
CMSC 858K — Advanced Topics in Cryptography September 1, 2022

Lecture 13

Lecturer: Jonathan Katz Scribe(s):
Nagaraj Anthapadmanabhan
Minkyoung Cho
Ji Sun Shin

1 Introduction

In the last few lectures, we introduced the hidden-bits model for non-interactive zero-
knowledge (NIZK) and showed a conversion from any NIZK proof system in the hidden
bits model to one in the real model, using trapdoor permutations. In this lecture, we com-
plete the construction (which we had begin last lecture) of an NIZK proof system in the
hidden-bits model. Putting these results together, we obtain our main goal: a construction
of an NIZK proof system for any language in NP in the common random string model. As
in the previous lecture, our presentation is based on [1, 2, 3, 4, 5] (As noted in the previous
lecture, we focus on the case of non-adaptive NIZK but in fact the constructions given here
achieve adaptively-secure NIZK as well.)

2 An NIZK Proof System in the Hidden-Bits Model

We begin by noting that in order to construct a proof system for an arbitrary language L
in NP , it suffices to construct a proof system for a single NP -complete language.

Claim 1 Given an NIZK proof system for an NP -Complete language L∗, we can construct
an NIZK proof system for any language L ∈ NP .

Proof Let L ∈ NP . Then there exists a polynomial-time function f such that

x ∈ L ⇔ f(x) ∈ L∗

(since L∗ is NP -complete). So, given common input x, the prover and verifier can run the
NIZK proof system for L∗ on common input f(x). Completeness and soundness clearly
hold, and it is not too hard to see that zero-knowledge continues to hold as well.

For this reason, we now focus our attention on constructing an NIZK proof system for
the NP -complete language of graphs containing Hamiltonian cycles (denoted HC).

2.1 Basic Construction

We review a basic construction of an NIZK proof system given in the last lecture. This
proof system will be in a “modified” version of the hidden-bits model, where the hidden
bits are chosen from a particular distribution which is not the uniform one. We then show
how this “non-standard” distribution can be generated from a (long enough) sequence of
uniformly-distributed bits — i.e., in the “actual” hidden-bits model.

13-1

Input: A directed graph G = (V,E) with n vertices and containing a Hamiltonian cycle w
which is known to the prover.

Hidden-bits string: Chosen uniformly from the set of strings representing n-vertex directed
cycle graphs (using adjacency matrix representation). Call the given cycle graph C.

Prover: The prover chooses at random a permutation π on the vertices of G that lines
up the Hamiltonian cycle w of G with the cycle in C. (This means that for every edge
(i, j) in the cycle w, there is a corresponding edge (π(i), π(j)) in C.) The prover outputs π
and also, for every non-edge in G, reveals a non-edge in the corresponding position (with
respect to π) in C. Specifically, if (i, j) is a non-edge in G, then the prover reveals that
entry (π(i), π(j)) in the adjacency matrix of C contains a “0” (i.e., is a non-edge).

Verifier: Verify that π is a permutation and also that for every non-edge in G, the prover
has revealed the corresponding position in C (with respect to π), and this position contains
a “0” (i.e., is a non-edge).

We now argue that this is indeed an NIZK proof system for graph Hamiltonicity:

Completeness: This follows by inspection. In particular, since an honest prover chooses a
π mapping w to the cycle in C, and since C contains only this cycle (and no other edges),
it will indeed be the case that all non-edges in G will map to non-edges in C.

Soundness: We show that the proof system as stated has perfect soundness (and so a
prover has probability 0 of successfully proving a false statement). If the verifier accepts,
this implies there is a permutation π and some cycle graph C (not necessarily known to the
verifier) such that every non-edge in G corresponds to a non-edge in C. But then every edge
in C corresponds to an edge in G. Since C is a cycle graph, this means that G contains a
cycle. (Of course, this relies strongly on the fact that the hidden-bits string defines a cycle
graph, but this is by assumption in the above proof system.)

Zero-knowledge: Let Sim be defined as follows:

Sim(G)

Pick a random permutation π on the vertices of G
Output π
For every non-edge in G, reveal a “0”

The output generated by Sim is perfectly indistinguishable from that generated by a real
prover, assuming G is Hamiltonian. (Recall that indistinguishability is required to hold
only in this case.) In particular: for a real prover, since C is a random cycle graph and
π is randomly chosen from those mapping w onto the cycle in C, the permutation π is a
random permutation (recall that the verifier never sees C). And both the real proof and
the simulated proof reveal a “0” for all positions corresponding to non-edges in G.

2.2 Modified Construction

A problem with the previous construction is that we had assumed that the hidden-bits
string was drawn uniformly from the set of (strings representing) cycle graphs. But in
the actual hidden-bits model, the string is uniform (indeed, this property was used in the
conversion from the hidden-bits model to the model in which a common random string is

13-2

available). So, we need to modify the previous construction; we do so by showing how to
generate a random directed cycle graph from a uniform string with noticeable probability
(here, “noticeable” means “inverse polynomial”).

Toward this goal, we will work with biased bits that take on the value 1 with probabil-
ity 1/4n3 and 0 otherwise. (Here and in what follows, we let n denote the number of vertices
in the graph, as well as the security parameter.) It is easy to obtain such biased bits from
a uniform string by simply parsing the original string in “chunks” of size 2 + 3 log2 n, and
calling a “chunk” a 1 only if all bits are 1, and a 0 otherwise.

We use the following terminology:

Definition 1 A permutation matrix is a binary n × n matrix where each row and each
column contains only a single 1. A Hamiltonian matrix is a permutation matrix that
corresponds to a cycle; i.e., viewed as an adjacency matrix, it corresponds to a directed
cycle graph. ♦

Consider the following procedure for generating a random Hamiltonian matrix from a
string of biased bits of length 4n4: View the string as an 2n2 × 2n2 matrix M . We say that
M is useful if it contains an n×n Hamiltonian sub-matrix and all other entries in M are 0.
We show that this generates a Hamiltonian matrix with noticeable probability.

Claim 2 Pr[M is useful] = Ω(1
n2).

Proof We first show that the probability thatM has exactly n entries equal to 1 is Ω(1/n).
We then show that the probability, conditioned on this event, that M has an n × n per-
mutation sub-matrix is Ω(1). Finally, we show that the probability, conditioned on the
prior two events, that the permutation sub-matrix is a Hamiltonian sub-matrix is Ω(1/n).
Multiplying these probabilities proves the claim.

Let X be the random variable indicating how many entries in M are equal to 1. Since
each entry of M is equal to 1 with probability 1/4n3, the expectation of X is n and the
variance of X is n ·(1−1/4n3) = n−1/4n2. Chebyshev’s inequality thus shows that X < 2n
except with probability at most 1/n. When X < 2n then X ∈ {0, . . . , 2n−1} and the most-
likely value is X = n; thus, the probability that X = n is at least (1− 1/n)/2n = Ω(1/n).

Assume M has exactly n entries equal to 1. Say two 1-entries collide if they are in
the same row or column. The probability that any two particular 1-entries collide is at
most 1/n2. Taking a union bound over all

(

n

2

)

pairs of 1-entries shows that the probability
of any colliding pairs is at most 1/2. Thus, the probability that M contains an n × n
permutation sub-matrix is at least 1/2.

The probability that a random permutation matrix is a Hamiltonian matrix is easily
seen to be (n−1)!

n! = 1/n.

Given the preceding claim, we now show the full construction of a proof system in the
hidden-bits model.

Construction (A Proof System in the Hidden Bits Model for HC):

• Common input: A directed graph G = (V,E) with |V | = n, where n is also the
security parameter.

13-3

• Hidden-bits string : A uniform string of length n3 · 4n4 · (2 + 3 log2 n). This is parsed
as n3 matrices, each represented using 4n4 biased bits as stated above. Denote these
matrices by M1, . . . ,Mn3 .

• For each Mi, check if Mi is useful.

– If not, reveal all the entries of Mi.

– Otherwise (Mi is useful), let Ci denote the n×n Hamiltonian sub-matrix of Mi.
Reveal all 4n4 −n2 entries of Mi that are not in Ci. Also, use Ci to give a proof
as described in Section 2.1.

• Verifier: (The verifier does not see the hidden string, but recall that it is given the
positions of the bits revealed by the prover. So it makes sense to talk about the
ith matrix Mi even though the verifier does not necessarily see the entire matrix (i.e.,
besides what is revealed to it by the prover).) The verifier accepts only if the following
are true for all n3 matrices:

– If the prover has revealed all of Mi, the verifier checks that Mi is not useful.

– Otherwise, the prover checks that (i) the prover has revealed 4n4 − n2 entries in
Mi that are 0, while the remaining n2 entries of Mi form an n × n sub-matrix;
and (ii) call the remaining n×n sub-matrix Ci. The verifier verifies the prover’s
proof with respect to Ci exactly as in Section 2.1.

We now argue that the above is an NIZK proof system for HC in the hidden-bits model:

Completeness is immediate. For anyMi that is not useful, the prover can easily convince the
verifier by simply revealing all entries. WhenMi is useful, the argument in Section 2.1 holds.

Soundness is no longer perfect, but instead holds with all but negligible probability. Fol-
lowing the argument given in Section 2.1, soundness holds with probability 1 whenever at
least one of the Mi are useful. The probability that none of the Mi are useful is at most

(1− Ω(1/n2))n
3

≤ e−Ω(n),

which is negligible.

To show zero-knowledge we simply need to modify the simulator given in Section 2.1. The
simulator now proceeds in n3 sequential iterations as follows: in the ith iteration, it generates
4n4 ·(2+3 log2 n) uniform bits. If this defines a matrix Mi which is not useful, the simulator
simply outputs these bits and moves to the next iteration. If this defines a useful matrix
Mi with Hamiltonian sub-matrix Ci, the simulator outputs all 4n4 − n2 entries of Mi that
are not in Ci (these entries are all 0), and then runs the simulator of Section 2.1. Note that
this simulator will ignore Ci, and will instead just output a permutation π and “reveal” a
0 for every non-edge in G (as in Section 2.1).

13-4

References

[1] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. PhD Thesis, Dept.
of Computer Science and Applied Mathematics, Weizmann Institute of Science, 1990.
Available from http://www.wisdom.weizmann.ac.il/˜feige.

[2] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Based on a Single Random String. In FOCS, pp. 308–317, 1990.

[3] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM Journal on Computing 29(1): 1–28, 1999.

[4] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools, Cambridge University
Press, 2001.

[5] D. Lapidot and A. Shamir. Publicly Verifiable Non-Interactive Zero-Knowledge Proofs.
In Advances in Cryptology - CRYPTO ’90, pp. 353-365, 1990.

A Chebyshev’s Inequality

Let X be a random variable with mean µ and variance σ2. Chebyshev’s inequality says
that for any k > 0 we have

Pr[|X − µ| ≥ k] ≤
σ2

k2
.

13-5

