the previous section, we outline here a theoretical worm. This network is
designed to be long lasting, resistant to detection, and capable of widespread infection.

7.1 Passive Infection

Note that to successfully hijack an NFS session, weak authentication (ie using AUTH_SYS or
AUTH_NONE) must be used. Attacks against AUTH_DES or AUTH_KERB could be mounted,
though they would be too time and resource intensive to be of value.

One simple NFS attack would be for a small program to watch the local network traffic
and wait for an RPC LOOKUP call. The resulting reply could come not from the NFS server
but instead from the malicious host. In this manner the infected files could be transferred to
the client machine. If some knowledge of the server’s contents is available to the malicious
host beforehand, selective LOOKUP (and resulting READ) substitutions could be made by the
infecting system, specific to executables. A noisier method would be to snipe the connection
and, during the re-establishment of it, begin impersonation of the server.

This same sort of scenario could be applied to the insertion of data into a Windows networking
file sharing scenario. In the same way that a computer virus attaches itself to an executable
on the system, the worm components could affix themselves to the files as they traverse the
network and arrive on the client system.

8 Defenses

We turn our attentions to defense strategies for combatting worms, present and future.
There are, of course, some obvious defenses:

e Staying up to date with security patches
e Defense in depth, not simply perimeter defenses

e Installing intrusion detection and response mechanisms

These represent nothing more than a repeat of the same mantras that are at the core of any
security system. While these will certainly help defend a site or a system against intrusions by
worm agents, they cannot be achieved totally and cannot be totally effective at defeating all
attacks.

Having stated the obvious, we now turn to different forms of analysis that may serve as
useful indicators of a larger system at play.
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Because of its dynamic content, when nodes of the same worm are compared, and the possi-
bility for updates, a signature based approach to intrusion detection, both on the network and
on hosts, will be difficult to assess. On a fundamental level, it would appear as though possibly
several groups of attackers were increasing their activity. Against the typical baseline of probes
and attacks on the Internet, diverse activity may be difficult to place in terms of a larger set of
activity.

Though the worm is dynamic, with various capabilities ensuring that no two instances of
the worm appear identical, it does have a core set of code that acts as a ‘glue’ layer to bind
these modules together. This element will be the common thread that binds parts of the worm
together. It is on this that detection strategies should hone.

For a more dedicated defender, traffic analysis would be an effective strategy to detect the
presence of a larger worm system. Using the approaches of anomoly detection and statistical
analysis of the traffic patters, deviations should appear which suggest malicious activity. The
analysis required, though, is quite large, and would most certainly only be justifiable after other
indicators suggest a larger problem is afoot.

An additional strategy that would be helpful is an increased use of agent based intrusion
detection systems. With a large number of host based sensors on a network, and an appropriate
central analysis system in place, trends could be spotted as they occur. An increase in probes,
attacks, and possibly anomolous traffic, with timings that are similar, would suggest a larger
system is at work.

Simply put, though, without any idea to look for something larger, detection efforts would
be futile. Without something on which to focus, this analysis would be unable to find the
anomolous behavior.

Unfortunately, anomoly detection is in its infancy and still largely a pipe dream, and host
based intrusion detection is an unwieldy situation for overall management. This will certainly
slow its adoption, however the gains should be encouraging enough to spur on feasibility research
and product improvements.

9 Conclusions

This paper has provided a new framework for the evaluation of existing network worms and
analyzed three well known Internet worms within this context. Limiting factors of the current
worm paradigms were then analyzed, and their consequences outlined. These then lead to
considerations that will apply to new worms, which will call for new detection strategies.

It is this new paradigm that will be difficult to defend against. It is built on several new
ideas, namely that not all nodes are required, not all nodes are required to look the same,
and the traditional rapid spread model is too high profile for continued success. By moving to
distributed points of action, and incorporating update strategies, along with new network and
communications topologies, worms can become difficult to identify and defend against.

We expect these ideas to become prevalent as worms evolve and their use grows.
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