
CMSC 858K — Advanced Topics in Cryptography February 12, 2004

Lecture 6

Lecturer: Jonathan Katz Scribe(s):
Omer Horvitz Zhongchao Yu
John Trafton Akhil Gupta

1 Introduction

In this lecture, we show how to construct a public-key encryption scheme secure against
non-adaptive chosen-ciphertext attacks, given a semantically-secure public-key encryption
scheme and an adaptively-secure non-interactive zero-knowledge proof system (in the com-
mon random string model).

2 Adaptively-Secure Non-Interactive Zero-Knowledge

We begin with a definition of a basic case of non-interactive zero-knowledge.

Definition 1 A pair of ppt algorithms (P,V) is a non-interactive zero-knowledge (NIZK)
proof system for a language L ∈ NP if there exists some polynomial poly such that:

1. Completeness (for x ∈ L, P generates proofs that V accepts): For all x ∈ L ∩ {0, 1}k

and all witnesses w for x,

Pr[r ← {0, 1}poly(k) ; Π← P(r, x, w) : V(r, x,Π) = 1] = 1.

2. Soundness (for x 6∈ L, no prover can generate proofs that V accepts with better than
negligible probability): For all x ∈ {0, 1}k \L and all (possibly unbounded) algorithms
P∗, the following is negligible in k:

Pr[r ← {0, 1}poly(k) ; Π← P∗(r, x) : V(r, x,Π) = 1].

3. Zero-knowledge (for x ∈ L, the view of any verifier can be efficiently simulated without
knowledge of a witness): There exists a ppt algorithm Sim such that for any x ∈
L ∩ {0, 1}k and any witness w for x, the following ensembles are computationally
indistinguishable:

(1)
{

r ← {0, 1}poly(k) ; Π← P(r, x, w) : (r, x,Π)
}

k

(2) {(r,Π)← Sim(x) : (r, x,Π)}k .

♦

For our purposes, we need to strengthen the definition in two ways. In the soundness
requirement, we would like to also protect against a prover who chooses x 6∈ L after seeing
the common random string r. In the zero-knowledge requirement, we would like to make
the simulator’s job a little harder by making it output a simulated common random string

6-1

r first, and only then supplying it with an x ∈ L for which it needs to generate a simulated
proof. In particular, such an x may be chosen adaptively (by an adversary, say) based on
r. In the following, we use PrE[A] to denote the probability that event A occurs in the
probabilistic experiment E.

Definition 2 A pair of ppt algorithms (P,V) is an adaptive, non-interactive zero-knowledge
(aNIZK 1) proof system for a language L ∈ NP if there exists a polynomial poly such that:

1. Completeness: Same as above.

2. Soundness (now, the cheating prover may choose x 6∈ L after seeing r): For all
(possibly unbounded) algorithms P∗, the following is negligible in k:

Pr
[

r← {0, 1}poly(k) ; (x,Π)← P∗(r) : V(r, x,Π) = 1 ∧ x ∈ {0, 1}k \ L
]

.

3. Zero-knowledge (simulator must output r first, is then given x, and asked to produce
a simulated proof): Let (Sim1,Sim2), (A1, A2) be a pair of two-staged algorithms (we
may assume that the first stage outputs some state information which is passed as
input to the second stage; this will be implicit). Consider the following experiments:

Game ZKreal Game ZKsim

r← {0, 1}poly(k)

(x,w)← A1(r) (x ∈ L ∩ {0, 1}k)
Π← P(r, x, w)
b← A2(r, x,Π)

r← Sim1(1
k)

(x,w)← A1(r) (x ∈ L ∩ {0, 1}k)
Π← Sim2(x)
b← A2(r, x,Π)

We require that there exist a ppt simulator (Sim1,Sim2) such that for any ppt algo-
rithm (A1, A2) the following is negligible in k:

|PrZKreal
[A2 outputs 0]− PrZKsim

[A2 outputs 0]| .

Equivalently, the “real” game ZKreal is computationally indistinguishable from the
“simulated” game ZKsim. (In other words, the adversary cannot tell whether it is
participating in the first or the second experiment (except with negligible probability).
A2’s output can be thought of as its guess towards which experiment it is in. This
means that the simulator is able to simulate the adversary’s view in the real execution.)

♦

To simplify the notation a little, we will usually drop the stage identifier for A; when
we refer to A’s output in the experiment, we will mean A2’s output.

3 A Public-Key Encryption Scheme Secure Against Non-

Adaptive Chosen-Ciphertext Attacks

Let (Gen, E ,D) be a public-key encryption scheme and (P,V) be an adaptively-secure NIZK
proof system for languages in NP. The following construction is due to Naor and Yung [1].

1This notation is non-standard.

6-2

Gen
∗(1k)

(pk1, sk1)← Gen(1k);
(pk2, sk2)← Gen(1k);

r ← {0, 1}poly(k);
pk∗ = (pk1, pk2, r);
sk∗ = sk1

E∗(pk1,pk2,r)(m)

w1, w2 ← {0, 1}
∗;

c1 = Epk1
(m;w1);

c2 = Epk2
(m;w2);

Π← P(r, (c1, c2), (w1, w2,m));
Output (c1, c2,Π)

D∗

sk1
(c1, c2,Π)

If V(r, (c1, c2),Π) = 0
Output ⊥;

else
Output Dsk1

(c1)

A few words of explanation are due here. For key generation, we use the underlying
key-generation algorithm to produce two pairs of (public, private) keys, publish the public
keys and a random string r (to serve as the common random string for the proof system),
and keep the first underlying private key as our private key (we discard the second private
key). For encryption, we use the underlying algorithm to encrypt the given message m

twice, under both pk1 and pk2, with the random tapes of the encryption algorithm fixed to
w1, w2, respectively.2 (For a probabilistic algorithm A(·), the notation A(·;w) is used to
denote that A’s random tape is fixed to a particular w ∈ {0, 1}∗.) We then use our prover
to generate a proof that (c1, c2) are encryptions of the same message under pk1, pk2 in the
underlying scheme; i.e., (c1, c2) ∈ L where

L = {(c1, c2) |∃m,w1, w2 such that c1 = Epk1
(m;w1), c2 = Epk2

(m;w2)} ,

using w1, w2, and m as witnesses. Note that L ∈ NP. We send the ciphertexts and the
proof to the receiver. For decryption, we use the underlying decryption algorithm on the
first ciphertext, if the provided proof verifies correctly.

Theorem 1 Assuming that (Gen, E ,D) is semantically secure and that (P,V) is an adaptively-
secure NIZK proof system, (Gen

∗, E∗,D∗) is secure against non-adaptive (“lunchtime”3)
chosen-ciphertext attacks (i.e., is CCA1 secure).

The remainder of these notes is the beginning of a proof of this theorem (we continue the
proof next lecture). Let A be a two-staged ppt algorithm, where the first stage has access
to an oracle. Consider the following two experiments (their differences are in boldface):

Game CCA10 Game CCA11

(pk1, sk1), (pk2, sk2)← Gen(1k)

r← {0, 1}poly(k)

pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m0;w1), c2 = Epk2

(m0;w2)
Π← P(r, (c1, c2), (w1, w2,m0))
b← A(pk∗, c1, c2,Π)

(pk1, sk1), (pk2, sk2)← Gen(1k)

r ← {0, 1}poly(k)

pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m1;w1), c2 = Epk2

(m1;w2)
Π← P(r, (c1, c2), (w1, w2,m1))
b← A(pk∗, c1, c2,Π)

To prove the scheme CCA1 secure, we need to show that A cannot distinguish the above
two games; i.e.,to show that the following is negligible: |PrCCA10

[b = 0]− PrCCA11
[b = 0]|.

2The notation w1 ← {0, 1}∗ just means that a “long enough” random string is chosen.
3That is, the adversary is assumed to be able to “play” with the decryption oracle while people are out

for lunch, but not afterward when he gets the challenge ciphertext.

6-3

To that effect, we introduce a sequence of intermediate games, and show that A cannot
distinguish each game from its subsequent one; the theorem will then follow.

Let Sim = (Sim1,Sim2) be the simulator for our proof system. In the first game, we
replace the random string and legitimate proof of game CCA10 with a simulated random
string and simulated proof. Once again, the differences between the new game and game
CCA10 are highlighted.

Game 1
(pk1, sk1), (pk2, sk2)← Gen(1k)
r← Sim1(1

�

)
pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m0;w1), c2 = Epk2

(m0;w2)
Π← Sim2((c1, c2))
b← A(pk∗, c1, c2,Π)

Claim 2 |PrCCA10
[A outputs 0]− Pr1[A outputs 0]| is negligible.

Proof By reduction to the zero-knowledge property of the proof system: we use A to
construct an algorithm B that attempts to distinguish real from simulated proofs.

B(1k)
Receive r as first-stage input;
(pk1, sk1), (pk2, sk2)← Gen(1k);
pk∗ = (pk1, pk2, r);
sk∗ = sk1;

(m0,m1)← AD
∗

sk∗
(·)(pk∗); // note that B has no trouble

// simulating the decryption oracle for A

w1, w2 ← {0, 1}
∗;

c1 = Epk1
(m0;w1), c2 = Epk2

(m0;w2);
Output ((c1, c2), (w1, w2,m0)) as first-stage output;
Receive Π as second-stage input;
b← A(pk∗, c1, c2,Π);
Output b as second-stage output.

Now, when the inputs to B are a random string r and a real proof Π, then A’s view in
the above experiment is precisely its view in game CCA10, and so PrZKreal

[B outputs 0] =
PrCCA10

[A outputs 0]. On the other hand, when the inputs to B are a simulated string and a
simulated proof, A’s view in B is precisely its view in game 1, and so PrZKsim

[B outputs 0] =
Pr1[A outputs 0]. Since |PrZKreal

[B outputs 0]− PrZKsim
[B outputs 0]| is negligible (since

the proof system is adaptively-secure NIZK), we have that

|PrCCA10
[A outputs 0]− Pr1[A outputs 0]|

is negligible as well.

The second game differs from game 1 in that it does not double-encrypt m0, but instead
encrypts m0 once and m1 once.

6-4

Game 2
(pk1, sk1), (pk2, sk2)← Gen(1k)
r ← Sim1(1

k)
pk∗ = (pk1, pk2, r), sk∗ = sk1

(m0,m1)← AD
∗

sk∗
(·)(pk∗)

w1, w2 ← {0, 1}
∗

c1 = Epk1
(m0;w1), c2 = E �

�
2
(m1; w2)

Π← Sim2((c1, c2))
b← A(pk∗, c1, c2,Π)

Note that in the above, the simulator is given as input encryptions of two different mes-
sages. Such an input is not in L, and in general there is not much we can say about the
simulator’s output in this case. However, we will see that in this particular case the game is
indistinguishable to A because the semantic security of the underlying encryption scheme
implies that encryptions of m0 are indistinguishable from encryptions of m1. Of course,
this will require a formal proof.

Claim 3 |Pr1[A outputs 0]− Pr2[A outputs 0]| is negligible.

Proof We use A to construct B that attempts to break the semantic security of the
underlying scheme. Recall that B is given a public key, outputs two messages (m0,m1),
is given the encryption of one of these, and has to guess which one. But B does not have
access to a decryption oracle.

B(pk)
Set pk2 = pk;
(pk1, sk1)← Gen(1k);
r ← Sim1(1

k);
pk∗ = (pk1, pk2, r), sk∗ = sk1;

(m0,m1)← AD
∗

sk∗
(·)(pk∗); // note that B has no trouble

// simulating the decryption oracle for A

Output (m0,m1);
Receive c2 (an encryption of either m0 or m1 using (unknown) random tape w2);
w1 ← {0, 1}

∗;
c1 = Epk1

(m0;w1);
Π← Sim2((c1, c2));
b← A(pk∗, c1, c2,Π);
Output b.

Now, when c2 is an encryption of m0, then A’s view above is precisely its view in game 1.
On the other hand, when c2 is an encryption of m1, then A’s view above is precisely its view
in game 2. Therefore, the probability that A distinguishes game 1 from game 2 is precisely
the probability that B distinguishes an encryption of m0 from an encryption of m1, which
is negligible by the semantic security of the underlying encryption scheme.

In the same way as above, we would now like to “switch” c1 from being an encryption
of m0 to being an encryption of m1. Here, however, a potential problem arises! To prove

6-5

a claim analogous to Claim 3, we would need to construct some adversary B that gets
pk = pk1 and then has to distinguish whether the ciphertext c1 it receives is an encryption
of m0 or m1. But, in order to do this it has to somehow simulate a decryption oracle for
A — and this seems to require sk1, which B does not have! (If B has sk1 then it would
be easy for B to break semantic security of the scheme. . . .) So, we will have to do a little
more work before continuing.

Let Fake be the event that A submits a query (c1, c2,Π) to its decryption oracle (in
stage 1) such that Dsk1

(c1) 6= Dsk2
(c2) but V(r, (c1, c2),Π) = 1. Note that Π is then a

valid-looking proof for a false statement (since (c1, c2) 6∈ L).

Claim 4 Pr2[Fake] is negligible.

Proof First, note that Pr2[Fake] = Pr1[Fake]. This is because A submits oracle queries
only in its first stage, and up to that stage the games are identical.

Next, we show that |Pr1[Fake]− PrCCA10
[Fake]| is negligible. Up to A’s first stage, the

games differ only in r being a random string or a simulated string. Construct an algorithm
B that attempts to distinguish random from simulated strings, as follows:

B(r)
(pk1, sk1), (pk2, sk2)← Gen(1k);
pk∗ = (pk1, pk2, r);

Run AD
∗

sk∗
(·)(pk∗), simulating the oracle for A normally except that

if for any decryption query (c1, c2,Π) it is the case that
V(r, (c1, c2),Π) = 1 but Dsk1

(c1) 6= Dsk2
(c2),

then output 1 and stop (note that now B does not throw away sk2);
Otherwise, once A is done with its first stage simply output 0

Now, PrZKsim
[B outputs 0] = Pr1[Fake]. Similarly, PrZKreal

[B outputs 0] = PrCCA10
[Fake].

Since |PrZKreal
[B outputs 0]− PrZKsim

[B outputs 0]| is negligible (since the proof system is
adaptively-secure NIZK), we have that |Pr1[Fake]− PrCCA10

[Fake]| is negligible as well.
Finally, note that PrCCA10

[Fake] is negligible. This is because Fake occurs when A

produces a valid proof for a (c1, c2) 6∈ L, which can only happen with a negligible probability
because of the soundness of the NIZK proof system (note that r now is a truly random
string). The claim follows.

We pick up the proof from here in the next lecture. Informally, the next game we
introduce differs from game 2 only in that sk2 is used for decryption instead of sk1. The
adversary’s view in the games only differs if Fake occurs, which happens with negligible
probability. All that’s left to be done is to switch c1 to an encryption of m1 (similar to
the introduction of game 2), switch the decryption key back to sk1, and then go back to a
random string and a real proof (similar to the introduction of game 1). This gets us back
to game CCA11 as desired, and will complete the proof.

References

[1] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. In Proceedings of the ACM Symposium on the Theory of Computing,
pages 427-437, 1990.

6-6

