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Abstract

We propose and analyze two efficient signature schemes whose security is tightly related to
the Diffie-Hellman problems in the random oracle model. Security of our first scheme relies on
the hardness of the computational Diffie-Hellman problem; security of our second scheme —
which is more efficient than the first — is based on the hardness of the decisional Diffie-Hellman
problem, a stronger assumption.

Given current state of the art, it is as difficult to solve the Diffie-Hellman problems as it is
to solve the discrete logarithm problem in many groups of cryptographic interest. Thus, the
signature schemes shown here can currently offer substantially better efficiency (for a given level
of provable security) than existing schemes based on the discrete logarithm assumption.

The techniques we introduce can be also applied in a wide variety of settings to yield more
efficient cryptographic schemes (based on various number-theoretic assumptions) with tight
security reductions.

1 Introduction

One focus of modern cryptography has been the construction of signature schemes that can be rig-
orously proven secure based on specific computational assumptions. A proof of security for a given
construction generally proceeds by demonstrating a reduction which shows how a polynomial-time
adversary ‘breaking’ the signature scheme can be used to solve in polynomial time some underlying
problem assumed to be difficult (e.g., inverting a one-way function); it follows that if the underly-
ing problem is truly difficult for all polynomial-time algorithms, then the given signature scheme is
indeed secure. Classically, such results have been asymptotic; namely, the security reduction only
demonstrates that no polynomial-time adversary can forge a signature with non-negligible proba-
bility, where both the running time of the adversary and its probability of forgery are measured as
a function of some security parameter k. As first emphasized by Bellare and Rogaway [2], however,
such results say nothing about the security of a given scheme in practice for a particular choice of
security parameter, and against adversaries investing a particular amount of computational effort.
Consequently, asymptotic security reductions by themselves do not enable practically-meaningful
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efficiency comparisons between two signatures schemes: the efficiency of two schemes can be mean-
ingfully compared only when they achieve the same level of security, yet asymptotic security results
do not by themselves provide enough information to determine when that is the case.

A simplified example illustrates the point. Assume we are given a discrete logarithm-based sig-
nature scheme along with a security proof guaranteeing that (under current assumptions regarding
the hardness of the discrete logarithm problem) any adversary expending 1 year of computational
effort can ‘break’ the scheme with probability at most a · 2−b·k, where a, b > 0 are constants and k
is (say) the bit-length of the order of the group used in the scheme. In an asymptotic sense, this
scheme is secure regardless of a, b. In practice, however, we do not know what value of k to choose
to achieve some desired level of security unless a and b are known. For this reason, the values of
a and b are crucial for determining the actual efficiency of the scheme. For example, for a desired
security level (i.e., probability of forgery) of 2−32 against adversaries investing one year of effort,
having a ≈ 1 and b ≈ 1/10 means that we should set k ≈ 320. On the other hand, if a ≈ 232 and
b ≈ 1/20, then we require k ≈ 1280, which implies a concomitant decrease in efficiency to achieve
the same level of security.

This motivates an emphasis on concrete security reductions that give explicit bounds on the
adversary’s success probability (i.e., its probability of forging a signature) as a function of its
expended resources [2, 13, 27, 14]. It also illustrates the importance of designing schemes with
tight security reductions: that is, reductions showing that the success probability of an adversary
running in some time t is roughly equal to the probability of solving the underlying hard problem
in roughly the same amount of time. At least intuitively, a tight reduction is the best one can hope
for, as any scheme based on (a single instance of) any particular ‘hard’ problem seemingly cannot
be more difficult to break than the problem itself is to solve.

1.1 Previous Work

The above considerations have sparked a significant amount of research aimed at finding efficient
signature schemes with tight security reductions. Though there exist signature schemes (e.g.,
[22, 15]) with tight security reductions in the so-called standard model, these schemes are generally
considered too inefficient for practical use and so recent attention has turned to schemes analyzed in
the random oracle model.1 We first describe progress in this regard for schemes based on trapdoor
permutations (with RSA serving as a specific example), and then discuss schemes based on the
discrete logarithm problem.

Signature schemes based on trapdoor permutations. For some fixed value of the security
parameter, let ε′ be an assumed upper bound on the probability of inverting a given trapdoor
permutation in some time t′. The full domain hash (FDH) signature scheme [1, 2] bounds the success
probability of any adversary running in time t ≈ t′ by ε ≈ (qs + qh)ε′, where qs is the number of
signatures the adversary obtains from the legitimate signer, and qh represents the number of times
the adversary evaluates the hash function (formally, qh is the number of queries the adversary
makes to the random oracle).2 Subsequently, Coron [13] showed how to achieve the better security
reduction ε ≈ qsε

′ for FDH if the underlying trapdoor permutation is random self-reducible as is
the case for, e.g., RSA. Dodis and Reyzin [17], generalizing Coron’s work, show that a similar result

1The random oracle model [18, 1] assumes a public, random function which is accessible by all parties. In practice,
this oracle is instantiated by a cryptographic hash function. Although security can no longer be guaranteed for any
such instantiation [8], a proof in the random oracle model does seem to indicate that there are no ‘inherent’ weaknesses
in the scheme and, in practice, serves as a useful validation tool for cryptographic constructions.

2Typical suggested values for these parameters are qs ≈ 230 and qh ≈ 260 [2, 13, 14].
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holds for any trapdoor permutation induced by a family of claw-free permutations.
The probabilistic signature scheme (PSS) [2] was introduced precisely to obtain a tight security

reduction for the specific case when RSA is used as the underlying trapdoor permutation (although
it was later shown that the tight reduction holds also for more general classes of trapdoor permu-
tations [14, 17]). PSS uses a randomly chosen string (a ‘salt’) each time a message is signed and
obtains the tight security reduction ε ≈ ε′. Coron subsequently observed [14] that the length of
the salt can be significantly reduced while obtaining essentially the same security bound.

The above signature schemes are essentially all based on the classical “hash-and-sign” paradigm.
An alternate approach is to use the Fiat-Shamir methodology [18] for converting 3-round, public-
coin identification schemes to signature schemes. Applying this approach to some specific iden-
tification schemes yields signature schemes based on a number of specific trapdoor permutations,
including RSA. Unfortunately, the best known security reduction for schemes constructed using the
Fiat-Shamir transformation relies on the “forking lemma” of Pointcheval and Stern [28], with some
improvements in the analysis due to Micali and Reyzin [27]. Applying this lemma results in a very
loose security reduction: roughly speaking, given an adversary running in time t and ‘breaking’ a
signature scheme with probability ε, the reduction yields an algorithm solving the underlying hard
problem with constant probability in time t′ ≈ Θ(qhtε−1) (where the constant term in the big-Θ
notation is greater than 1). Substituting qh ≈ 260, ε ≈ 2−60 gives a weak result unless the time t′

that is assumed to be required to solve the underlying hard problem is huge.
Micali and Reyzin [27] show a modification of the Fiat-Shamir transformation that leads to

tighter security reductions, but applies only to specific identification schemes. Using their trans-
formation, Micali and Reyzin show signature schemes with tight security reductions based on some
specific trapdoor permutations, including RSA. A recent result of Fischlin [19] shows an alternate
way of modifying the Fiat-Shamir transformation so as to obtain a tight security reduction; the
schemes resulting from this approach, however, are relatively inefficient.

Signature schemes based on the discrete logarithm problem. In contrast to the case of
trapdoor permutations, there has been significantly less progress designing signature schemes with
tight security reductions to the hardness of computing discrete logarithms (or related problems).
DSS [31], perhaps the most widely-used discrete logarithm-based scheme, has no known proof of
security. Existing provably-secure schemes based on the discrete logarithm assumption, such as
those by Schnorr [29], an El Gamal [20] variant suggested by Pointcheval and Stern [28], and a DSS
variant by Brickell et al. [6], rely on (variants of) the forking lemma for their proofs of security and
therefore have very loose security reductions.3 (The work of Micali and Reyzin, mentioned earlier,
cannot be applied to any of these schemes.)

1.2 Our Contributions

We design two efficient signature schemes with tight security reductions (in the random oracle
model) to problems related to the hardness of computing discrete logarithms. Our first scheme
relies on the computational Diffie-Hellman (CDH) [16] problem and is based on a scheme previously
suggested — but not proven secure — by Chaum, et al. [9, 11]. Our second scheme is more
efficient, but its security is based on the stronger decisional Diffie-Hellman (DDH) assumption. See
Section 2.2 for formal definitions of these two assumptions.

3For the Schnorr signature scheme, a tight reduction is known in the generic group model [30]. This model
considers only algorithms which are oblivious to the representation of group elements. For certain groups, however,
there are known algorithms (e.g., the index-calculus method) that do not fall in this category.
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Signing Verifying Public key Signature
Off-line On-line Total length length Assumption

Scheme 1 (1∗, 0) (2, 1) (3, 1) (3, 1) G G + |q|+ k + 1 CDH

Scheme 2 2∗ 0 2∗ 3∗ 3G |q|+ k DDH

Table 1: Efficiency of our schemes in a cyclic group
�

of prime order q. We assume G bits are used to

represent elements of
�

(note that G ≥ |q|
def
= dlog2 qe), and k < |q| is a parameter that affects the tightness

of the security reduction. Computational cost for Scheme 1 is denoted by (a, b), where a is the number of

exponentiations in
�

, and b is the number of “hash-to-
�
” operations. Computational cost for Scheme 2

reflects the number of exponentiations in
�

. A “∗” indicates exponentiations with respect to a fixed base,

where pre-computation can be used to improve efficiency [26, §14.6.3]. See text for additional discussion.

Although both Diffie-Hellman assumptions are, technically speaking, stronger than the discrete
logarithm assumption, for a variety of well-studied cryptographic groups it is currently not known
how to solve the Diffie-Hellman problems any faster than what can be achieved by solving the
discrete logarithm problem itself [3, 25]. Moreover, there is some theoretical evidence that in
certain groups the computational Diffie-Hellman assumption may be equivalent to the discrete
logarithm assumption [30, 3, 25]. For such groups, then, our schemes offer a marked improvement
as compared to previous signature schemes based on the discrete logarithm problem.

We compare the efficiency of our schemes in Table 1, focusing on the number of group exponen-
tiations they each require (other operations are ignored as they are dominated by these costs). In
the table, the computational cost of a multi-exponentiation (that is, computing gahb) is assumed to
be equivalent to 1.5 exponentiations [26, §14.6.1(iii)]. “Off-line” computation refers to computation
that may be performed before the message to be signed is known, while “on-line” computation must
be done after this point. The tabulated values represent the efficiency of our schemes as described
in Sections 3 and 4; however, various trade-offs are possible and these are not reflected in the table.

The parameter k affects the tightness of the security reduction. Roughly speaking, k should be
set such that a probability of forgery ≈ qh · 2

−k is considered acceptable.
For our first scheme, we make some mild technical assumptions on the underlying group �

that are discussed in further detail in Section 2.3. These technical assumptions can be avoided
altogether at the expense of performing a group membership test during signature verification
(which, depending on � , may impose noticeable additional computation). Our first scheme also
requires a random oracle mapping its inputs to elements of � . Depending on the specific group
being used, this “hash-to- � ” operation may also introduce noticeable computational cost. (See
Section 2.4 for some discussion on this point.) Rather than assume any particular choice of � , we
have explicitly tabulated such operations for our first scheme.

Other applications. The techniques used in constructing our first scheme can be profitably
applied in other contexts to yield efficiency improvements along with tight security reductions.
For example, they can be used to obtain a tight proof of security while avoiding the need for a
random salt in the PSS and PSS-R signature schemes [2, 14] as well as the short signature scheme
of Boneh, Lynn, and Shacham [5]; they can also be used to improve the security reduction for the
Boneh-Franklin identity-based encryption scheme [4]. The ideas used in constructing our second
scheme can be applied to yield other signature schemes with tight security reductions to decisional
problems, rather than loose security reductions to computational problems. These applications are
discussed further in Section 1.3 and [24].
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1.3 Overview of Our Techniques

We now give a high-level description of the main ideas underlying our two constructions; as prepa-
ration, we first review some relevant background.

Proving equality of discrete logarithms. Let � be a group of prime order q. We begin by
reviewing the standard protocol for proving equality of discrete logarithms [10, 7], which is based
on Schnorr’s proof of knowledge of a discrete logarithm [29]. In the protocol, a prover has values
g, h, y1, y2 ∈ � , with g, h 6= 1, together with an exponent x ∈ � q such that gx = y1 and hx = y2.
To prove to a verifier (who also knows g, h, y1, y2) that logg y1 = logh y2, the two parties execute
the following interactive protocol:

1. The prover chooses random r ∈ � q and sends A = gr, B = hr to the verifier.

2. The verifier sends to the prover a random challenge c ∈ {0, 1}k , where 2k ≤ q and c is
interpreted as an integer in {0, . . . , q − 1}.

3. The prover replies with s = cx + r mod q.

4. The verifier accepts if and only if A
?
= gsy−c

1 and B
?
= hsy−c

2 .

It is well-known that the above protocol is honest-verifier zero-knowledge: a simulator given
(g, h, y1, y2) can choose c ← {0, 1}k and s ← � q, and then set A = gsy−c

1 and B = hsy−c
2 , and

it can be verified that the resulting transcript (A,B, c, s) is distributed identically to the transcript
of an execution of the protocol between a prover (who knows x) and an honest verifier.

It is also easy to verify that the above protocol is sound ; in particular, if logg y1 6= logh y2, then
for any A,B sent by a cheating prover there is at most one value c for which the prover can respond
correctly. This assumes that y2 ∈ � ; in Section 2.3 we show a generalization of this result for the
case when y2 may not be in � . (We also generalize to the case when g or h may be equal to 1.)

Using the Fiat-Shamir transformation [18], the above protocol can be made non-interactive using
a hash function H modeled as a random oracle. Here, the prover computes A and B as above,

sets c = H(g, h, y1, y2, A,B), and then computes s as before; it then sends the proof π
def
= (c, s)

to the verifier. The verifier computes A′ = gsy−c
1 and B′ = hsy−c

2 and accepts if and only if

c
?
= H(g, h, y1, y2, A

′, B′).

The Schnorr signature scheme. The protocol described previously can be adapted easily to give
an honest-verifier zero-knowledge proof of knowledge of a discrete logarithm (see [29]). By making
this protocol non-interactive using the Fiat-Shamir transformation, we obtain the Schnorr signature
scheme [29]. In this scheme the signer’s public key is (g, y1) and its secret key is x = logg y1; a
signature on a message m is a non-interactive proof of knowledge of logg y1 (we omit some details).
In the proof of security [29, 28, 27], an adversary attacking the scheme is ‘rewound’ in order to
‘extract’ the value logg y1; this rewinding, however, results in a poor security reduction (via the
forking lemma) as discussed earlier in the introduction.

A signature scheme based on the CDH problem.4 As we have just remarked, a drawback of
the Schnorr scheme is that the security reduction relies on the proof of knowledge property of an
interactive proof system; this seems to inherently yield a loose security reduction. In contrast, we
show that it is possible to design schemes based on the CDH assumption whose security relies only

4Informally, the CDH problem in � is: given a random tuple (g, h, y1), output y2 such that logh y2 = logg y1. The
CDH assumption for � is that the CDH problem in � is ‘hard’ to solve. See Section 2.2 for a formal definition.
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on the fact that the proof system is sound (as well as honest-verifier zero knowledge). This avoids
the need for rewinding, and hence results in an improved security reduction.

We first recall a scheme suggested (but not analyzed) by Chaum and Pedersen [11]: The signer’s
public key is (g, y1) ∈ � 2 and its secret key is x = logg y1. Let H ′ be a random oracle (independent
of H) whose range is � . To sign message m, the signer computes h = H ′(m) and y2 = hx; the signer
then generates a proof π showing that logg y1 = logh y2 using the protocol for proving equality of
discrete logarithms described earlier. The signature (y2, π) is verified in the natural way.

Security of the Chaum-Pedersen scheme was not previously analyzed, perhaps because it was
viewed as a variant of Schnorr signatures. Our initial work [21] noted that a non-tight security
reduction for the Chaum-Pedersen scheme can be derived by following the original analysis of
FDH [1]: if ε′ is an upper bound on the probability that the CDH problem can be solved in time t ′,
then the success probability of any adversary attacking the Chaum-Pedersen scheme and running
in time t ≈ t′ is at most ε ≈ qhε′. Sketching the proof, a simulator given an instance (g, h, y1)
of the CDH problem (where the simulator’s goal is to output y2 satisfying logg y1 = logh y2) sets
the public key to (g, y1). Next, it guesses an index i for the hash query to H ′ that the adversary
will use in its forgery and sets the output of the ith hash query H ′(mi) to be h. The simulator
sets the output of all other hash queries H ′(mj) to be gαj for random and independent αj ∈ � q.
If the simulator is asked to sign a message mj 6= mi, it can compute the (correct) value y

αj

1 and
then simulate a proof of equality π. Furthermore, if the adversary does indeed forge a signature on
mi, then the simulator can (with overwhelming probability) recover from this forgery the desired
solution to the original instance of the CDH problem.

The reduction sketched above results in a loss of a factor qh in the security reduction since
the simulator must guess the correct index of the hash query that the adversary uses to create
the forgery. This can be improved using the approach of Coron [13]. Here, for all i the simulator
answers the ith hash query H ′(mi) by returning gαi with probability ρ, but returning h · gαi with
probability 1 − ρ (again, the {αi} are independent and uniformly distributed in � q). Say mi is a
message of the first type if the simulator responded with gαi , and is of the second type otherwise.
The key observation is that the simulator can correctly answer any signing queries for messages
of the first type, and can (with all but negligible probability) compute the solution to the given
instance of the CDH problem whenever the adversary’s forgery is on a message of the second type.
By choosing ρ appropriately, one can obtain the improved security reduction ε ≈ qsε

′.
Our initial work [21] also showed a variant of the Chaum-Pedersen scheme (building on the

ideas of [2, 14]) which has a tight security reduction to the CDH problem. In this scheme — called
the EDL scheme in [21] — the public and secret keys are as above. When signing a message,
the signer first chooses a random ‘salt’ r ∈ {0, 1}k , computes h = H ′(r,m), and then proceeds as
above (the signature now includes r as well). In the proof of security for this scheme, the simulator
answers all of the adversary’s hash queries to H ′ with h · gαi . To respond to a signing query for a
message m, the simulator chooses r ∈ {0, 1}k and checks if the adversary had previously queried
H ′(r,m). If so, the simulator aborts; otherwise, the simulator sets H ′(r,m) = gαj and proceeds
with the simulation as before. Now any successful forgery by the adversary allows the simulator,
with overwhelming probability, to compute a solution to the original instance of the CDH problem.
Furthermore, by setting k appropriately, it is possible to ensure that the simulator does not abort
“too often.” A drawback of this modified scheme is that signature length is increased by k, the
length of the salt.

The reader is referred to [21] for full descriptions and proofs of the schemes sketched in the
preceding paragraphs; we do not include them here because the scheme described next improves
on the above in all important respects.
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Scheme 1: An improved scheme based on the CDH problem. The first scheme presented
in this paper improves on the EDL scheme in that security is still tightly related to the CDH
problem, but the signature is shorter and a random salt is no longer needed. In this improved
scheme the public and secret keys are as in the EDL scheme. The main difference is that the
signer now has a hidden, random “selector bit” bm associated with each message m that it signs;
we defer for now the details of how this selector bit is determined. To sign message m, the signer
computes h = H ′(bm,m) and then proceeds as in the EDL scheme but includes bm in the signature.
Verification is done in the natural way. In the proof of security, we now have the simulator (who
is again given a random instance (g, h, y1) of the CDH problem) proceed as follows: it answers
the hash query H ′(bm,m) with gαm but answers the hash query H ′(b̄m,m) with h · gαm . Note
that the simulator can answer all of the adversary’s requests to sign any given message m since
the simulator knows logg H(bm,m); on the other hand, any forgery by the adversary allows the
simulator to solve the original instance of the CDH problem with probability essentially 1/2 since
the adversary does not know bm for any message m that has not been signed. Hence, we obtain a
tight security reduction to the CDH problem. Full details are given in the proof of Theorem 1.

Scheme 2: A more efficient scheme based on the DDH problem.5 All the schemes based
on the CDH assumption outlined above follow the same basic paradigm: the message m determines
a value h ∈ � ; the signer computes hx and then proves that this was done correctly. We observe
that if one is willing to base security on the stronger DDH assumption, then it is unnecessary to use
a new h for each message signed. In particular, consider the signature scheme where the public key
is (g, h, y1, y2) and the secret key is a value x such that x = logg y1 = logh y2. Now, a signature is
simply a proof that logg y1 = logh y2 with one subtlety: to “bind” the proof to a particular message
m we include m as one of the inputs to the hash function H (recall that H is the hash function used
to implement the Fiat-Shamir transformation). For the proof of security, given an adversary that
succeeds in attacking the scheme with probability ε, consider the simulator which is given as input
a tuple (g, h, y1, y2). The simulator sets this value as its public key. When the adversary requests
a signature, the simulator provides this signature by simulating the proof of equality of discrete
logarithms for the tuple contained in the public key. Hash queries by the adversary are answered
by returning a random value. If logg y1 = logh y2 then the adversary’s view is essentially identical
to its view when attacking a “real” instance of the signature scheme, and so it succeeds in forging
a signature with probability roughly ε. On the other hand, if logg y1 6= logh y2 then soundness of
the proof system implies that the adversary succeeds in forging a signature with only negligible
probability. This simulator can thus be used to solve the DDH problem with advantage roughly ε,
meaning that we get a tight security reduction. The proof of Theorem 2 gives further details.

Other applications of our techniques. The idea of using a “selector bit” to obtain a tight proof
of security (as we do in our first scheme) can be applied in other contexts to avoid using a long(er)
salt. For example, it immediately applies to the BLS signature scheme [5], as well as to the PSS
and PSS-R signature schemes [2, 14] when based on the RSA trapdoor permutation. In fact, in the
random permutation model 6 this technique can be applied to obtain a signature scheme supporting
message recovery which has a tight security reduction and optimal signature length. Finally, the
technique can also be used to improve the security reduction in the Boneh-Franklin identity-based
encryption scheme [4]. These applications are discussed in our previous work [24].

5Informally, the DDH problem in � is: given a tuple (g, h, y1, y2), decide whether logg y1 = logh y2. The DDH
assumption for � is that it is ‘hard’ to solve the DDH problem in � with non-negligible advantage, where the
advantage is related to the probability of deciding correctly minus 1/2. See Section 2.2 for a formal definition.

6The random permutation model (see [24]) assumes a public, random, invertible permutation which is accessible
by all parties. In practice, this would be instantiated using a block cipher with a fixed key.
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The idea (as used in our second scheme) of using the Fiat-Shamir transformation to provide
a proof rather than a proof of knowledge can be used more generally to achieve a tight security
reduction based on a decisional problem rather than a non-tight security reduction based on a
computational problem. For example, in the Fiat-Shamir signature scheme [18] the signer includes
in his public key quadratic residues {yi} (modulo a composite N), and signs a message by proving
knowledge of the square roots of these values. Using the forking lemma of Pointcheval and Stern [28],
one obtains a non-tight security reduction to the hardness of computing square roots modulo N .
On the other hand, by having the signer prove that the {yi} are all quadratic residues (without
necessarily proving knowledge of their square roots), one obtains a tight security reduction to the
hardness of deciding quadratic residuosity modulo N .

1.4 Subsequent Work

In work building on our own, Chevallier-Mames [12] shows a signature scheme whose efficiency and
security are roughly equivalent to our Scheme 1 with the exception that all exponentiations during
signing can be done off-line.

2 Definitions and Preliminaries

We review the standard definitions for signature schemes, as well as the computational and deci-
sional Diffie-Hellman assumptions. We also more formally consider the soundness property of the
protocol for proving equality of discrete logarithms that was briefly described in Section 1.3, and
discuss how to implement a random oracle mapping to certain groups given as a building block a
random oracle mapping to bit strings.

2.1 Signature Schemes

We provide both a functional definition and a security definition of signature schemes. Since we
analyze our schemes in terms of their concrete security, our definitions are concrete rather than
asymptotic and do not explicitly refer to any security parameter. (Our results, however, imply
security in the asymptotic sense as well.) Our definitions of concrete security assume a fixed
computational model: e.g., Turing machines with binary alphabet and an upper bound on the
number of states.

Since our schemes are analyzed in the random oracle model, we explicitly incorporate a random
oracle H in our definitions. We note that multiple, independent random oracles can be derived
from a single random oracle in a straightforward7 way; thus, it suffices to consider only the case of
a single random oracle. We let Ω denote the space from which H is selected; namely, the set of all
functions defined over the appropriate domain and range.

Definition 1 A signature scheme is a tuple of probabilistic algorithms (Gen,Sign,Vrfy) over a
message space M such that:

• The key generation algorithm Gen outputs a public key PK and a secret key SK.

• The signing algorithm SignH(·) takes a secret key SK and a message m ∈ M as inputs and
returns a signature σ.

7For example, given a random oracle H we may construct random oracles H0, H1 that are independent of each
other by defining H0(x) = H(0x) and H1(x) = H(1x).
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• The verification algorithm VrfyH(·) takes a public key PK, a message m ∈M, and a signature
σ as inputs and returns accept or reject.

We make the standard correctness requirement: for all H ∈ Ω, all (SK,PK) output by Gen, and

all m ∈M, we have Vrfy
H(·)
PK (m,Sign

H(·)
SK (m)) = accept.

For simplicity, in the rest of the paper we omit the explicit dependence of the signing and verification
algorithms on H.

We now give the standard definition of existential unforgeability under adaptive chosen-message
attacks [22]. We also define the notion of strong unforgeability; informally, this means that the
adversary cannot even generate a new signature for a previously-signed message.

Definition 2 Let (Gen,Sign,Vrfy) be a signature scheme. An adversarial forging algorithm F
(t, qh, qs, ε)-breaks this scheme if F runs in time at most t, makes at most qh hash queries (that is,
queries to the random oracle H) and at most qs signing queries, and furthermore

Pr

[

(PK,SK)← Gen;H ← Ω;

(m,σ)← FSignSK(·),H(·)(PK)
: m 6∈ M∗

∧

VrfyPK(m,σ) = accept

]

≥ ε,

where M∗ is the set of messages that F submitted to its signing oracle. In addition, we say that
F (t, qh, qs, ε)-breaks this scheme in the strong sense if

Pr

[

(PK,SK)← Gen;H ← Ω;

(m,σ)← FSignSK(·),H(·)(PK)
: (m,σ) 6∈ Σ∗

∧

VrfyPK(m,σ) = accept

]

≥ ε,

where Σ∗ is the set of pairs (m,σ) such that σ was the response to an adversarial query SignSK(m).

We say that signature scheme (Gen,Sign,Vrfy) is (t, qh, qs, ε)-secure in the sense of unforgeability
(resp., strong unforgeability) if no forger can (t, qh, qs, ε)-break it (in the appropriate sense).

2.2 The Diffie-Hellman Problems

Let � be a finite, cyclic group of prime order q in which the group operation is represented multi-
plicatively, and let g be a fixed generator of � . Given g and group elements gx, gy, the computational
Diffie-Hellman (CDH) problem is to find the group element gxy. (Equivalently, given h, y1 ∈ � the
problem is to compute hlogg y1 .) Informally, the CDH problem is ‘hard’ in � if no efficient algorithm
can solve the CDH problem with high probability for random gx, gy. The following definition makes
this more concrete:

Definition 3 An algorithm A is said to (t, ε)-solve the CDH problem in � if A runs in time at
most t and furthermore

Pr[x, y ← � q : A(g, gx, gy) = gxy] ≥ ε.

We say that � is a (t, ε)-CDH group if no algorithm (t, ε)-solves the CDH problem in � .

The decisional Diffie-Hellman (DDH) problem may be described, informally, as the problem
of distinguishing between tuples of the form (g, gx, gy, gxy) for random x, y ∈ � q (these are called
“Diffie-Hellman tuples”) and tuples of the form (g, gx, gy , gz) for random x, y, z ∈ � q (these are
called “random tuples”). (Equivalently, the problem is to distinguish between tuples of the form
(g, h, y1, h

logg y1) and tuples of the form (g, h, y1, y2) with y2 uniformly distributed in � .) The DDH
problem is ‘hard’ in � if no efficient algorithm can distinguish, with high probability, between
randomly-generated tuples of these two types with high probability. Formally:
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Definition 4 A distinguishing algorithm D is said to (t, ε)-solve the DDH problem in group � if
D runs in time at most t and furthermore

∣

∣ Pr[x, y, z ← � q : D(g, gx, gy, gz) = 1]− Pr[x, y ← � q : D(g, gx, gy, gxy) = 1]
∣

∣ ≥ ε.

We say that � is a (t, ε)-DDH group if no algorithm (t, ε)-solves the DDH problem in � .

It is not hard to see that if � is a (t, ε)-DDH group, then it is a (t′, ε′)-CDH group for t′ ≈ t
and ε′ ≈ ε; that is, hardness of the DDH problem for � implies hardness of the CDH problem in
that group as well. Furthermore, if the CDH problem is hard in � , then the discrete logarithm
problem must be hard in � . The converse of these statements is not believed to be true in general.
Indeed, there are groups for which the DDH problem is ‘easy’, yet the CDH and discrete logarithm
problems in the group are still believed to be hard [23]. On the other hand, for a number of groups
of cryptographic interest, “the best known algorithm for DDH is a full discrete log algorithm” [3].
These include the commonly used group � ⊂ � ∗

p of order q, where p = αq + 1 and p, q are prime
with gcd(α, q) = 1. Additionally, Shoup [30] shows that the DDH problem is as hard as the discrete
logarithm problem for generic group algorithms (i.e., those that do not use the underlying group
structure; cf. footnote 3). For more details, the reader is referred to [3, 25].

2.3 Proving Equality of Discrete Logarithms

Here, we more carefully consider the soundness property of the protocol given in Section 1.3 for
proving equality of discrete logarithms. We also work in a slightly more general setting.

Let � be a group of prime order q. Slightly generalizing the scenario described earlier, assume
values g, h, y1 ∈ � are known to both prover and verifier, and the honest prover knows x such that
gx = y1. (We remark that we do not assume that any of g, h, y1 are generators of � .) We now let
the protocol begin by having the prover send an element y2 to the verifier. For the honest prover,
y2 will be equal to hx. The parties then do the following:

1. The prover chooses random r ∈ � q and sends A = gr, B = hr to the verifier.

2. The verifier sends to the prover a random c ∈ {0, 1}k , where 2k ≤ q and c is interpreted as
an integer in {0, . . . , q − 1}.

3. The prover replies with s = cx + r mod q.

4. The verifier accepts if and only if A
?
= gsy−c

1 and B
?
= hsy−c

2 .

We stress that the verifier does not check that any of y2, A, or B are elements of � .
We begin by formally stating the traditional soundness property satisfied by this protocol.

Lemma 1 Assume y2 ∈ � , but there is no x with gx = y1 and hx = y2. Then for any A,B sent
by a cheating prover, there is at most one value of c for which the verifier will accept.

Proof For any c, s, the values gsy−c
1 and hsy−c

2 are elements of � . Hence the verifier cannot
possibly accept unless A,B ∈ � . We assume this from now on.

Say A,B ∈ � are such that the prover can send correct responses s1, s2 ∈ � q to two different
challenges c1, c2 ∈ {0, 1}

k . Then

A = gs1y−c1
1 = gs2y−c2

1 and B = hs1y−c1
2 = hs2y−c2

2 .
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Noting that c1 − c2 6= 0 mod q, we have

g(s1−s2)·(c1−c2)−1 mod q = y1 and h(s1−s2)·(c1−c2)−1 mod q = y2 ,

contrary to the assumption of the lemma.

The above requires that y2 be an element of � , and typically it is simply assumed that the verifier
performs a group membership test to determine whether this is indeed the case. For application to
our first signature scheme, however, we will want to avoid the computational overhead of performing
this test and so we will generalize the preceding lemma to the case when y2 6∈ � . In order for
operations involving y2 to be well-defined, we will need to impose some limitations on � ; these will
be necessary for the proof of security of our first signature scheme as well. We remark, though,
that the restrictions we impose are fairly mild.

In the remainder of this section, we assume that � is a subgroup of prime order q of a finite
abelian group � with | � | = α · q and q 6 | α. (For a concrete example, consider the case where � is
the order-q subgroup of � ∗

p with p = αq + 1 and p prime.) By the fundamental theorem for finite
abelian groups, this means that � is isomorphic to � × � ′ for some abelian group � ′ with | � ′ | = α.

For arbitrary h ∈ � , define the projection of h onto � by proj � (h)
def
= (hα)α

−1 mod q. It is easy to
verify that proj � (h) ∈ � for any h; proj � (ha) = proj � (h)a; and if h ∈ � then proj � (h) = h.

We also modify slightly the protocol described earlier: we now require the verifier to test that
y2 ∈ � . For our application (and cryptographically-appropriate � , � ) this will typically be more
efficient than testing whether y2 ∈ � . The appropriate analogue of the previous lemma follows:

Lemma 2 Let g, h, y1 ∈ � and y2 ∈ � . Assume there is no x with gx = y1 and hx = proj � (y2).
Then for any A,B sent by a cheating prover, there is at most one value of c for which the verifier
will accept.

Proof For any c, s, the value gsy−c
1 is an element of � , and hsy−c

2 is an element of � . Hence the
verifier will not possibly accept unless A ∈ � and B ∈ � . We assume this from now on.

Say A ∈ � and B ∈ � are such that the prover can send correct responses s1, s2 to two different
challenges c1, c2 ∈ {0, 1}

k . Then

A = gs1y−c1
1 = gs2y−c2

1 and B = hs1y−c1
2 = hs2y−c2

2 ,

and so
gs1−s2 = yc1−c2

1 and hs1−s2 = yc1−c2
2 .

Since g, y1 ∈ � , we see that g(s1−s2)·(c1−c2)−1 mod q = y1. Taking the projection of both sides of the
second equation, and using the fact that hs1−s2 ∈ � , we obtain

hs1−s2 = proj �
(

hs1−s2

)

= proj �
(

yc1−c2
2

)

= proj � (y2)
c1−c2 .

Since proj � (y2) ∈ � , we conclude that h(s1−s2)·(c1−c2)−1 mod q = proj � (y2), contrary to the assump-
tion of the lemma.

2.4 Random Oracles Mapping to Groups

Our first scheme requires a random oracle H ′ mapping its inputs to elements in a group � . However,
we would like to assume as a basic primitive only a random oracle H mapping its inputs to bit-
strings of some particular length, since standard cryptographic hash functions output bit-strings,
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not group elements. We discuss a way to construct an H ′ as desired in general, and then look at
two specific examples.

Consider the general case of constructing a random oracle H ′ mapping to the range Y, using
as a building block a random oracle H mapping to the range X . To construct H ′ from H, we

will take a deterministic function f : X → Y and define H ′(x)
def
= f(H(x)). In order to prove this

construction secure, it suffices to show an efficient simulator Sim that can simulate an adversary’s
access to H given access to H ′; that is, roughly speaking, given a random output y ∈ Y from H ′,
the simulator should be able to find a random x ∈ X (supposedly output by H) such that f(x) = y.
Formally, we will require the distributions

{y ← Y;x← Sim(y) : (x, y)} and {x← X : (x, f(x))}

to be statistically indistinguishable. Note in particular that this implies f is invertible (and further-
more it should be possible to choose a random element of f−1(y)), and also implies that f(H(w))
is close-to-uniformly distributed when H(w) is uniformly distributed.

As an example, consider (as in the previous section) the case where � is an order-q subgroup (q
prime) of an abelian group � with | � | = αq and q 6 | α. We also assume that it is possible to sample
uniformly from elements of � . Given a random oracle H mapping to � , we can construct a random
oracle H ′ mapping to � by setting H ′(w) = (H(w))α. It is easy to see that H ′(w) is uniformly
distributed in � when H(w) is uniformly distributed in � . Furthermore, we can define a simulator

Sim as follows: Sim(g) (for g ∈ � ) chooses random h ∈ � and outputs h̃
def
= g(α−1 mod q) · hq. Note

that h̃ is uniformly distributed among those elements of � that satisfy h̃α = g.
As a second example, we consider the case of constructing a random oracle H ′ mapping to � ∗

p

(for p prime) using as a building block a random oracle H mapping to {0, 1}n. Assuming8 n > |p|,

one simple option is to define H ′(w)
def
= (H(w) mod (p− 1)) + 1. Setting n = |p| + k, it is not

hard to show a simulator for which the statistical difference between the relevant distributions (as
defined above) is ≈ 2−k. A disadvantage of this approach is that it results in an extra (additive)
factor of ≈ qh · 2

−k in the security reduction for any scheme based on H ′, where qh is the number
of hash queries to H ′.

A different approach that lends itself to a perfect simulation is as follows. (This approach was
suggested to us by an anonymous referee.) Say 2n = ν · (p− 1) + r with 0 < r < p− 1, and view H
as mapping onto integers in the range [1, ν · (p− 1) + r]. By reducing modulo p− 1 and adding 1

as before, we obtain a distribution over � ∗
p in which elements in the range S

def
= [2, r + 1] occur

slightly more frequently than elements in the range � ∗
p \ S. One can correct for this (slight) bias

by computing H ′(w) as follows:

1. Compute x = (H(0w) mod (p− 1)) + 1. If x 6∈ S, output x and stop. If x ∈ S, output x and
stop with probability γ, but with probability 1− γ continue to the next iteration.

2. Compute x′ = (H(1w) mod (p− 1)) + 1 and output x′.

Setting γ appropriately, the output of the above algorithm will be uniformly distributed in � ∗
p. As

the focus of our work is on designing signature schemes given a random oracle mapping to � (and
not on implementing such random oracles), we do not dwell on this further.

We remark that, for our particular application, a ‘full-fledged’ random oracle mapping onto
� is not needed. In particular, if we are given a random oracle H mapping uniformly onto an

8It is easy to extend the length of the output of H using standard techniques; for example, to obtain a random
oracle Ĥ with output length 2n one can simply define Ĥ(w) = H(0w)‖H(1w), where “‖” denotes concatenation.
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efficiently-recognizable, dense subset S of � , we can simply use H itself in our first scheme. The
proof of security can be modified as follows: when simulating the output of the random oracle (cf.
the proof of Theorem 1) the simulator will repeatedly sample random group elements until it finds
one that lies in S. This increases the running time of the simulator, but not its success probability.

3 A Signature Scheme Based on the CDH Problem

The scheme we present here was described informally in Section 1.3, and we provide a formal
description here. The scheme may be defined over any group � of prime order q with generator g,
though we assume (as discussed in Section 2.3) that � is an order-q subgroup of an abelian group
� with | � | = α · q and q 6 | α. This assumption can be removed by slightly modifying the scheme;
see below.

In the description that follows, we assume for simplicity that � , � , q, α, and g are publicly
known and fixed; alternately, they may be computed during key generation and included in the
signer’s public key. We let H ′ : {0, 1}∗ → � and H : {0, 1}∗ → {0, 1}k be hash functions that will
be modeled as random oracles (refer to Section 2.4 for a discussion on constructing H ′).

Key generation Gen: Choose a random x← � q and compute y1 = gx. The public key is y1 and
the secret key is x.

Signature generation SignSK(m): If m has been signed before, output the previously generated
signature (below, we discuss some simple ways to avoid maintaining any state). Otherwise:

1. Choose a random bit b

2. Compute h = H ′(b,m) and y2 = hx.

3. Generate a non-interactive proof π that (g, h, y1, y2) is a Diffie-Hellman tuple. Specifically:

(a) Choose random r ← � q.

(b) Compute A = gr, B = hr, and “challenge” c = H(h, y2, A,B,m).

(c) Compute s = cx + r mod q and set π = (c, s).

The signature is (y2, π, b).

Signature verification VrfyPK(m,σ): Let PK = y1 and parse σ as (y2, π = (c, s), b) where

c ∈ {0, 1}k , s ∈ � q, b ∈ {0, 1}, and y2 ∈ � . Then:

1. Compute h = H ′(b,m).

2. Compute A = gsy−c
1 and B = hsy−c

2 .

Output accept if and only if c
?
= H(h, y2, A,B,m).

The scheme can be defined over an arbitrary group � by checking whether y2 ∈ � during
signature verification. Depending on the exact group under consideration, this group membership
test may impose significant additional cost.

Efficiency improvements. To avoid having the signer maintain a record of all previous mes-
sage/signature pairs, we can have the signer generate bm and r as (deterministic) pseudorandom
functions of the message m; this will result in the same signature being generated each time a
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particular message is signed. Since we are working in the random oracle model, the simplest imple-
mentation of this approach is to set (bm, r) = G(SK,m) where G is a random oracle independent
from H and H ′. A modified proof shows that there is essentially no loss in the security reduction
by doing this: the only effect on the proof below occurs in case the adversary makes the query
G(SK, ?), but we can modify the algorithm below so that it explicitly checks all G-queries of the
adversary and thus if the adversary ever makes such a query the algorithm learns x (and can then
easily solve the CDH problem).

It is easy to see that the scheme is correct: since y1 = gx and y2 = hx, the verification algorithm
computes A = gsy−c

1 = gs−xc = gr, which is the same as the value of A used by the signer (and
similarly for B); thus, H(h, y2, A,B,m) = c and verification outputs accept. We now prove security.

Theorem 1 Let � be as above, and assume � is a (t′, ε′)-CDH group such that exponentiation in
� takes time t1 and simulating a query to H ′ (in the sense described in Section 2.4) takes time t2.
Then the above signature scheme is (t, qh, qs, ε)-secure in the sense of unforgeability (in the random
oracle model) for

t ≈ t′ −O ((qh + qs) · (t1 + t2))

ε = 2ε′ + (qh + 1)/2k.

(The bound on t is approximate because we do not count operations that are dominated by group
exponentiations.)

Proof Assume we have an algorithm F that runs in time at most t, makes at most qh hash
queries (to either H or H ′) and at most qs signing queries, and outputs a valid signature on a
previously unsigned message with probability at least ε. We use F to construct an algorithm A
running in time ≈ t′ that solves the CDH problem with probability at least ε′. The stated result
follows immediately since � is a (t′, ε′)-CDH group.

Recall we assume that � , � , q, α, and a generator g of � are fixed and publicly known. Algorithm
A is given as input (h, y1) ∈ � 2 ; setting x = logg y1 (which is unknown to A), the goal of A is to
compute hx. A sets PK = y1 and runs F on input PK.

For a message m, we say queries H ′(?,m), SignSK(m), and H(?, ?, ?, ?,m) are relevant for m.
Any time the first relevant query for some message m is made, A performs the following steps
before answering the query:

1. Choose a random bit bm and store (bm,m).

2. Choose random γm ∈ � q, define hm
def
= H ′(bm,m) = gγm , and store (bm,m, γm).

3. Compute y2 = yγm

1 and simulate a non-interactive proof — as discussed in Section 1.3 — that
hx

m = y2. (Note that we do not assume hm 6= 1.) Namely, choose random c ∈ {0, 1}k

and s ∈ � q and compute A = gsy−c
1 and B = hs

my−c
2 . Set σm = (y2, c, s, bm), define

H(hm, y2, A,B,m) = c, and store (sig,m, σm).

The above steps ensure that A always has a valid signature for any message m for which a relevant
query has been asked.

We now describe how A simulates the signing and hash oracles for F :

Queries to H ′. In response to a query H ′(b,m), algorithm A first checks if the output of H ′ on
this input has previously been defined; note that this is always the case if b = bm because of the
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steps performed by A when the first relevant query for m was made. If so, A returns the previously
assigned value. Otherwise, b = b̄m, and A chooses random βm ∈ � q, returns h · gβm as the hash
output, and stores (b̄m,m, βm).

Queries to H. In response to a query H(?), algorithm A first checks if the output of H on this
input has been previously defined. If so, A returns the previously assigned value. Otherwise, A
responds with a value chosen uniformly at random from {0, 1}k .

Signing queries. If F asks for a signature on a message m, algorithm A finds the stored tuple of
the form (sig,m, ?); a unique tuple of this form exists (by construction of A) and we let σm denote
the value of the final element in this tuple. A returns σm.

At some point, F outputs its supposed forgery (m̂, σ̂ = (ŷ2, ĉ, ŝ, b̂)), where F did not previously
request a signature on m̂. Algorithm A checks whether: (1) VrfyPK(m̂, σ̂) = accept, and (2) b̂ = b̄m̂.
(Note that A may be required to simulate additional queries to H,H ′ in case F did not make the
relevant queries itself.) If either of these do not hold, then A simply aborts. Otherwise, A finds the
stored tuple of the form (b̄m̂, m̂, ?); a unique such tuple exists (by construction of A), and we let

βm̂ denote the value of the final element in this tuple. A outputs proj � (ŷ2) /yβm̂

1 (see Section 2.3
for a definition of proj � (·), and note that A can compute this since α is known). This completes
the description of A.

We first claim that A provides a simulation for F whose distribution is identical to the distri-
bution on the view of F in a real interaction with a signer. To see this, note that:

1. Since g is a generator of � , the output of any query H ′(b,m) — regardless of whether b = bm

or not — is uniformly distributed in � as required.

2. The simulation of the H oracle is obviously perfect.

3. Consider the signature σ = (y2, c, s, bm) returned by A in response to a signing query
SignSK(m). Note that this signature is constructed by A at the time the first relevant query
for m was made. Clearly, bm is uniformly distributed. Letting hm = H ′(bm,m) = gγm , we
see that y2 = yγm

1 = (gx)γm = hx
m, just as in the real experiment. Finally, (c, s) is distributed

as in the real experiment by the honest-verifier zero-knowledge property of the proof system.

Thus, the probability that F outputs a valid forgery in the simulated experiment is exactly ε.
Assume F outputs a valid forgery (m̂, (ŷ2, ĉ, ŝ, b̂)), and let ĥ = H ′(b̂, m̂). We argue that, with all

but negligible probability, proj � (ŷ2) = ĥx; if so, say ŷ2 is good. Indeed, if ŷ2 is not good then (using
Lemma 2) for any A,B there is at most one possible value of c for which there exists an s satisfying
A = gsy−c

1 and B = ĥsŷ−c
2 . If ŷ2 is not good, then, for any hash query H(ĥ, ŷ2, A,B, m̂) made by

F the probability that the query returns a c for which there exists an s as above is at most 1/2k. It
follows that the probability that F outputs a valid forgery where ŷ2 is not good is at most (qh+1)/2k.
(The additive factor of 1 occurs in case F did not query H(ĥ, ŷ2, gŝy−ĉ

1 , ĥŝŷ−ĉ
2 , m̂) itself.) We

conclude that in the simulated experiment described above, F outputs a valid forgery where ŷ2 is
good with probability at least ε− (qh + 1)/2k .

Now, since F did not previously request a signature on m̂, the value of bm̂ is independent of the
view of F . So, the probability that F outputs a valid forgery such that ŷ2 is good and also b̂ = b̄m̃

is at least 1/2 · (ε− (qh + 1)/2k). To finish the proof, we claim that whenever this event occurs A
outputs the correct solution to its given instance of the CDH problem. To see this, note that when
ŷ2 is good the output of A satisfies:

proj � (ŷ2) /yβm̂

1 = ĥx/yβm̂

1

= (hgβm̂)x/yβm̂

1 = hx,
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as desired.
We conclude that A outputs the correct solution with probability at least 1/2·(ε−(qh+1)/2k) ≥

ε′. Examining the running time of A gives the result of the theorem.

We remark that the constant term in the expression for t in the theorem can be improved by
modifying the proof so that a signature on a message m is not computed by A at the time of the
first relevant query for m, but is instead computed by A only when F actually requests a signature
on m. This results in a slightly worse bound on ε (though the difference is unimportant). We have
decided not to present the proof in this way because we believe the current proof is conceptually
simpler, and anyway the bound on t is only approximate since we do not take into account the
complexity of all operations of A.

4 A Signature Scheme Based on the DDH Problem

In the previous scheme, a message m is signed by mapping m to some group element h, computing
y2 = hx, and then proving that (g, h, y1, y2) is a Diffie-Hellman tuple. Distilling out the intuition
behind the proof of Theorem 1, we see that previous scheme is secure under the CDH assumption
since — given some h associated with a previously unsigned message m — an adversary “must”
produce y2 = hx in order to generate a convincing proof that (g, h, y1, y2) is a Diffie-Hellman tuple
(we ignore here the possibility that y2 6∈ � , which can be taken into account as described in the
proof of Theorem 1).

We notice here that if one is willing to base security of the scheme on the (stronger) DDH
assumption, it is unnecessary to generate a new h for each message; instead, the public key can
simply contain the fixed tuple (g, h, y1, y2) and a signature will consist of a proof that this is a
Diffie-Hellman tuple. The resulting scheme is more efficient than the previous scheme.

As before, we assume that � is a cyclic group of prime order q with generator g; in contrast
to the previous section, � is otherwise completely arbitrary. Let H : {0, 1}∗ → {0, 1}k be a hash
function that will be modeled as a random oracle. Our second scheme is defined as follows:

Key generation Gen: Choose a random h ∈ � and a random value x ← � q. Compute y1 = gx

and y2 = hx. The public key is the Diffie-Hellman tuple PK = (h, y1, y2) and the secret key is x.

Signature generation SignSK(m): If m has been signed before, output the previously generated
signature (we can avoid maintaining state exactly as discussed in the previous section). Otherwise,
generate a non-interactive proof — depending on m — that the public key is a Diffie-Hellman tuple.
Specifically:

1. Choose random r ← � q.

2. Compute A = gr, B = hr, and “challenge” c = H(A,B,m).

3. Compute s = cx + r mod q and set π = (c, s).

The signature is π.

Signature verification VrfyPK(m,σ): Parse PK as (h, y1, y2) and σ as π = (c, s) where c ∈ {0, 1}k

and s ∈ � q. Compute A = gsy−c
1 and B = hsy−c

2 ; output accept if and only if c
?
= H(A,B,m).

We remark that, in contrast to the previous scheme, the present scheme can be proven secure
even if the same message is signed multiple times using independent randomness (i.e., it is not
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strictly necessary for the signing algorithm to check whether the given message was signed previ-
ously). We have chosen to present the scheme as we did because the security reduction is slightly9

tighter; the proof is a bit simpler; and the overhead of making signature generation deterministic
is not (in general) significant.

It is not hard to see that the scheme is correct. We now prove security.

Theorem 2 Let � be as above, and assume � is a (t′, ε′)-DDH group such that exponentiation
in � takes time t1. Then the above signature scheme is (t, qh, qs, ε)-secure in the sense of strong
unforgeability (in the random oracle model) for

t ≈ t′ −O(qs · t1)

ε = ε′ + (qh + 1)/q + (qh + 1)/2k.

(The bound on t is approximate because we do not count operations that are dominated by group
exponentiations.)

Proof Assume we have an algorithm F that runs in time at most t, makes at most qh hash queries
and at most qs signing queries, and outputs a new, valid message/signature pair with probability at
least ε. We use F to construct an algorithm D running in time ≈ t′ which solves the DDH problem
with probability ε′. The stated result follows immediately since � is a (t′, ε′)-DDH group.

Algorithm D is given as input a tuple (g, h, y1, y2); its goal, informally, is to determine whether
this is a random tuple or a Diffie-Hellman tuple (cf. Section 2.2). To this end, it sets PK = (h, y1, y2)
and runs F on input PK. Algorithm D simulates the signing and hash oracle for F as follows:

Hash queries. In response to a query H(A,B,m), algorithm D first checks if the output of H
on this input has been previously defined (either directly by a previous hash query or as part of
a signature query). If so, D returns the previously assigned value. Otherwise, D responds with a
value chosen uniformly at random from {0, 1}k .

Signing queries. When F asks for a signature on message m, algorithm D first checks if this
message was signed before; if so, D outputs the previously generated signature. Otherwise, D
attempts to simulate a proof that (g, h, y1, y2) is a DDH tuple as follows: D chooses random
c ∈ {0, 1}k and s ∈ � q, and computes A = gsy−c

1 and B = hsy−c
2 . If H had previously been

queried on input (A,B,m) and H(A,B,m) 6= c, then D aborts (and outputs 0); otherwise, D sets
H(A,B,m) = c (if it was not set this way already) and outputs the signature (c, s)

At some point, F outputs its forgery (m̃, σ̃ = (c̃, s̃)) where σ̃ was not previously the response
to a query SignSK(m̃). If VrfyPK(m̃, σ̃) = 1, then D outputs 1; otherwise, D outputs 0. (Note that
verifying the signature may require D to simulate an additional query to H.)

We first analyze the probability that D outputs 1 when (g, h, y1, y2) is a Diffie-Hellman tuple. In
this case, D provides a simulation for F whose distribution is statistically close to the distribution
from the view of F during a real interaction with a signer, with the only difference arising in case
A aborts when answering a signing query. When answering any particular query SignSK(m), the
probability that D aborts is at most qh(m)/q, where qh(m) is the number of H-queries made by F
of the form H(?, ?,m). Furthermore, this only applies the first time this signature query is made,
as D simply outputs the previous signature if another signature is requested on the same message
m. As in the proof of Theorem 1, we can upper-bound the probability that D aborts by qh/q. It
follows that F outputs a valid forgery (and hence D outputs 1) with probability at least ε− qh/q.

9If messages are signed multiple times, the same reduction as in the proof of the following theorem gives ε =
ε′ + (qsqh + 1)/q + (qh + 1)/2k.
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On the other hand, if (g, h, y1, y2) is a random tuple, then it is not a Diffie-Hellman tuple with
probability 1 − 1/q. In this case, for any A,B and any query H(A,B,m) made by F it follows
from Lemma 1 that there is at most one possible value of c for which there exists an s satisfying
A = gsy−c

1 and B = hsy−c
2 . Thus, F outputs a forgery (and hence D outputs 1) with probability

at most 1/q + (qh + 1)/2k. (As in the previous proof, the additive factor of 1 occurs in case F did
not make the relevant H-query for its forgery.)

Putting everything together, we see that

∣

∣

∣
Pr[x, y ← � q : D(g, gx, gy , gxy) = 1]− Pr[x, y, z ← � q : D(g, gx, gy , gz) = 1]

∣

∣

∣

≥ ε− (qh + 1)/q − (qh + 1)/2k

≥ ε′.

Examining the running time of D gives the result of the theorem.
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