
Lecture 26

Daniel Apon

1 From IP=PSPACE to NP=PCP(log, 1):
NEXP has multi-prover interactive protocols

If you’ve read the notes on the history of the PCP theorem referenced in Lecture 19 [3], you
will already be familiar with the excitement that surrounded discoveries such as IP=PSPACE
and NP=PCP(log, 1). Taken alone, however, these two theorems might seem at most cursorily
related to one another. The earlier discovery of IP=PSPACE deals with a much stronger class,
assuming the polynomial hierarchy doesn’t collapse, than the NP version of the PCP theorem.
The former characterizes the verification power of a Turing machine with an adaptive, all-
powerful prover, while the latter studies an efficient, probabilistic notion of constant-query
proof checking with applications to inapproximability of NP-complete problems, and so on.

But in fact, a series of natural generalizations lead from one to the other. An immediate
step after IP=PSPACE is to ask what happens in the case of multiple, all-powerful provers
interacting with a single PPT verifier. In particular, for what power of computational prob-
lems can a multi-prover interactive proof system correctly verify candidate-solutions with
high probability?

As it turns out, we can (and will, in this lecture) show that MIP=NEXP, where MIP is
the class of languages who have a multi-prover interactive proof and NEXP is the class of
languages that can be decided in nondeterministic exponential time. The techniques involved
are similar to that in the proof IP=PSPACE; however, the fact that we want to reliably verify
exponential-sized objects using a PPT machine requires new ideas. We will show that the fact
that the verifier interacts with multiple provers (who can speak with the verifier but may not
speak with one another during the course of the protocol) gives us the desired power, because
the verifier has access to an additional consistency test – namely, re-query new provers on a
random subset of the verifier’s queries made during the course of some protocol.

Just beyond the scope of this lecture, the ideas used in the proof of MIP=NEXP can be
used to prove NEXP=PCP(poly, poly). A series of attempts to “scale down” this result to
NP eventually produced the PCP theorem of Arora, et al. (See [3] for more on this.)

In the sequel, we prove MIP=NEXP following the original paper by Babai, Fortnow, and
Lund [1] and Lund’s PhD thesis [4].

2 Preliminaries

Formally, we define the class of decision problems MIP as follows. Let the provers P1, ..., Pk

be computationally unbounded Turing machines. Let the verifier V be a PPT machine. We
allow each Pi to communicate with V and vice versa during the course of the protocol, but

1

we do not allow the Pi to communicate with one another. Then we say L ∈ MIP if

x ∈ L =⇒Pr[P1, ..., Pk convince V to accept x] = 1

x 6∈ L =⇒∀P ′1, ..., P ′k,Pr[P ′1, ..., P
′
k convince V to accept x] ≤ 1/2

where the P ′ notation denotes a dishonest prover and where the constants are arbitrary.
For completeness, we recall the definition of NEXP here as well; namely,

NEXP
def
=
⋃
c∈N

NTIME
(
2n

c)
.

3 MIP ⊆ NEXP

The first direction of MIP=NEXP is, by comparison, rather simple.

Theorem 1. MIP ⊆ NEXP.

Proof Sketch. We need to show that every multi-prover interactive proof system can be
faithfully, locally simulated by a NEXP machine. Crucially, observe that since the verifier is
a PPT machine, the length of the message history between the P1, ..., Pk and V is bounded
by some polynomial in the input size.

Let L ∈ MIP. Construct a NEXP machine M that behaves as follows. On input x, M
nondeterministically guesses a strategy for each of the Pi. We view the strategy of each

prover Pi as a function Si : {0, 1}nc → {0, 1}nc′
that determines the messages sent by each Pi

in response to its interaction with V . Since M is a NEXP machine, M can guess and write
down the entire (exponentially large) function table of each Si.

Then, M computes the probability that V accepts by enumerating over all possible coin
flips of V and simulating its computation on each. From this, M decides (precisely) whether
V accepts with high probability or not. Therefore, MIP ⊆ NEXP. �

4 NEXP ⊆ MIP

The other direction of MIP=NEXP proceeds in three parts.

1. First we show a NEXP version of the Cook-Levin theorem (recall the NP version proved

SAT to be NP-complete). This allow us to reduce questions of the form “x
?
∈ L” for

L ∈ NEXP to the satisfiability of an (exponentially large) Boolean formula Φ.

2. Then, similar to IP=PSPACE, we convert Φ into an arithmetic formula P using arith-
metization. In particular, to enable the verifier to participate, we ensure that can do
this step both in polynomial time in x (only given access to x, but not Φ) and in a
way that allows evaluation of any desired clause of Φ in polynomial time (given an
assignment to the variables of the clause) by evaluating P .

3. Using P , we design an MIP protocol for any L ∈ NEXP that is similar to the IP protocol
for PSPACE with a few modifications. We first will need an efficient, probabilistic
multilinearity test so that the verifier can reliably constrain the space of legal messages
from the provers. Then, we proceed as with the IP-PSPACE protocol, except that the
verifier asks the provers for assignments to P .

2

4.1 NEXP Cook-Levin

We state the NEXP version of the Cook-Levin theorem without proof.

Theorem 2. (NEXP Cook-Levin) Fix L ∈ NEXP. Then there is a constant c such that

1. for every input x ∈ {0, 1}n, there is a 3-CNF formula on an exponential number of
variables and clauses; that is,

Φx(X(0), X(1), ..., X(2n
c − 1)) =

2n
c−1∧
i=0

Ci

where

(a) Ci = ti1X(bi1) ∨ ti2X(bi2) ∨ ti3X(bi3),

(b) tij ∈ {0, 1} (that is, “0X” = “X” and “1X” = “X”), and

(c) bij ∈ {0, 1}n
c
,

2. and there is a polynomial-time algorithm that takes x ∈ {0, 1}n as input and outputs a
circuit gx : {0, 1}nc → {0, 1}3nc+3 with the following properties:

(a) on input 0 ≤ i < 2n
c
, gx outputs ti1, t

i
2, t

i
3, b

i
1, b

i
2, b

i
3,

(b) x ∈ L ⇐⇒ there is an assignment to the variables X(0), ..., such that every Ci is
satisfied.

4.2 Arithmetization of NEXP

Now we are interested in finding a polynomial-time computable arithmetization of Φx. To
begin, define the function fx as

fx(i, t1, t2, t3, b1, b2, b3) = 1⇐⇒ ti1A(bi1) ∨ ti2A(bi2) ∨ ti3A(bi3) = 1.

Then we will rewrite Theorem 1 as:

Lemma 1. Let L ∈ NEXP and x ∈ {0, 1}n. Then there is a constant c and a function
fx : {0, 1}4nc+3 → {0, 1} computable in time polynomial in |x| such that

x ∈ L⇐⇒ ∃A : {0, 1}nc → {0, 1} : ∀i, t1, t2, t3, b1, b2, b3 :

[fx(i, t1, t2, t3, b1, b2, b3) = 1]⇐⇒ [ti1A(bi1) ∨ ti2A(bi2) ∨ ti3A(bi3) = 1].

In particular, we will arithmetize the following sentence:

S1
def
= ∀i, t1, t2, t3, b1, b2, b3 : [fx(i, t1, t2, t3, b1, b2, b3) = 1]⇐⇒ [ti1A(bi1)∨ ti2A(bi2)∨ ti3A(bi3) = 1]

which is equivalent to:

S2
def
= ¬∃i, t1, t2, t3, b1, b2, b3 : [fx(i, t1, t2, t3, b1, b2, b3) = 1]∧¬[ti1A(bi1)∨ ti2A(bi2)∨ ti3A(bi3) = 1]

We will begin with a subexpression, and let true be 1 and false be 0:

S3
def
= [fx(i, t1, t2, t3, b1, b2, b3) = 1] ∧ ¬[ti1A(bi1) ∨ ti2A(bi2) ∨ ti3A(bi3) = 1]

For completeness, we briefly review polynomial interpolation before Lemma 2 and its
proof.

3

In general, polynomial interpolation is the task of “fitting” polynomials to a set of
discrete data points. The following fact is derived from the Fundamental Theorem
of Algebra.

Fact 1. Let x0, x1, ..., xn be n + 1 distinct points in [a, b]. Then there exists a
unique polynomial p of degree ≤ n that interpolates f(x) at the points {xi}; that
is, p(xi) = f(xi), for 0 ≤ i ≤ n.

So regardless of which interpolation technique we use, the difference is only in
factors such as the computational complexity of the algorithm, degree of error in
the interpolation, stability of the solution, and so forth.

A full treatment is outside the scope of this lecture; however in general, the
interpolation polynomial p of a set of n+ 1 data points is a linear combination

p(x) =
n∑

i=0

yi`i(x)

of Lagrange basis polynomials

`i(x) =
∏

0≤m≤n
m 6=i

(x− xm)

(xi − xm)
=

(x− x0)
(xi − x0)

· · · (x− xi−1)
(xi − xi−1)

(x− xi+1)

(xi − xi+1)
· · · (x− xn)

(xi − xn)
.

Lemma 2. There is a polynomial-time computable polynomial Px(i, b1, b2, b3, t1, t2, t3, z, a1, a2, a3)
with degree at most nO(1) such that for all i, b1, b2, b3 ∈ {0, 1}n

c
and for all t1, t2, t3 ∈ {0, 1},∑

z∈{0,1}nO(1)

Px(i, b1, b2, b3, t1, t2, t3, z, A(b1), A(b2), A(b3)) =

{
1, if S3 is true

0, otherwise

Proof. To arithmetize
[ti1A(bi1) ∨ ti2A(bi2) ∨ ti3A(bi3) = 1]

define a predicate

p(t1, t2, t3, a1, a2, a3)
def
=

{
1, if (a1, a2, a3) satisfies a clause of the form (t1, t2, t3)

0, otherwise

Let q(t1, t2, t3, a1, a2, a3) be a polynomial that interpolates p.

Now to arithmetize
[fx(i, t1, t2, t3, b1, b2, b3) = 1]

observe that fx is a deterministic polynomial time computable function, so there will be
exactly one valid computation z. Then, via the standard NP version of Cook-Levin and stan-
dard linear-time arithmetization, we get a polynomial time computable arithmetic formula
Fx such that∑

z∈{0,1}nO(1)

Fx(i, t1, t2, t3, b1, b2, b3, z) =

{
1, if fx(i, t1, t2, t3, b1, b2, b3) is true

0, otherwise

4

where the constant in the summation depends on L.

Combining the above (along with the original S3 expression), we get∑
z∈{0,1}nO(1)

Px(i, b1, b2, b3, t1, t2, t3, z, A(b1), A(b2), A(b3))

=
∑

z∈{0,1}nO(1)

Fx(i, t1, t2, t3, b1, b2, b3, z)(1− q(t1, t2, t3, a1, a2, a3))

=

{
1, if S3 is true

0, otherwise

Recall the definitions of S1 and S2; that is, that

S1 = ∀i, t1, t2, t3, b1, b2, b3 : [fx(i, t1, t2, t3, b1, b2, b3) = 1]⇒ [ti1A(bi1)∨ti2A(bi2)∨ti3A(bi3) = 1] and

S2 = ¬∃i, t1, t2, t3, b1, b2, b3 : [fx(i, t1, t2, t3, b1, b2, b3) = 1]∧¬[ti1A(bi1)∨ ti2A(bi2)∨ ti3A(bi3) = 1].

To arithmetize these, now let true be 0 and false be >0.

Lemma 3. For all x, there is a polynomial-time computable polynomial
Px(i, b1, b2, b3, t1, t2, t3, z, a1, a2, a3) with degree at most nO(1) such that

∑
i,b1,b2,b3,t1,t2,t3,z

Px(i, b1, b2, b3, t1, t2, t3, z, A(b1), A(b2), A(b3)) =

{
0, if S1 is true

> 0, otherwise

where i, b1, b2, b3, t1, t2, t3, z ∈ {0, 1}n
O(1)

.

Proof. Beginning with∑
i,b1,b2,b3,t1,t2,t3,z

Px(i, b1, b2, b3, t1, t2, t3, z, A(b1), A(b2), A(b3))

=
∑

i,b1,b2,b3,t1,t2,t3

∑
z

Px(i, b1, b2, b3, t1, t2, t3, z, A(b1), A(b2), A(b3))

Then from Lemma 2,

=
∑

i,b1,b2,b3,t1,t2,t3

{
1, if S3 is true

0, otherwise

=

{
0, if S2 is true

> 0, otherwise

Then rewriting Lemma 1 using Lemmas 2 and 3 gives:

5

Theorem 3. (Arithmetization of NEXP) Let L ∈ NEXP. Then there is a constant c such
that for all n and for all x ∈ {0, 1}n there is a polynomial Px(i, b1, b2, b3, t1, t2, t3, z, a1, a2, a3)
such that

x ∈ L⇐⇒ ∃A : {0, 1}nc → {0, 1} such that∑
i,b1,b2,b3,t1,t2,t3,z

Px(i, b1, b2, b3, t1, t2, t3, z, A(b1), A(b2), A(b3)) = 0

where i, b1, b2, b3, t1, t2, t3, z ∈ {0, 1}n
O(1)

for some constant exponent depending on c and L.
Moreover, Px is computable in time polynomial in |x| and has degree at most nO(1).

4.3 The protocol

To set-up the protocol, we state the following theorem due to Fortnow, Rompel, and Sipser,
which helps characterize the type of protocol we will need.

Let M be a probabilistic polynomial-time machine with access to an oracle O (i.e. a
PPTO machine). We say a language L is accepted by a PPTO machine M iff

1. For every x ∈ L, there is an oracle O such that MO accepts x with probability > 1−2−n.

2. For every x 6∈ L and for all oracles O′, MO′
accepts with probability < 2−n.

Theorem 4. ([2]) L is accepted by a PPTO machine iff L is accepted by a multi-prover
interactive protocol.

As mentioned before, FRS’s proof of this fact uses a procedure that, given some protocol
P, runs P then has the verifier randomly re-query new provers on some subset of the inter-
action in P’s transcript to ensure that the provers abide by a strategy fixed beforehand. We,
however, will use this theorem to abstractly treat the set of provers P1, ..., Pk as a single,
non-adaptive oracle – namely, an oracle that holds a fixed, exponentially-long proof.

Next, we extend the domain of the assignment function A from {0, 1}nc
to Inc

for some
interval I = {0, ..., N−1} of a field F , for some N sufficiently large. We will say A : Inc → F
satisfies Φx iff A|{0,1}nc satisfies Φx, where A|{0,1}nc is the restriction of A to a domain of

{0, 1}nc
. This allows us to provide a very clear structure to the possible responses of the

provers.
In particular, we say that a function is multilinear if it is linear in each of its variables.

We say that a function f : Inc → F is ε-approximately multilinear if the probability that f
disagrees with a multilinear function is bounded from above by ε. Then we have the following:

Theorem 5. ([1]) Let A be an arbitrary function from Inc
to F and let ε > 0 be arbitrarily

small. Then there exists a probabilistic multilinearity test running in time polynomial in |x|
and 1/ε such that given access to A as an oracle, if A is not ε-approximately multilinear,
then the test rejects with high probability.

Define a line in Fm as a set of the form {~x+ t ·~y | t ∈ F}, ~x, ~y ∈ Fm, ~y 6= ~0. Then the idea
of the multilinearity test is to select m1 random lines, and then m2 random points of each line.
The verifier asks the prover-oracle for assignments to the given vectors of variables and checks
that A restricted to these points is linear. For m1,m2 sufficiently large, a (careful) analysis

6

shows that the test distinguishes ε-approximately multilinear functions from functions far
from multilinear with high probability.

Moreover, we note that A can be represented as a multilinear function by an honestly-
constructed oracle.

But why do we care that A is multilinear? The Scwartz-Zippel lemma states:

Lemma 4. (Schwartz-Zippel) If f, g are two different, degree d polynomials, then f(~x) = g(~x)
holds for an at most d

|F| fraction of all ~x ∈ Fm.

Intuitively, all multilinear functions arithmetize to low-degree polynomials, and so we are
guaranteed that two different low-degree polynomials differ in some large constant fraction
of their coordinates.

Finally, we describe the protocol in the context of a verifier interacting with a prover-
oracle:

On input x, the verifier computes the polynomial Px as above. The provers
generate a fixed oracle for the assignment function A for Px. Then the verifier
runs the multilinearity test against the oracle’s assignment. If it rejects, the
verifier aborts the protocol and rejects; otherwise, the verifier continues to the
next phase.

In the second phase, the verifier runs the IP=PSPACE protocol with the oracle
for A. However, whenever the verifier needs to evaluate a polynomial expression,
it uses self-correction from the proof of the PCP theorem to account for lack
of access to A. (We note in passing that the explicit notion of “self-correction”
was not developed until after MIP=NEXP but that the exact techniques are moral
equivalents.) In particular, in each round, the verifier takes some variable v (where
v is one of the i, b’s, t’s, or z) out of the expression, checks consistency of the
expression summed over v, then replaces v with a random value r ∈ F , and sends
r to the provers.

Finally, at the end of the protocol, the verifier asks the oracle for a final assignment
to the remaining (constant-sized) arithmetic expression. If and only if all of the
evaluations including the final test are consistent and correct, the verifier accepts.

Correctness Sketch. Observe that any honest prover P can always succeed in convincing the
verifier to accept. However, any dishonest prover P ′ must continue cheating throughout the
course of the protocol once P ′ begins cheating, by the same consistency test as in IP=PSPACE.
After some polynomial number of rounds, the expression being manipulated reaches a poly-
nomial in some constant number of variables, and the verifier can test correctness with a final
substitution.

Since the arithmetic formula Px is a degree d polynomial, if it differs from a valid as-
signment, then it differs in many locations by the Schwartz-Zippel lemma, and with high
probability, the verifier will catch such a cheating prover. Alternatively, if the prover tries to
use an arithmetic formula that is not a degree d polynomial to fool the verifier in the second
phase, then the verifier will catch this deviation with the multilinearity test and reject with
high probability. Finally, if the prover attempts to use an adaptive assignment (rather than
a single, fixed assignment to Px), the verifier will catch this deviation with high probability

7

by Theorem 4 and the definition of PPTO machines.

Therefore, we have:

Theorem 6. NEXP ⊆ MIP.

Then with Theorem 1, we have:

Corollary 1. MIP = NEXP.

References

[1] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. In SFCS (FOCS) ’90.

[2] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols.
In Theoretical Computer Science ’94. Available at
http://people.cs.uchicago.edu/~fortnow/papers/mip.pdf

[3] V. Guruswami and R. O’Donnell. A History of the PCP Theorem. Available at
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf

[4] C. Lund. On the power of interaction. ACM Distinguished Dissertation, ’91.

8

