
Anon-Pass: Practical Anonymous Subscriptions
Michael Z. Lee∗, Alan M. Dunn∗, Jonathan Katz†, Brent Waters∗, Emmett Witchel∗

∗The University of Texas at Austin, †University of Maryland
{mzlee, adunn, bwaters, witchel}@cs.utexas.edu, jkatz@cs.umd.edu

ABSTRACT

We present Anon-Pass, a protocol and system for anony-
mous subscription services that allow users to anonymously
authenticate while preventing mass sharing of credentials.
Service providers cannot correlate users’ actions, yet service
providers are guaranteed that each account is in use at most
once at a given time.

A central tension in anonymous subscription services is
balancing a service provider’s computational resource use with
users’ desire for flexible access. Anon-Pass focuses on practi-
cal anonymity, for example, in multi-media services, making
all accesses to different items (e.g. articles, songs) appear to be
from different users, but not decorrelating access to different
parts of the same item. This level of practical anonymity allows
Anon-Pass to provide users with flexible service at low cost to
the provider. We measure the performance of a prototype and
use it in several services including a music streaming service
and an unlimited-use subway pass.

I. INTRODUCTION

Electronic subscriptions are widespread and quickly becom-
ing the dominant mode of access for services like streaming
music and video, news, and academic articles. While electronic
subscriptions are convenient for users, they also reveal a lot
of information, ranging from users’ personal preferences to
geographic movements. Many users want electronic services,
but also want privacy. Simply “anonymizing” data does not
always protect users’ privacy: indeed, multiple “anonymized”
datasets released for research purposes (e.g., the AOL search
dataset [8] and the Netflix Prize dataset [13]) have been
partially deanonymized through use of correlation or under-
standing of the semantics of the released data.

It is difficult to create systems that protect user privacy and
simultaneously control admission (keeping out users who have
not paid). Foregoing one of these two goals makes achieving
the other considerably easier. If we require a user to simply
login to an account (foregoing anonymity), a service can
enforce that no user is simultaneously logged in twice. On the
other hand, a subscription system could use a single shared
identity for every user, preventing user identification (though
traffic-anonymization via a system like Tor [6] may also
be required to mask network-level identifiers). However, any
subscribing user could share the secret with non-subscribers.

Ideally, we would have an anonymous subscription system
that protects the interests of both the service and the users. At
a high level, such a service needs two operations: registration

and login. Registration allows a user to sign up for the service,
at which point they may need to provide details that are
identifying (e.g. credit card number, public key).

Login allows a registered user to access protected resources
via their subscription. Informally, an anonymous subscription
service ensures that a user’s logins are not linked to the
information they provided at registration, and login sessions
are not linkable with each other.

While cryptographic protocols for providing anonymous
credentials services already exist [9], there are problems with
putting these protocols into practice. Many of these protocols
are designed for thousands of concurrent users, but Netflix
streamed one billion hours of content in July 2012 and
has millions of subscribers1. At this scale, some proposed
cryptographic operations require too much compute. Existing
work does not focus on realistic evaluation scenarios, making
it difficult to understand what performance effects would arise
in a deployed system.

In this article, we describe Anon-Pass, our contribution
toward making anonymous subscription services practical.
Anon-Pass implements a new protocol for anonymous sub-
scription services that achieves significant improvements in
efficiency over prior protocols. Our insight is that not all
accesses to protected resources need to be unlinkable. For
example, a user probably does not care whether an adversary
is able to determine that she watched both the third and
fourth minutes of a particular movie as much as whether she
watched both of two separate movies. This insight appears
in Anon-Pass as a protocol for an anonymous subscription
with conditional linkage, wherein some accesses to protected
resources are linked to reduce computational cost when pri-
vacy is less important. We have formalized the notion of an
anonymous subscription with conditional linkage and proven
that the protocol used in Anon-Pass obeys this security defini-
tion under certain environmental and cryptographic hardness
assumptions.

We first describe the formalization of an anonymous sub-
scription with conditional linkage and discuss our design
which integrates the cryptographic protocol into real systems.
We then discuss both the cryptographic and system imple-
mentation. The code for Anon-Pass is freely available at
https://github.com/ut-osa/anon-pass to encourage future work
in this area.

1http://usatoday30.usatoday.com/tech/news/story/2012-07-03/
netflix-online-video/56009322/1

https://github.com/ut-osa/anon-pass
http://usatoday30.usatoday.com/tech/news/story/2012-07-03/netflix-online-video/56009322/1
http://usatoday30.usatoday.com/tech/news/story/2012-07-03/netflix-online-video/56009322/1


II. ANONYMOUS SUBSCRIPTIONS WITH CONDITIONAL
LINKAGE

How do we achieve both anonymity and admission control?
Ideally, we want each new client operation to appear to be from
a new user, unrelated to previous users; however, when two
operations are authorized with the same credential at the same
time, then it must be clear they are from the same credential.
Note that in our text “user” will denote the person and “client”
the program (and sometimes the machine) performing actions.
To keep credentials verifiable but also make them changeable,
we divide time into equal length epochs, agreed on by both
clients and servers. Clients use the current epoch number
as input to a pseudorandom function (PRF) which allows
them to change the login credential for each epoch. Changing
login credentials allows each client to appear to be from a
completely new user for the service in every new epoch, but
each user can only create one unique login credential per
epoch, preventing multiple simultaneous logins with the same
credentials. A login credential only provides access for the
duration of an epoch.

There is a tension between a service provider’s desire for a
long time epoch (to reduce server load) versus users’ desire
for a short epoch (to improve anonymity). The service needs
to perform cryptographic checks during login, making login
a computationally expensive operation. Consequently, the ser-
vice provider wants to maximize epoch length. However, a
user is only unlinked from previous activity once an epoch
boundary has passed, and hence prefers a shorter epoch length.
For example, when listening to a streaming music service, a
user probably does not want to wait five minutes (or even one
minute) for the next track to play.

We believe that users want unlinkability across accesses to
distinct pieces of content, e.g., a movie, song, or news article.
Therefore, we provide short epochs, giving users the ability to
re-anonymize quickly if they so choose, while also providing
an efficient method for users who do not need unlinkability to
cheaply re-authenticate themselves for the next epoch. Users
who are still watching the same movie or listening to the same
song in a new epoch do not need unlinkability. Users want to
decorrelate their watching “The Godfather” from listening to
“Teenage Dream”; they do not need to decorrelate watching
the first minute of “The Godfather” from watching the second.

In the rest of this section, we briefly define the cryptographic
syntax and discuss the intuition behind our security guarantees.

A. Syntax and intended usage

An anonymous subscription scheme with conditional
linkage consists of two algorithms (Setup and EndEpoch) and
three protocols (Reg, Login, and Re-Up). Setup and EndEpoch
are used for bookkeeping of internal service state and allow
us to clearly define the operations for a service provider when
used in our proofs. The three protocols comprise the primary
functionality of the scheme: adding new users to the system
(Reg) and authenticating clients to the system (Login and
Re-Up). Re-Up is not like normal authentication because it
requires that the client is already logged into the system.

The protocol implements the conditional linkage aspect of our
scheme by extending the current user session into the next
epoch.

System initialization begins by having the server run
Setup(n) (where n is the security parameter) to generate the
service public and secret keys (spk, ssk). Following setup,
clients can register new users at any time; we denote the secret
key of client i as ski. Independent of user registrations (which
do not affect the server’s state and may be performed at any
time), there is some sequence of executions of the login, re-
up, and end-of-epoch algorithms. We denote the period of time
between two executions of EndEpoch (or between Setup and
the first execution of EndEpoch) as an epoch. We write Logini
(resp., Re-Upi) to denote an execution of Login (resp., Re-Up)
between the ith client and the server, with both parties using
their prescribed inputs.

At some instant in an epoch, we (recursively) define that
client i is logged in if either (1) Logini was previously run
during that epoch, or (2) at some point in the previous epoch,
client i was logged in and Re-Upi was run. At some instant
during an epoch, client i is linked if at some previous point
during that epoch client i was logged in and Re-Upi was run.

B. Security

We define two notions of security: one ensuring that mali-
cious users cannot generate more active logins than the number
of times they have registered (“soundness”), and the other
guaranteeing unlinkability for clients who authenticate using
the Login protocol (“anonymity”). (On the other hand, clients
who re-authenticate using the Re-Up protocol will be linked
to their actions in the previous epoch.)

1) Soundness: A scheme is sound if, for all probabilistic
polynomial-time adversaries A, the probability that A suc-
ceeds in the following experiment is negligible. A takes the
role of a malicious user or users and tries to authenticate with-
out using a valid credential it knows. A can perform a number
of actions against the service: registering polynomially-many
(malicious) users, controlling honest clients to login and re-up,
and globally incrementing the current epoch. A succeeds if at
any point in time, the number of logged in clients is greater
than the number of A’s users plus the number of honest clients
currently logged in.

2) Anonymity: A scheme is anonymous if, for all prob-
abilistic polynomial-time adversaries A, the probability that
A succeeds in the following experiment is negligibly close
to 1/2. A takes the role of a malicious service trying to link
users’ access patterns. During setup, a random bit c is chosen,
A sets the service public key, and two clients, U0 and U1 are
registered. The game then proceeds in three phases.

Phase one: A may increment the epoch, query oracle
Login(b) which performs a login for Ub, and query oracle
Re-Up(b) which performs a re-up for Ub. In essence, A has
full knowledge of the access pattern for U0 and U1. If both
U0 and U1 are not currently logged in, then A is also allowed
to proceed to phase two.

2



Phase two: A can perform the same operations, but
query ChallengeLogin(b) and ChallengeRe-Up(b) instead.
ChallengeLogin(b) is the same as Login(b ⊕ c) and
ChallengeRe-Up(b) is the same as Re-Up(b⊕ c). The second
phase ends when neither client is logged at the beginning of
an epoch.

Phase three: A interacts with the same power as in phase
one.

At any point, A may output a bit c′. A succeeds if c = c′.

III. DESIGN

This section describes the design and implementation of the
Anon-Pass system. The system is intended to instantiate our
protocol in a way that is practical for deployment. We present
a conceptual framework for the system in which the various
functionalities of the system are separated.

There are three major pieces of Anon-Pass functional-
ity: client authentication management, server authentication
management, and service provider admission control. In our
design, we call these pieces the client user agent, the authen-
tication server, and the resource gateway. The client user
agent and the authentication server correspond to the client
and server in the cryptographic protocol. The resource gateway
enforces access to the underlying service, denying access to
users who are not properly authenticated. A session in Anon-
Pass is a sequence of epochs beginning when a user logs in
and ending when the user stops re-upping.

Figure 1 shows the major components of the Anon-Pass
system. We depict the most distributed setting, where each of
the three functions is implemented separately from existing
services, though a deployment might merge functionality. For
example, the resource gateway might be folded into an already
existing component for session management.

Our system supports internal and external authentication
servers. An internal authentication server corresponds to a
service provider offering anonymous access themselves, e.g.,
the New York Times website might offer anonymous access
at a premium. An external authentication server corresponds
to an entity providing anonymous access to already existing
web services. For example, a commercial anonymous web
proxy (like proxify.com or zend2.com) might offer anonymous
services.

Our system implements registration, though it is not de-
picted in the figure. We do not discuss the payment portion
of the registration protocol. Anonymous payment is a separate
and orthogonal problem. Possible solutions include paying in
some form of e-cash or BitCoins.

We want to allow services to use our authentication scheme
without much modification, so we provide a simple interface:
authorized clients during a time period are allowed to contact
the service and are cut off as soon as the session is no
longer valid. Services might have to accommodate Anon-
Pass’s access control limitations. For example, a streaming
media service might want to limit how much data can be
buffered within a given epoch. The service provider loses the
ability to enforce any access control for buffered data.

Application 
Server

Authentication
Server

Client 
Application

User Agent

Gateway

Client Application Service

Authentication Service

2

1

4 3

5 6

78

Fig. 1. The communication between the authentication server, resource
gateway, and user agent with respect to the client and the service. À Com-
munication is initiated by the user agent and the authentication server verifies
the credentials. Á The authentication server verifies the credentials and returns
a sign-in token to the user agent. Â The user agent communicates this sign-
in token to the gateway and, afterward, Ã passes this information to the
client application for use. Ä The client application includes the token as a
cookie along with its normal request. Å The gateway checks that the sign-in
token has not already been used in the current epoch and then proxies the
connection to the application server. Æ The application server returns the
requested content and Ç the gateway verifies that the connection is still valid
before returning the response to the client.

A. Timing

Anon-Pass requires some time synchronization between
clients and servers because both client and server must agree
on epoch boundaries, and Anon-Pass supports short epochs.
To support a 15 second epoch, clients and servers should
be synchronized within about a second. The network time
protocol (NTP) is sufficient, available and scalable for this
task. The pool.ntp.org organization2 runs a pool of NTP
servers that keep the clocks of 5–15 million machines on the
Internet synchronized to within about 100 ms.

The server response to a login request includes a timestamp.
Clients verify that they agree with the server on the current
epoch. Client anonymity could be violated3 if the epoch num-
ber ever decreases, so clients must track the latest timestamp
from every server they use and refuse to authenticate to a
server that returns a timestamp that is earlier than a prior
timestamp from that server. This ensures that regardless of
any time difference between server and client, anonymity is
preserved.

Clients who will re-up choose a random time during the
epoch to send the re-up request in order to prevent repetitive
behavior that becomes identifying. Randomizing the re-up re-
quest time also has the benefit of spreading the computational
load of re-ups on the server across the entire epoch.

B. Client user agent

The client user agent is responsible for establishing the
user secret, communicating with the authentication server, and

2http://www.ntp.org/ntpfaq/NTP-s-algo.htm
3Anonymity would not necessarily be completely broken, but the server

could link the current session of a client with a prior one.

3



maintaining a session for the client. Separating it from the
client application achieves two goals: it minimizes the amount
of code that needs to be trusted by the user to handle her
secrets and it lowers the amount of modification necessary to
support new client applications.

Once the user agent establishes a connection with the
authentication server, it runs our login protocol, and the user
agent receives a (standard, public-key) signature on the user’s
PRF value and the current epoch. The user agent sends
this certificate to the resource gateway as proof that it is
authenticated for the current epoch. The resource gateway
uses the signature to determine token validity. The user agent
cannot use this certificate in a later epoch.

When the user agent and authentication server run our re-
up protocol, the user agent receives a certificate that includes
the current epoch and the next epoch, as well as the two
corresponding PRF values. These additional values allow the
resource gateway to link the re-up operations back to the
session’s initial login request.

C. Authentication Server

The authentication server is separated from the service to
provide greater flexibility for service providers. The server’s
primary task is to run the authentication protocols and ensure
that clients are not authenticating more than once per epoch.
Since the protocol’s cryptographic operations use a lot of
computational resources, Anon-Pass was designed so that an
authentication service provider can distribute the work among
multiple machines. The only information that needs to be
shared between processes is the current epoch and PRF values
of all logged-in users (e.g., by using a distributed hash table).
Only storing information about currently authenticated users
relieves a service provider from having to store all spent
tokens, which requires unbounded storage (as is the case for
some prior work, see §VII).

D. Resource Gateway

The resource gateway is designed to perform a lightweight
access check before sending data back to a client. Only if a
client is authenticated for an epoch can it receive data during
that epoch. Therefore the epoch length (which is determined
by the service provider) bounds how much data can go to a
client before the client must re-authenticate (login or re-up).

IV. CONSTRUCTION

In this section, we provide an overview of a cryptographic
construction for a secure anonymous subscription scheme with
conditional linkage (see [11] for details) that allows us to
formalize and prove properties of Anon-Pass. Our construction
uses a number of primitives – bilinear groups, zero-knowledge
proofs of knowledge, a particular pseudorandom function
family, and cryptographic assumptions from prior work. In
our formal model (unlike the implementation), we assume
protocols are not executed concurrently, and so there is a well-
defined ordering among those events.

Similar to [1], our construction works by associating a
unique token Yd(t), with each client secret d, in each epoch t.
To register, a client obtains a blind signature from the service
on a secret of its choosing. To log in, a client sends a token
and proves in zero-knowledge that (1) it knows a service’s
signature on a secret, and (2) this secret was used to compute
to the token that was sent. These tokens are used to determine
admission to the service; the service accepts a token only if
it has not been presented before in that epoch. Intuitively,
soundness follows from the difficulty of generating signatures
and anonymity follows from pseudorandomness of the tokens.
(Further details and formal proofs of security can be found in
the full version of this paper [11].)

On a technical level, we use the Dodis-Yampolskiy PRF [7]
and an adapted version of one of the signature schemes
proposed by Camenisch and Lysyanskaya [2] (CL signatures).
These building blocks are themselves efficient, and also enable
efficient zero-knowledge proofs as needed for our construction.

A client can authenticate during epoch t by sending the
token Yd(t) and proving in zero-knowledge that the token
is “correct.” However, if a client is already logged in during
epoch t− 1, it can authenticate by sending Yd(t) and proving
that Yd(t − 1) uses the same client secret. This can be done
much more efficiently, with the tradeoff that the two user
sessions are now explicitly linked to each other. In an epoch
where the client is not logged in, it can perform a fresh Login
to “re-anonymize” itself.

V. IMPLEMENTATION

We implement the cryptographic protocol in a library,
libanonpass, using the Pairing Based Cryptographic Li-
brary [12], PolarSSL4 for clients, and OpenSSL5 for the
server. To show the flexibility of our protocol, we implement a
number of usage scenarios including a streaming music service
and an anonymous unlimited-use public transit pass. These
applications are all large enough to highlight implementation
issues specific to each context.

The authentication server and resource gateway are imple-
mented as two separate Nginx6 modules. The design does not
need to share much state: the only state Anon-Pass needs
to track is the current set of active login tokens. Both the
authentication server and the resource gateway need to track
this information; however, this can be consolidated to a single
distributed hash table if both are run by the same service. The
authentication server performs the cryptographic operations to
try to keep expensive computations out of users’ critical data
path. Instead, the resource gateway only needs to verify a
standard ECDSA signature and verify and update the table
of active sessions.

The basic client is a wrapper around libanonpass and
PolarSSL which provides an encrypted connection. The proto-
col messages are sent by using cookies to simplify server-side
parsing and minimize client application modifications.

4https://polarssl.org/
5http://www.openssl.org/
6http://www.nginx.org

4

https://polarssl.org/
http://www.openssl.org/
http://www.nginx.org


We briefly discuss two applications: a music streaming
service and an unlimited use, public transit pass.

A. Streaming Music Service

We implement a streaming music service over HTTPS
by exposing media from web accessible URIs. The service
directly implements our anonymous credential scheme and
allows a user to choose the granularity of an anonymous
session as either a full playlist or as an individual song. We
modify VLC,7 a popular media player, to communicate with
our user-agent and pass our session token as a cookie to the
resource gateway.

Our music service allows users to download songs, but we
rate-limit playback. Rate limiting reduces network bandwidth
usage, which allows our service to support more clients with
jitter-free service. Rate limiting also reduces the amount of
data a client can buffer during an epoch. If a client loses its
anonymous service in the next epoch, it will only have a small
amount of buffered data. The music service has no ability to
enforce access control for that buffered data.

B. Public Transit Pass

We implement a public transit pass as an Android appli-
cation. Currently, public transit providers who issue month
long or weeklong “unlimited” access passes limit user access
to prevent cheating. Without safeguards, a user could give
her pass to all of her friends to ride for free. Anonymous
subscriptions are able to provide these safeguards without
revealing user’s identity (so users’ movements cannot be
tracked).

We use the Java Native Interface (JNI) to call into
libanonpass from an Android application. The Android
application has a simple interface with a single button to
generate a login and two re-up additional PRFs. It then
displays this data as a quick response (QR) code for a physical
scanner to read. If a transit provider chooses a 6-minute
epoch length, then this would create a 12 to 18 minute period
in which a login attempt from the same phone would fail.
Though this guarantee is not precisely the same guarantee an
unlimited ride transit pass currently provides, it does present an
alternative that allows riders anonymity which still enforcing
the lockout period.

Other anonymous subscription systems such as Unlinkable
Serial Transactions [14] or anonymous blacklisting systems
such as Nymble [10] or BLAC [15] require network connec-
tivity at the time when a client uses an authentication token.
When using a blacklisting system, a user wants to proactively
fetch the blacklist to ensure that she is not on the list prior
to contacting a server, otherwise she could be deanonymized.
The size of a blacklist can grow quickly; for example, BLAC
adds 0.27KB of overhead per blacklist entry. When using a
UST-like system, the user must receive the next token when
a prior token is used up (but not before). Anon-Pass is ideal
for subway systems where network phone coverage is spotty

7http://www.videolan.org/vlc/index.html

at best, since it only needs to communicate in one direction
at the subway entry gate.

There is a caveat however, because though Anon-Pass may
be able to simulate the lockout period a transit provider needs
to implement an unlimited use pass, it does not map directly
to the model enforced today. This is because it, by definition,
Anon-Pass cannot prevent time-sharing over a longer period of
time. Once the 12-18 minute period is up, another user could
use a duplicated pass, but the original rider would not have
necessarily exited the system. The requirement of one physical
device allowing access to one person is broken because the
credential could be copied in an untraceable manner.

VI. EVALUATION

We evaluate Anon-Pass through a series of micro-
benchmarks and through its use in several applications. Further
results, including a theoretical cost comparison to to prior
work and an additional example service, can be found the
full version of this paper [11].

A. Measured Operation Costs

There are overheads when integrating the protocols into
a full system. Figure 2 shows a break down of each au-
thentication operation and how time is spent on the server.
For registration, the signature operation is our modified CL
signature on the blinded client secret, whereas the signature for
login and re-up are standard ECDSA signatures. The majority
of the work for the ECDSA signature can be precomputed,
and hence takes almost no time to compute. Re-up is 7.7×
faster than login.

B. Public Transit Pass

To evaluate the public transit pass scenario, we use the
Android application and compute the time it takes to generate
the login QR code on a commodity phone. Recall, the login
QR code consists of a normal client login and three re-up
tokens. The time to generate a login QR code on an HTC Evo
3D is 222± 24 ms. Power usage on this platform is minimal
because the application does not need access to any radios on
the phone.

On our server, the login and token verification costs 8.4 ms
of CPU time, most of which is the cost of verifying the login
portion. Putting this into perspective, in 2012 the Bay Area
Rapid Transit had an average of 401,323 riders on weekdays
for the months of August through October8. While we do not
have data on traffic peaks, the total load is easily handled by
Anon-Pass. One modern CPU core on our server can perform
the approximately 400,000 verifications in just a little under
an hour. These operations are trivially parallelizable across
multiple cores and machines.

8http://www.bart.gov/about/reports/ridership.aspx

5

http://www.videolan.org/vlc/index.html
http://www.bart.gov/about/reports/ridership.aspx


Operation Time Breakdown

Authentication Operation
Register Login Re−Up

T
im

e
 (

m
s

)

0

2

4

6

8

10

12

14

16

18

20
19.84

8.26

1.07

Data handling

Hash Server

Sign

Verify

Fig. 2. The average cost of different requests on an unsaturated server. The
bulk of the time is spent in signature verification.

C. Streaming music service

We build an example streaming music service; however, we
lack datacenter-level resources, and so must adapt the bench-
mark to run on our local cluster of machines. Our cluster’s
main constraints are the limited network bandwidth (1 Gbps)
and memory available to run clients. Each client randomly
chooses a song and fetches it using pyCurl rather than
a more memory-intensive media player like VLC. Avoiding
VLC allows us to scale to a greater number of clients for our
test bed.

We serve a media library consisting of 406 MP3 files, whose
length is drawn from the most popular 500 songs on the
Grooveshark music service, eliminating duplicates and songs
that are over 11 minutes long. The average length of a song is
4:05±64.38 s. We represent the music files using white noise
encoded at 32Kbps. The system dynamics are independent of
the music content, and 32Kbps allows our server to saturate
its CPU before saturating its outbound network bandwidth.

We simulate three different scenarios: a baseline system
without any authentication, a login-only system in which users
are not able to cheaply re-authenticate, and the full Anon-Pass
system including re-up. When authentication is involved, we
use an epoch length of 15 seconds for a better user experience.
The scenario begins with 6,000 clients gradually logging over
a period of five minutes. After a song is finished, the client
unlinks itself and chooses a new song to stream. After 10
more minutes, we have an additional 6,000 clients login also
over a five-minute period. We were not able to scale the
experiment further because we exhausted the resources that

Application CPU Usage

Time (minutes)
0 10 20 30

%
 C

P
U

0

10

20

30

40

50

Login−only

saturation

Login−only

Anon−Pass

Unmodified application

Fig. 3. The CPU usage on the application server measured every 5 seconds.
The CPU usage with login-only follows the Anon-Pass behavior until the
authentication server reaches saturation. Clients timeout and the application
server has an overall drop in CPU utilization due to the lower number of
clients successfully completing requests.

could be devoted to additional clients.
Figure 3 shows the CPU utilization on the application server

sampled once every five seconds. Anon-Pass uses more CPU
resources than the baseline application because the service
must perform an additional ECDSA verification once per
epoch. Up until approximately 17 minutes into the experiment,
a login-only service shows a very similar CPU utilization
graph. However, at 17 minutes, the utilization graph drops
lower and is much more jagged.

To see why this happens, we look at a graph of the CPU
utilization on the authentication server (Figure 4). This shows
the limited capacity of the login-only service. At 6,000 clients,
the login-only service is able to keep up with authentication
requests. However, the steady-state average CPU utilization is
already 77.9%. At the CPU saturation point, there are 8,100
clients attempting to connect to the service. When a user is
not able to re-authenticate, the music playback is cut off and
the client is forced to retry. With 12,000 clients attempting to
concurrently stream music, the login-only configuration has a
client failure rate of 34% as compared to only 0.02% when
also using re-up.

VII. RELATED WORK

Our work continues research into anonymous creden-
tials [3], which allow admission control while maintaining
anonymity. We describe several themes of research in anony-
mous credential schemes.

6



Authentication Server
CPU Usage

Time (minutes)
0 10 20 30

%
 C

P
U

0

20

40

60

80

100

Login−only

saturation

Login−only

Anon−Pass

Fig. 4. The CPU usage on the authentication server measured every 5
seconds. The average CPU utilization for Login-only during the first stable
segment (6,000 clients) is 77.9% (±2.42) and reaches saturation at about
the 17 minute mark, or approximately 8,100 clients. The CPU utilization for
Anon-Pass is 16.8% (±0.73) at 6,000 clients, and 33.4% (±0.96) at 12,000
clients (the second stable segment).

Handling credential abuse has been a central theme of
much of the work on anonymous credentials; however, abuse
of credentials takes on different meaning in many of the
different systems. Early work (e.g. [5]) focused around e-
cash [4], where credentials represented units of currency.
The key task is to prevent double spending of the currency.
However, currency-based systems are use-limited and do not
translate to unlimited subscription services.

One of the earliest proposals for anonymous subscription
services is “Unlinkable Serial Transactions” [14]. The system
ensures a user can have only one valid credential at a time by
recording every previously seen credential and issuing a new
anonymous credential at the end of every transaction. One
the other hand, Anon-Pass trades the potentially unbounded
storage cost of UST with having users periodically contact
the service.

More recent work has focused on anonymous blacklisting
systems [9]. In these systems, a service is able to blacklist a
user, excluding that user from accessing the service. Anony-
mous blacklisting systems usually allow a service to either
reveal some form of linking information to prevent future
access. Anon-Pass can only link a user when the user explicitly
tells the service, which allows us to reduce the cryptographic
cost.

One way to implement an anonymous subscription service
is by blacklisting the user at login and removing the user at

logout. However, a number of these schemes suffer from poor
scalability. Indeed, BLAC [15] requires time linear in the num-
ber of blacklisted users to authenticate. A more recent system,
BLACR, still measures scalability in terms of authentications
per minute using 5,000 concurrent users. Contrastingly, Anon-
Pass can sustain almost 500 login operations a second, and
scales to 12,000 clients concurrently streaming music.

VIII. CONCLUSION

Anon-Pass is a building block for anonymous authentication
and we have shown that it can be used in a range of applica-
tions. We have made our source code publicly available in the
hopes of spurring further developments in this field. Anon-
Pass demonstrates that it is possible to balance the tension
between client flexibility and service load through the use of
a lighter weight re-authentication operation for some usage
models. However, there is still work to be done to convince
services to provide unlinkability for their users.

IX. ACKNOWLEDGMENTS

We thank Sangman Kim and Lara Schmidt for their kind
help. We also thank our shepherd, Paul Syverson, and the
useful feedback from the anonymous reviewers. This research
was supported by funding from NSF grants IIS-0964541,
CNS-0905602, CNS-1223623, and CNS-1228843 as well as
NIH grant LM011028-01.

REFERENCES

[1] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clone wars: Efficient
periodic n-times anonymous authentication. In ACM Conference on
Computer and Communications Security, pages 201–210, 2006.

[2] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anony-
mous Credentials from Bilinear Maps. CRYPTO, 2004.

[3] D. Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044,
1985.

[4] David Chaum. Blind signatures for untraceable payments. In Advances
in Cryptology: Proceedings of CRYPTO ’82, pages 199–203. Plenum,
1982.

[5] Ivan Damgård. Payment systems and credential mechanisms with prov-
able security against abuse by individuals. In Advances in Cryptology
- CRYPTO ’88, 8th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1988, Proceedings, volume
403 of Lecture Notes in Computer Science, pages 328–335. Springer,
1988.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the
second-generation onion router. In Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13, SSYM’04, 2004.

[7] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random
function with short proofs and keys. In Public Key Cryptography, pages
416–431, 2005.

[8] Saul Hansell. Aol removes search data on vast group of web users,
August 2006.

[9] Ryan Henry and Ian Goldberg. Formalizing anonymous blacklisting
systems. In Proceedings of the 2011 IEEE Symposium on Security and
Privacy, SP ’11, 2011.

[10] Peter C. Johnson, Apu. Kapadia, Patrick P. Tsang, and Sean W. Smith.
Nymble: Anonymous ip-address blocking. In Privacy Enhancing Tech-
nologies, pages 113–133. Springer, 2007.

[11] Michael Z. Lee, Alan M. Dunn, Jonathan Katz, Brent Waters, and
Emmett Witchel. Anon-Pass: Practical anonymous subscriptions - Full
Version. http://z.cs.utexas.edu/users/osa/anon-pass/.

[12] Ben Lynn. On the implementation of pairing-based cryptosystems. PhD
thesis, Stanford University, 2007.

7

http://z.cs.utexas.edu/users/osa/anon-pass/


[13] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of
large sparse datasets. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy, SP ’08, pages 111–125, Washington, DC, USA,
2008. IEEE Computer Society.

[14] Stuart G Stubblebine, Paul F Syverson, and David M Goldschlag.
Unlinkable serial transactions: protocols and applications. ACM Trans-
actions on Information and System Security (TISSEC), 2(4):354–389,
1999.

[15] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith.
Blacklistable Anonymous Credentials: Blocking Misbehaving Users
Without TTPs. In CCS, 2007.

8


	Introduction
	Anonymous Subscriptions with Conditional Linkage
	Syntax and intended usage
	Security
	Soundness
	Anonymity


	Design
	Timing
	Client user agent
	Authentication Server
	Resource Gateway

	Construction
	Implementation
	Streaming Music Service
	Public Transit Pass

	Evaluation
	Measured Operation Costs
	Public Transit Pass
	Streaming music service

	Related Work
	Conclusion
	Acknowledgments
	References

