
Notes on Complexity Theory: Fall 2005 Last updated: September, 2005

Lecture 4

Jonathan Katz

1 Circuit Complexity

Circuits are directed, acyclic graphs where nodes are called gates and edges are called wires. Input

gates are gates with in-degree zero, and we will take the output gate of a circuit to be a gate with
out-degree zero. (For circuits having multiple outputs this is not necessarily the case; however, we
will only be concerned with circuits having a single-bit output.) Input gates are labeled with bits
of the input (in a one-to-one fashion); each non-input gate is labeled with a value from a given
(finite) basis, where a basis may contain functions and/or families of functions. One common basis is
B0 = {¬,∨,∧}, the standard bounded fan-in basis. Another example is B1 = {¬, (∨n)n∈

� , (∧n)n∈
� },

the standard unbounded fan-in basis. An important point is that gates may have unbounded fan-out
(even over B0), unless explicitly stated otherwise.

A circuit C with n input gates defines a function fC : {0, 1}n → {0, 1} in the natural way:
for a given input x = x1 · · · xn we inductively define the value at any gate, and the output of the
circuit on that input is simply the value at the output gate. Two important complexity measures
for circuits (which somewhat parallel time and space for Turing machines) are size and depth,
where the size of a circuit is the number of non-input gates it has and the depth of a circuit is the
length of the longest path (from an input gate to the output gate) in the underlying directed graph
representing the circuit. For a circuit C, we denote these by size(C) and depth(C), respectively.

An important observation is that every function f : {0, 1}n → {0, 1} is computable by a circuit
over the basis B0. Let us first show how to express f as a circuit over B1. There are many
ways to do so; for now, we look at the disjunctive and conjunctive normal forms for f . Define

f0
def
= {x | f(x) = 0} and define f1 analogously. Notice that we can express f as:

f(x) =
∨

x′∈f1

[x
?
= x′],

where [x
?
= x′] denotes a boolean expression which is true if x = x′ and false otherwise. Let xi

denote the ith bit of x, and let x1
i denote xi and x0

i denote x̄i. Notice that: [x
?
= x′] = ∧1≤i≤nx

x′

i

i

where, recall, |x| = |x′| = n. Putting everything together, we have:

f(x) =
∨

x′∈f1

∧

1≤i≤n

x
x′

i

i . (1)

But the above is essentially just a circuit of depth (at most) 3 over B1 (the size of the circuit may
be as high as Θ(2n)). The above representation is called the disjunctive normal form (DNF) for f .

Another way to express f is as:

f(x) =
∧

x′∈f0

[x
?
6= x′],

4-1

where [x
?
6= x′] has the obvious meaning. Using the notation as above, [x

?
6= x′] =

∨

1≤i≤n x
x̄′

i

i ;
putting everything together gives:

f(x) =
∧

x′∈f0

∨

1≤i≤n

x
x̄′

i

i . (2)

The above is called the conjunctive normal form (CNF) for f . This gives another circuit of depth
(at most) 3 over B1.

The above show how to obtain a circuit for f over the basis B1. We now discuss how one may in
general transform any circuit over B1 to one over B0. The idea is simple: each ∨ gate of in-degree
k is replaced by a “tree” of degree-2 ∨ gates, and each ∧ gate of in-degree k is replaced by a “tree”
of degree-2 ∧ gates. In each case we go transform a single gate having fan-in k to a sub-circuit of
Θ(k) gates having depth Θ(log k). Applying this transformation to Eqs. (1) and (2), we see that
we can obtain a circuit for any function f over the basis B0. We remark that the resulting circuit
may have at most Θ(n · 2n) gates and depth Θ(n). We will see in a later class how to construct a
circuit (for any f) having at most Θ(2n/n) gates.

1.1 Circuit Families

A circuit family C = {Ci}i∈
� is an infinite set of circuits such that Ci has i input gates; a circuit

family defines a function f : {0, 1}∗ → {0, 1} in the natural way as f(x) = C|x|(x). It follows from
what we have said previously that every function f has a circuit family that computes it. The
size/depth of a circuit family is measured as a function of the number of input gates.

For a language L, the characteristic function χL is the function such that χL(x) = 1 iff x ∈ L. We
will say that a circuit family decides the language L if it computes the function χL. Note that every

language L is decided by some circuit family — even languages which are not decidable/recognizable
by Turing machines! We should therefore be somewhat suspicious of circuit families as a model of
feasible computation. In particular, circuit families model non-uniform computation but do not
(necessarily) provide a real-world algorithm to solve a given problem. For example, let C = {Ci} be
a circuit family deciding an undecidable language. Then (almost by definition) there is no Turing
machine which on input i outputs a description of Ci. As another example, we have shown above
that every function can be computed by a circuit family of size Θ(n · 2n). This is in contrast to the
uniform case, where there is a strict time hierarchy theorem (e.g., there are languages that can be
decided in time O(3n) but not in time O(n · 2n)).

For future reference, let us define the following complexity classes:

• L ∈ size(t) iff there exists a circuit family C = {Ci} over B0 such that size(Ci) = O(t(i)).

• L ∈ depth(t) iff there exists a circuit family C = {Ci} over B0 such that depth(Ci) = O(t(i)).

We stress that the above are defined over B0. Later in the semester, we will use UnbSize and
UnbDepth to refer to complexity measures over B1.

Can we avoid the issues raised earlier (about the unreasonableness of non-uniform computation)
by restricting the size/depth of our circuit families? To see that we cannot, let L ⊂ 1∗ be a
unary language which is undecidable (such languages clearly exist, since we may encode any binary
undecidable language in unary), and define L′ = {x|1|x| ∈ L}. Clearly, L′ is also undecidable. But
the trivial circuit family in which Ci always outputs 1 if 1i ∈ L, and always outputs 0 if 1i 6∈ L
decides L′. This circuit family has constant size and constant depth, even over B0.

4-2

Uniform circuit families are circuit families for which there exists a Turing machine that outputs
a description of Ci on input i. We will not discuss uniform circuit families further in this class.

Given all the above drawbacks of the non-uniform model of computation, why bother studying
it? There are at least two reasons. First is that circuit complexity is important in some practical
scenarios (such as designing circuit boards for microprocessors) when minimizing size and depth is
important. A second, more fundamental reason is the hope that circuits provide a clean model in
which to prove lower bounds (the thought is that since circuits are fixed, combinatorial objects it
is easier to bound the size of a circuit deciding some language than to bound the running time of a
Turing machine deciding that language), and thus potentially provide a way to solve the P vs. NP
question. In the early-to-mid ’80s a number of (exciting!) lower bounds for circuits were proven
and there was hope that this line of attack would enable progress on the P vs. NP question; it is
fair to say that this hope has not yet been borne out.

1.2 Relations Between Uniform and Non-Uniform Complexity

It is natural to wonder whether the fact that a language can be decided by a Turing machine in
some time t implies anything about the size of a circuit family deciding it. Indeed, this is the case.

Theorem 1 If t(n) ≥ n, then time(t) ⊆ size(t log t).

Proof (Sketch) Let L ∈ time(t), and so we have a Turing machine ML deciding L in time
O(t). We need to show the existence of a circuit family of size O(t log t) deciding L. (We remark
that this circuit family need not be uniform, and in particular it need not be computable in time
O(t log t).) The proof proceeds in two stages. First, we construct from ML a so-called oblivious

Turing machine M ′
L that decides L in time O(t log t). Roughly speaking, an oblivious Turing

machine has the property that its head positions after k steps depend only on k and the length n
of the input (but are “oblivious” to the input itself). See [2, Sect. 2.1] for a formal definition of
“oblivious” and details of the construction of M ′

L.
Given M ′

L, we now construct a circuit family roughly as in the proof that circuit-satisfiability is
NP-complete (that we saw in an earlier lecture). Let t′ = t log t. Fix some input length n, and so
we want to construct Cn. The space used by M ′

L is at most O(t′), and so the initial configuration
of M ′

L can be encoded using O(t′) gates. At each step in the computation of M ′
L, we “know” in

advance which bit of the input will be read as well as the position(s) of the head(s) on the work
tape(s) of M ′

L. So each step of M ′
L can be emulated by a circuit taking a constant number of inputs

and producing a constant number of outputs. Thus, each of the O(t′) steps of M ′
L can be emulated

using a circuit of constant size. At the end of the computation, we need another constant-size
circuit to determine whether M ′

L is in an accepting state or not. Putting everything together, we
obtain a circuit using only O(t′) gates in total. (See [2, Sect. 2.1] for additional details.)

We can prove an analogous result relating (non-deterministic) space and circuit depth.

Theorem 2 If t(n) ≥ log n, then nspace(t) ⊆ depth(t2).

Proof (Sketch) The proof relies, once again, on the reachability method. Let ML be a non-
deterministic machine deciding L in space t. Let N(n) denote the number of configurations of ML

on any fixed input x of length n. We know that N(n) = 2O(t(n)). Fix n, and we will construct Cn.
On input x ∈ {0, 1}n, our circuit will do the following:

1. Construct the N(n)×N(n) adjacency matrix Tx in which entry (i, j) is 1 iff ML can make a
transition (in one step) from configuration i to configuration j on input x.

4-3

2. Compute the transitive closure of Tx. In particular, this allows us to check whether there is a
path from the initial configuration of ML (on input x) to the accepting configuration of ML.

We show that these computations can be done in the required depth. The matrix Tx can be
computed in constant depth, since each entry (i, j) is either always 0, always 1, or else depends
on only 1 bit of the input (this is because the input head position is part of a configuration). To
compute the transitive closure of Tx, we need to compute (Tx∨I)N(n). (Note: multiplication here is
defined with respect to {∨,∧}, not {⊕,∧} [which would correspond to operations over

�
2].) Using

associativity of matrix multiplication, this can be done in a tree-wise fashion using a tree of depth
log N(n) where each node performs a single matrix multiplication. A single matrix multiplication
can be performed in depth O(log N(n)): to see this, note that the (i, j)th entry of matrix AB
(where A,B are two N(n) × N(n) matrices given as input) is given by

(AB)i,j =
∨

1≤k≤N(n)

(Ai,k ∧ Bk,j) ,

and so each bit of AB can be computed in constant depth over the basis B1. Noting that the
maximum in-degree of this circuit is N(n), and using the generic transformation from circuits over
B1 to circuits over B0 that we discussed earlier, this means that each bit of AB (and hence all of
AB) can be computed in depth O(log N(n)) over B0. The theorem follows.

1.3 Lower Bounds on Circuit Complexity

We have shown already that every function can be computed by a circuit family of size O(n · 2n).
Can we do better? Not by much. As we will partly show now, the size complexity of “most” n-ary
functions is essentially 2n/n. Specifically, fix ε > 0. Then, for n large enough, most n-ary functions
cannot be computed using circuits of size (1 − ε) · 2n/n. On the other hand, for n large enough,
any n-ary function can be computed using a circuit of size (1 + ε) · 2n/n. We will show the first
result here, and the second result in a later class.

Theorem 3 Let ε > 0 and q(n) = (1 − ε) 2n

n . Then for n large enough there exists an n-ary

function not computable by circuits of size at most q(n).

Proof In fact, the fraction of functions f : {0, 1}n → {0, 1} that can be computed by circuits of
size at most q(n) approaches 0 as n approaches infinity; this easily follows from the proof below.

Let q = q(n). The proof is by a simple counting argument. We count the number of circuits
of size q (note that if a function can be computed by a circuit of size at most q, then by adding
useless gates it can be computed by a circuit of size exactly q) and show that this is less than the
number of n-ary functions. For simplicity, consider a basis consisting of all 2-ary functions this
only makes the result stronger). A circuit on q gates is defined by (1) specifying, for each gate, its
type as well as its two predecessor gates (in order, in case the 2-ary function computed by the gate
is not symmetric), and (2) specifying the output gate. Note that a predecessor gate can be either
another one of the q gates, or an input gate. Thus, the number of circuits of size q is at most:

q ·
(

16 · (n + q)2
)q

.

In fact, we are over-counting since some of these are not valid circuits (e.g., they are cyclic). But
this is ok. We are also over-counting since permuting the labels of the gates does not change the
function computed by the circuit. We correct for this by dividing by q!.

4-4

In summary, the number of circuits of size q is at most

q ·
(

16 · (n + q)2
)q

q!
≤ q · (16e)q ·

(n + q)2q

qq
,

using Stirling’s bound q! ≥ qq/eq. Continuing:

q ·
(

16 · (n + q)2
)q

q!
≤ q · (16e)q ·

(n + q)2q

qq

≤ q · (64e)q ·
q2q

qq

= q · (64 · e · q)q

≤ (64 · e · q)q+1

≤ (2n)(1−ε)2n/n+1 = 2(1−ε)2n+n,

where the above inequalities hold for n large enough. But this is less than 22n

(the number of n-ary
boolean functions) for n large enough.

For completeness, we state the corresponding results for circuit depth (see [1, Sect. 2.12]).

Theorem 4 Let ε > 0 and d(n) = (1 − ε) · n. Then for n large enough there exists an n-ary

function not computable by circuits of depth at most d(n).

Recalling the earlier discussion regarding DNF and CNF, we saw there that any function could be
computed by a circuit (over B0) of depth n + dlog ne. So, for any ε > 0 and n large enough, any
n-ary function can be computed by a circuit of depth (1 + ε) · n.

1.4 The Class P/poly

There are two equivalent definitions of P/poly: one in terms of circuit families and one in terms of
non-uniform Turing machines (or Turing machines with “advice”). We provide the two definitions,
but leave it to the reader to prove equivalence. The equivalence between the two definitions of
P/poly parallels the equivalence between P and the class of languages decided by uniform (an
poly-time constructible) circuit families. Again, we leave it to the reader to prove equivalence.

Definition 1 P/poly = ∪i≥0 size(ni). ♦

Definition 2 L ∈ P/poly iff there exists a polynomial-time (deterministic) Turing machine M
and a sequence of “advice strings” {αn}n∈

� with |αn| ≤ p(n) such that for all x ∈ {0, 1}n we have
M(x, αn) = χL(x). ♦

Note that the second definition immediately implies P ⊂ P/poly (by taking empty advice); we
could have also concluded this from Theorem 1. We remark that the inclusion is strict since, as
we have seen, P/poly includes undecidable languages (while P clearly does not). It is believed,
however, that NP 6⊂ P/poly. If proven, this would imply that P 6= NP (and this again explains
why people have bothered to study the non-uniform model of computation at all).

Bibliographic Notes

Section 1 is based on material from Chapters 1 and 2 of the excellent book by Vollmer [2].

4-5

References

[1] J.E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley, 1998.

[2] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

4-6

