
CMSC 858K — Advanced Topics in Cryptography March 4, 2004

Lecture 12

Lecturer: Jonathan Katz Scribe(s):

Omer Horvitz
Zhongchao Yu
John Trafton
Akhil Gupta

1 Introduction

Our goal is to construct an adaptively-secure non-interactive zero-knowledge (NIZK) proof
system for any language in NP; we will do so in several steps. We first define the hidden-bits
model, and show how to transform any NIZK proof system for a language L in the hidden-
bits model into an NIZK proof system for L in the common random string model, using
trapdoor permutations. We will then construct an NIZK proof system for any language in
NP in the hidden-bits model.1 Our exposition draws from the work of Feige, Lapidot, and
Shamir [6, 2, 1, 3] and also the presentation of [4, Section 4.10].

1.1 From the Hidden-Bits Model to the CRS model

We begin with a quick review of the definitions at hand.

Definition 1 A pair of ppt algorithms (P,V) is a non-adaptive NIZK proof system for a
language L ∈ NP in the common random string (CRS) model if:

1. Completeness: For all x ∈ L where |x| = k and all witnesses w for x,

Pr[r ← {0, 1}poly(k) ; Π← P(r, x, w) : V(r, x,Π) = 1] = 1.

2. (Adaptive) Soundness: For any (unbounded) algorithm P ∗, the following is negligible:

Pr[r ← {0, 1}poly(k) ; (x,Π)← P∗(r) : V(r, x,Π) = 1 ∧ x 6∈ L].

3. Zero-knowledge: There exists a ppt algorithm Sim such the following ensembles are
computationally indistinguishable for all ppt A:

(1) {(x,w)← A(1k); r ← {0, 1}poly(k) ; Π← P(r, x, w) : (r, x,Π)}
(2) {(x,w)← A(1k); (r,Π) ← Sim(x) : (r, x,Π)},

where x ∈ L, |x| = k, and w is any witness for x.

♦

In the above, r is called the common random string.

1We focus on the case of non-adaptive NIZK. However, careful examination of the constructions show

that we actually end up with adaptively-secure NIZK without any additional modifications.

12-1

Definition 2 A pair of ppt algorithms (P,V) is a non-adaptive NIZK proof system for a
language L ∈ NP in the “hidden-bits” model if:

1. Completeness: For all x ∈ L where |x| = k and all witnesses w for x,

Pr[b← {0, 1}poly(k) ; (Π, I)← P(b, x, w) : V({bi}i∈I , I, x,Π) = 1] = 1.

2. (Adaptive) Soundness: For any (unbounded) algorithm P ∗, the following is negligible:

Pr[b← {0, 1}poly(k) ; (x,Π, I)← P∗(b) : V({bi}i∈I , I, x,Π) = 1 ∧ x 6∈ L].

3. Zero-knowledge: There exists a ppt algorithm Sim such the following ensembles are
computationally indistinguishable for any ppt A:

(1) {(x,w)← A(1k); b← {0, 1}poly(k) ; (Π, I)← P(b, x, w) : ({bi}i∈I , I, x,Π)}
(2) {(x,w)← A(1k); ({bi}i∈I , I,Π)← Sim(x) : ({bi}i∈I , I, x,Π)},

where x ∈ L, |x| = k, and w is any witness for x.

♦

In the above, b is called the hidden-bits string and the {bi}i∈I are the revealed bits. We
denote the latter by bI for brevity.

Let (P ′′,V ′′) be a non-adaptive NIZK proof system for L ∈ NP in the hidden-bits model.
First, we convert the system into one with a precise bound on the soundness error; this will
be useful in the analysis of our main transformation. The idea is to run the given system
enough times in parallel. Assume that on input x of length k, (P ′′,V ′′) uses a hidden-bits
string of length p(k), for some polynomial p. Define (P ′,V ′) as follows2:

P ′(b = b1 · · · b2k, x, w) // bj ∈ {0, 1}
p(k)

For j = 1 to 2k, do
(Πj , Ij)← P

′′(bj , x, w);
Let Π = Π1| · · · |Π2k and I = ∪2k

j=1Ij

Output Π, I.

V ′(bI , I, x,Π)
parse Π as Π1| · · · |Π2k and I as ∪2k

j=1Ij (for simplicity, we assume this can be done

easily, in some uniquely-specified way)
If V ′′(bIj

, Ij , x,Πj) = 1 for all 1 ≤ j ≤ 2k then
output 1;

else, output 0.

Claim 1 If (P ′′,V ′′) is a non-adaptive NIZK proof system for L in the hidden-bits model,
then (P ′,V ′) is a non-adaptive NIZK proof system for L in the hidden-bits model with
soundness error at most 2−2k.

2We will slightly abuse the notation here, formatting the inputs and outputs of the prover and verifier in

a manner that strays from the one specified in the definition, for clarity; this is purely syntactic.

12-2

In the previous lecture, we proved a substantially similar result; we therefore omit proof
here.

We would now like to convert (P ′,V ′) into a non-adaptive NIZK proof system for L in
the CRS model. The idea is to use the CRS to “simulate” the hidden-bits string. This
is done by treating the CRS as a sequence of images of a one-way trapdoor permutation,
and setting the hidden-bits string to be the hard-core bits of the respective pre-images. By
letting the prover have access to the trapdoor, he is able to “see” the hidden-bits and also
to reveal bits in positions of his choosing.

As before, assume that (P ′,V ′) uses a hidden-bits string of length p(k) on security
parameter k. Let algorithm Gen be a key-generation algorithm for a trapdoor permutation
family which, on input 1k, outputs permutations over {0, 1}k . Define (P,V) as follows:

P(r = r0| · · · |rp(k), x, w) // ri ∈ {0, 1}
k

(f, f−1)← Gen(1k);
For i = 1 to p(k) do

bi = r0 · f
−1(ri); // “·” denotes the dot product.

(Π, I)← P ′(b1 . . . bp(k), x, w);

Output (Π, I,
{

f−1(ri)
}

i∈I
, f).

V(r, x, (Π, I, {zi}i∈I , f))
For all i ∈ I

If f(zi) = ri then
let bi = r0 · zi;

else stop and output 0;
Output V ′({bi}i∈I , I, x,Π).

Note that bi is computed as in the Goldreich-Levin construction [5], and is a hard-
core bit for f . This particular hardcore-bit construction is used, as it guarantees that the
“simulated” hidden bits are uniform with all but negligible probability (as opposed to just
negligibly close to uniform when we use a general hardcore bit construction). This follows
from that fact that r0 · y = 0 for precisely half of the strings y ∈ {0, 1}k, and from the fact
that f−1(ri) is uniform in that set, as ri is uniform and f is a permutation. (Of course, this
assumes r0 6= {0, 1}

k , which occurs with all but negligible probability.)

Claim 2 (P,V) is a non-adaptive NIZK proof system for L in the CRS model.

Sketch of Proof (Informal) A full proof appears in the previous lecture, so we just
remind the reader of the highlights here. Completeness of the transformed proof system is
easy to see, as the prescribed P runs P ′ as a subroutine. For soundness, consider first a fixed
trapdoor permutation (f, f−1). As argued above, this (with all but negligible probability)
results in a uniformly-random string b as seen by a cheating prover. So, soundness of the
original proof system implies that a prover can only cheat, using this (f, f−1), with proba-
bility at most 2−2k. But a cheating prover can choose whatever (f, f−1) he likes! However,
summing over all 2k possible choices of (f, f−1) (we assume here (a) that legitimate out-
put of Gen are easily decidable and (b) that Gen uses at most k random bits on security

12-3

parameter k; see last lecture for further discussion) shows that the probability of cheating
(e.g., finding a “bad” (f, f−1) that allows cheating) is at most 2−k over the choice of r.

For zero-knowledge, let Sim
′ be the simulator for (P ′,V ′). Define Sim as follows:

Sim(x)
({bi}i∈I , I,Π)← Sim

′(x);
(f, f−1)← Gen(1k);

r0 ← {0, 1}
k; // assume r0 6= 0

For i ∈ I do

Pick zi ← {0, 1}
k subject to r0 · zi = bi;

Set ri = f(zi);
For i 6∈ I, i ≤ p(k) do

Pick ri ← {0, 1}
k ;

Output (r = r0| · · · |rp(k), (Π, I, {zi}i∈I , f)).

Intuitively, Sim runs Sim
′, chooses f , then comes up with a CRS that is consistent

with the bi’s that Sim
′ produced. Note that Sim does not know the actual distribution of

values for the “hidden bits” at positions i 6∈ I; yet, informally, the security of the trapdoor
permutation (and its hard-core bit) ensure that just choosing random ri at those positions
hides the underlying values at those positions anyway.

A complete proof was given in the previous lecture notes.

2 NIZK for any L ∈ NP in the Hidden-Bits Model

We now construct a non-adaptive NIZK proof system for a particular NP-Complete language
L0 in the hidden-bits model. Note that this implies a similar result for any L ∈ NP : to
obtain a system for any L ∈ NP , simply reduce L to L0 and proceed with the proof system
shown below. Soundness, completeness, and zero-knowledge are all clearly preserved.

Specifically, the language L0 we consider is Graph Hamiltonicity:

L0 = {G | G is a directed graph with a Hamiltonian cycle}

(recall that a Hamiltonian cycle in a graph is a sequence of edges that forms a cycle and
passes through every vertex exactly once). In our construction, a graph with n vertices will
be represented an an n by n boolean matrix, such that entry (i, j) in the matrix is 1 iff there
is an edge from vertex i to vertext j (this is the standard adjacency matrix representation).
In such representation, an n-vertex graph can be identified with a string of length n2.

For now, we will make the assumption that the hidden-bits string is drawn from a non-
uniform distribution: instead of being drawn uniformly over strings of length n2, we assume
it is drawn uniformly from strings of length n2 representing “cycle graphs” (i.e., directed
graphs consisting only of a single Hamiltonian cycle). We will show later how to remove
this assumption. Given this assumption, define (P,V) as follows:

P(b,G,w) // b represents a (random) cycle graph; w is a Hamiltonian cycle in G

Choose a permutation π on the vertices of G at random from those π that
map w onto the directed edges of b;

12-4

(Imagine “overlaying” G onto b such that the cycle w in G lies on top
of the cycle in b)

Let I be the set of positions in b corresponding (under π) to non-edges in G

Output π and I.

V({bi}i∈I , I, G, π)
Verify that π is a permutation, and that I contains all positions in b corresponding
(under π) to non-edges in G

If all the revealed bits at those positions are 0, accept; otherwise, reject.

Claim 3 (P,V) is a non-adaptive NIZK proof system for L0 in the “hidden-bits” model.

Sketch of Proof (Informal) Completeness clearly holds. We show that soundness holds
with probability 1 (i.e., it is impossible for the prover to cheat). Let G be a graph and
assume the verifier accepts. We know that the hidden-bits string b is guaranteed to be a
cycle graph, by assumption on the distribution of b. If the verifier accepts, there must be a
permutation π under which every non-edge of G corresponds to a non-edge (i.e., “0”) in b.
But this means, by contrapositive, that every edge (“1”) in b corresponds to an edge in G.
But since the edges in b form a cycle, this means there must be a cycle in G as well, and
hence G ∈ L0.

To prove zero-knowledge, define Sim as follows:

Sim(G)
Pick a random permutation π on the vertices of G;
Let I be the set of positions corresponding (under π) to non-edges in G

Set the values of all “revealed bits” bI to 0
Output π, bI , and I

In fact, this gives a perfect simulation of P (although seeing this takes some thought). To see
why, let G ∈ L0 (recall that simulation only needs to work for statements in the language)
and consider the distribution over (π, I, bI) in the real-world. Since b is a random cycle
graph, and π is a random permutation mapping the cycle in G to the cycle in b, this means
that π is in fact a random permutation. I is a set of positions to which the non-edges of G

are mapped under π. Finally, the bI are all 0. But this is exactly the distribution produced
by the simulator.

References

[1] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. PhD Thesis, Dept.
of Computer Science and Applied Mathematics, Weizmann Institute of Science, 1990.
Available from http://www.wisdom.weizmann.ac.il/˜feige.

[2] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Based on a Single Random String. In FOCS, pp. 308–317, 1990.

[3] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM Journal on Computing 29(1): 1–28, 1999.

12-5

[4] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[5] O. Goldreich and L. Levin. A hard-Core Predicate for all One-Way Functions. In Sym-
posium on the Theory of Computation, 1989.

[6] D. Lapidot and A. Shamir. Publicly Verifiable Non-Interactive Zero-Knowledge Proofs.
In Advances in Cryptology - CRYPTO ’90, pp. 353-365, 1990.

12-6

