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Abstract. Protocols proven secure within the universal composability
(UC) framework satisfy strong and desirable security properties. Unfor-
tunately, it is known that within the “plain” model, secure computation
of general functionalities without an honest majority is impossible. This
has prompted researchers to propose various “setup assumptions” with
which to augment the bare UC framework in order to bypass this severe
negative result. Existing setup assumptions seem to inherently require
some trusted party (or parties) to initialize the setup in the real world.

We propose a new setup assumption — more along the lines of a physical
assumption regarding the existence of tamper-proof hardware — which
also suffices to circumvent the impossibility result mentioned above. We
suggest this assumption as potentially leading to an approach that might
alleviate the need for trusted parties, and compare our assumption to
those proposed previously.

1 Motivation

For many years, researchers considered the security of protocols in a stand-alone
setting where a single protocol execution was considered in isolation. Unfortu-
nately, a proof of stand-alone security for a protocol does not, in general, provide
any guarantees when the protocol is executed multiple times in a concurrent fash-
ion (possibly by different sets of parties), or in a network where other protocol
executions are taking place. This realization has motivated a significant amount
of work aimed at providing models and security definitions that explicitly address
such concerns.

The universal composability (UC) framework, introduced by Canetti [6],
gives strong security guarantees in exactly such a setting. (Other frameworks
with similar guarantees also exist [20], but we adopt the UC model in this work.)
We refer the reader to Canetti’s paper for a full discussion of the advantages of
working within this framework, and focus instead on the question of feasibility.
Canetti’s initial work already demonstrates broad feasibility results for realizing
any (polynomial-time computable) multi-party functionality in the presence of a
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strict majority of honest players. Unfortunately, this was soon followed by results
of Canetti and Fischlin [8] showing that the setting without an honest majority
is substantially different: even for the case of two parties (one of whom may be
malicious) there exist natural functionalities that cannot be securely computed
within the UC framework. Subsequent work of Canetti, et al. [9], further char-
acterizing those two-party functionalities which cannot be securely realized in
the UC framework, rules out essentially all non-trivial functions.

The impossibility results mentioned above hold for the so-called “plain model”
where there is no additional infrastructure beyond the communication channels
available to the parties. (The term “plain model” is actually a bit misleading,
since even the plain model usually incorporates quite strong — though stan-
dard — assumptions about the communication channels, such as the existence
of authenticated channels between all pairs of parties as well as a broadcast
channel/“bulletin board” [6, Sect. 6.2]. We stress that the impossibility results
hold even in this case.) In contrast, the impossibility results can be bypassed if
one is willing to assume some stronger form of “setup” in the network. This idea
was first proposed in the UC framework by Canetti and Fischlin [8], who suggest
using a common reference string (CRS) in order to circumvent the impossibility
results shown in their paper. (The use of a CRS in other contexts has a long
history going back to [4].) In fact, a CRS turns out to suffice for universally
composable multi-party computation of any (well-formed) functionality, for any
number of corrupted parties [10].

If universally composable protocols are ever to be used in practice, one im-
portant research direction is to further explore setup assumptions that suffice to
obtain feasibility results in the UC framework similar to those of [10]. Having
multiple setup assumptions available would offer options to protocol designers;
furthermore, some assumptions may be more attractive than others depending on
the scenario in which protocols are to be run. Indeed, a variety of setup assump-
tions have been investigated recently including variations of trusted “public-key
registration” services [2, 7] (see also [6, Sect. 6.6]), or the use of government-
issued “signature cards” [15]; these are discussed further in the following section.

From a high-level perspective, one very important research direction is to
determine whether (or to what extent) trusted parties are needed for obtaining
broad feasibility results in the UC framework. It appears in particular that all
existing solutions require some trusted party to initialize the setup in the real
world. (See the discussion in the following section.) It might be possible, how-
ever, to replace this trust with some physical assumption about the environment
in which the protocol is run. Using physical assumptions to circumvent impossi-
bility results is not without precedent in cryptography (though it has not been
considered previously in the context of the UC framework); examples analogous
to what we have in mind include the assumption of a physical broadcast chan-
nel (or even “multicast channels” [12]) to circumvent impossibility results [18]
regarding the fraction of malicious players that can be tolerated; or the assump-
tion of noisy channels [21, 14, 16] or the laws of quantum mechanics [3] to achieve
information-theoretically secure key agreement over public channels.



We present in this paper what is intended to be a partial step toward this
goal. Specifically, we introduce an assumption that has the flavor of a physical
assumption regarding the possibility of tamper-proof hardware, and show that
UC multi-party computation is realizable with respect to this assumption. A
difficulty, of course, is that although there may be some intuitive idea of the
properties possessed by tamper-proof hardware in the real world, it is not at all
clear what is the most appropriate way to mathematically model tamper-proof
hardware in the UC framework. We do not claim to have found the “right”
formalization. Instead, we intend this work only to serve as an indication of
what might be possible, and as inspiration for subsequent work in this direction.

1.1 A Brief Review of Existing Solutions

As mentioned earlier, a variety of setup assumptions have been explored in an
attempt to circumvent the impossibility results of [8]. We briefly discuss these
now.

Common reference string (CRS). The use of a CRS was suggested by [8] (in
the UC setting) and has been used in much subsequent work. It is fair to say that
this is the setup assumption that has so far received the most attention. In the
CRS model, a string is generated according to some prescribed distribution by
a trusted party and given to the parties running an execution of a protocol. We
remark that only the parties running the protocol are supposed to have access to
the string, and so this is not quite a “common” reference string as in the original
work of [4] (see [7] for a discussion of this point).

If the party publishing the CRS is malicious, this party can potentially set
things up so that it can learn all private data in the network or cheat unde-
tectably in protocol executions in which it is involved. These problems can be
mitigated to some extent by having the CRS generated in a threshold manner
so that, say, security holds as long as a majority of the parties involved in gen-
eration of the CRS are honest. Nevertheless, this still requires all parties in the
network to jointly agree to place their trust in a small set of parties, and also
assumes the availability of some set of parties willing to take responsibility for
generating a CRS.

For some protocols, the CRS is simply a uniformly-random string (this is
often called the common random string model) and here one might hope that
the string could be generated based on naturally-occurring (random) events and
without relying on a trusted party. The main drawback of this approach is that
although certain natural events can be viewed as producing bit-sources with
high min-entropy, the resulting bit-sources may not be uniformly random (and,
furthermore, may not allow for deterministic extraction).

Public-key registration services. Existing proposals for public-key registra-
tion services [2, 7] that can be used to circumvent the impossibility results in
the UC framework go beyond the “traditional” model in which parties simply
publish their public keys. (The latter corresponds to the “basic” registration



functionality described in [6, Sect. 6.2], for which the impossibility results re-
garding secure computation still hold.) The functionality in [2], for example,
essentially prevents an adversary from registering any public key that is not
“well-formed” and for which the adversary does not know the corresponding
secret key. It is unclear how this would be implemented in practice without a
significant assumption of trust on the part of existing certification authorities.

Signature cards. An interesting idea pursued by [15] is to use government-
issued signature cards as a form of global setup. Roughly speaking, such cards
hold an honestly-generated public-/secret- key pair for a secure signature scheme;
sign any message given to them; and never reveal the secret key to anyone
(including the legitimate owner of the card) under any circumstances. Cards with
this functionality are apparently being issued by some European governments
[15] indicating that such cards may, in fact, represent a realistic assumption.
The main drawback of these signature cards is that the producer and/or issuer
of these cards must be completely trusted.

1.2 Relying on Tamper-Proof Hardware

As discussed above, all existing setup assumptions that imply general feasibility
results in the UC framework seem to inherently require a great deal of trust in
at least some parties in the system. It is natural to wonder whether such trust is
essential, or whether other setup assumptions — perhaps of a slightly different
character — might also suffice.

We suggest that it might be possible to eliminate the need for any trusted
parties if one is willing instead to rely on a physical assumption regarding the
existence (and practicality) of tamper-proof hardware. We hasten to add that
a complete elimination of all trusted parties using our approach may not be
practical, possible, or desirable in realistic scenarios; nevertheless, our proposals
indicates that at least in theory this might be achievable. Alternately, one can
view the approach explored here as allowing a reduced level of trust that we
might be comfortable with; after all, we generally trust that our packets will be
routed correctly over the Internet, but may not be willing to trust a corporation
to generate a CRS.

Our assumption is that tamper-proof hardware exists, in the sense that (1) an
honest user can construct a hardware token TF implementing any desired (poly-
time) functionality F but (2) an adversary given TF can do no more than observe
the input/output characteristics of this token. An honest player given a token
T ′

F ′ by an adversary has no guarantee whatsoever regarding the function F ′ that
this token implements (other than what the honest user can deduce from the
input/output of this device). We show how this, seemingly-basic primitive can be
used along with standard cryptographic assumptions to realize the commitment
functionality (and hence general secure computation [10]) in the UC framework.

The above is a rather informal summary of the properties we assume; a
more formal discussion of how to model tamper-proof hardware (as well as a
concrete ideal functionality meant to capture that requirements evidenced in
that discussion) is given in Section 2.



The idea of using secure hardware to achieve stronger security properties is
not entirely new; it was directly inspired by work of Chaum, Pedersen, Brands,
and Cramer [11, 5, 13] who propose the use of observers in the context of e-cash.
Roughly speaking, it was suggested in that line of work that a bank could issue
each user an “observer” (i.e., a smartcard) TF implementing some functionality
F , and a user would interact with both the bank and TF whenever it executed
an instance of a blind signature protocol to withdraw an e-coin (the bank and
TF could not communicate directly). The observer, by monitoring the actions of
the user, could enforce some sort of honest behavior on the part of the user in the
protocol execution. On the other hand, the user was guaranteed that even if the
bank were malicious (and, e.g., sent a smartcard that was programmed in some
arbitrary manner), anonymity of the user could not be violated. In some sense
our work can be seen as formalizing this earlier work on observers, and extending
its applicability from the domain of e-cash to the case of secure computation of
arbitrary functionalities.

1.3 Have we Gained Anything?

Our assumption regarding tamper-proof hardware does not seem to trivially
imply any of the setup assumptions discussed in Section 1.1. For example, two
parties A and B cannot generate a CRS by simply having A send to B a token
implementing a coin-tossing protocol: if A is malicious, a simulator will indeed
be able to “rewind” the hardware token provided by A to B, and thus be able
to “force” the value of the CRS output in this case to any desired value. On
the other hand, if B is malicious then the simulator must (informally speaking)
send some token to A, but then cannot “rewind” A to force the value of the
CRS. We also do not see any way to trivially implement key-registration using
our approach: for example, if each party sends to the other a token that checks
public keys for validity (and then, say, outputs a signed receipt) then even the
honest party will have to produce a secret key corresponding to its public key,
which is not the case in the key-registration functionality of [2] (indeed, the
security proofs in that work break down if this is the case). Another problem,
unrelated to this, is that the signed receipt output by the device might be used
as a “covert channel” to leak information about honest users’ private keys.

As for whether we fundamentally gain anything by introducing our new as-
sumption, this is (of course) subject to debate though we hope to convince the
reader that the answer is “yes.” In what follows we will simply assume that
tamper-proof hardware is (or will someday be) available; clearly, if this assump-
tion is false (and it may well be) then the entire discussion is meaningless. Under
this assumption, we summarize our arguments in favor of relying on tamper-proof
hardware as follows:

Possible elimination of trust. An advantage of our approach is that it seems
to potentially allow for the elimination of trust in anyone but oneself. This
is because, in theory, each user could construct the hardware token itself (or,
more likely, buy a “blank” token and program it itself) without having to rely on



anyone else. This distinguishes our approach from the “signature card” approach
described earlier, where it is essential that a specific third party produce the cards
(and a user cannot produce cards by itself).

An objection here is that we still assume secure channels and also secure
distribution of tokens, and so trust has not been completely eliminated. We first
emphasize that existing impossibility results hold even if secure channels are
available, and so in that sense being able to eliminate the additional need for
a trusted CRS represents progress in the right direction. If secure channels do
not exist (and if secure distribution of tokens is not possible) we would seem to
degenerate to a security model like that of [1] which still guarantees a non-trivial
level of security. Finally, secure distribution of tokens is possible if a physical
meeting of parties can be arranged; given this, a key can be stored on the token
at the same time so as to bootstrap secure channels.

We do not mean to minimize the above concerns, only to suggest how they
might be overcome. Developing a complete solution eliminating all trust in a
practical manner remains an interesting direction for future work.

Possible reduction of trust. The above is a bit of an extreme scenario. But it is
indicative of the fact that our approach may allow for more relaxed requirements

on trust. In particular, under our approach each party could choose to buy pre-
programmed tokens from any vendor of their choice; other parties executing the
protocol do not need to approve of this choice, and can in turn buy from any
vendors of their choice. This is not the case for any of the other setup assumptions
mentioned in Section 1.1: parties must agree on which CRS to use; must approve
of the registration authorities used by other parties; or must be sure that other
parties use signature cards produced by a trusted entity.

Accountability. A final important point is the accountability present in our
approach, which does not seem to be present when parties use a CRS or a
key-registration authority. (It does seem to be available in the signature card
scenario.) In the case of a CRS, for example, it seems impossible to prove that
a CRS generated by some party is “bad” — in particular, the CRS might come
from the exactly correct distribution except that the party has “neglected” to
erase the trapdoor information associated with this CRS. Similarly in the case
of a registration authority: how would one prove that an adversary’s key is not

well-formed?
On the other hand, one could imagine independent labs demonstrating that

hardware sold by some vendor is not tamper-proof, or that supposedly blank to-
kens contained some (hidden) embedded code. This is in some sense reminiscent
of the distinction suggested by Naor [17] between “falsifiable” assumptions and
“unfalsifiable” ones.

2 Modeling Tamper-Proof Hardware

In this section, we suggest an ideal functionality that is intended to model
tamper-proof hardware. More accurately, we define a “wrapper” functionality



Functionality Fwrap

Fwrap is parameterized by a polynomial p and an implicit security parameter k

“Creation” Upon receiving (create, sid, P, P ′, M) from P , where P ′ is another user
in the system and M is an interactive Turing machine, do:
1. Send (create, sid, P, P ′) to P ′.
2. If there is no tuple of the form (P, P ′, ?, ?, ?) stored, then store (P, P ′, M, 0, ∅).

“Execution” Upon receiving (run, sid, P, msg) from P ′, find the unique stored tuple
(P, P ′, M, i, state) (if no such tuple exists, then do nothing). Then do:
Case 1 (i = 0): Choose random ω ← {0, 1}p(k). Run M(msg; ω) for at most p(k)

steps, and let out be the response (set out =⊥ if M does not respond in the
allotted time). Send (sid, P, out) to P ′. Store (P, P ′, M, 1, (msg, ω)) and erase
(P, P ′, M, i, state).

Case 2 (i = 1): Parse state as (msg1, ω). Run M(msg1‖msg; ω) for at most p(k)
steps, and let out be the response (set out =⊥ if M does not respond in
the allotted time). Send (sid, P, out) to P ′. Store (P, P ′, M, 0, ∅) and erase
(P, P ′, M, i, state).

Fig. 1. The Fwrap functionality, specialized for the case when M is a 2-round (i.e.,
4-message) protocol.

which is intended to model the following sequence of events in the real world:
(1) a party takes some software and “seals” it inside a tamper-proof hardware
token; (2) this party gives the token to another party, who can then access the
embedded software in a black-box manner. We will sometimes refer to the first
party as the creator of the token, and the other party as the token’s user.

The wrapper functionality is presented in Figure 1. The formalism in the
description obscures to some extent what is going on, so we give a high-level
description here. The functionality accepts two types of messages: the first type
is used by a party P to create a hardware token (encapsulating an interactive
protocol M) and to “give” this token to another party P ′. The functionality
enforces that P can send at most one token to P ′ which is used for all their
protocol interactions throughout their lifetimes (and not just for the interaction
labeled by the sid used when the token is created); since this suffices for honest
parties we write the functionality this way in an effort to simplify things.

Once the token is “created” and “given” to P ′, this party can interact with
the token in an arbitrary black-box manner. This is formalized by allowing P ′ to
send messages of its choice to M via the wrapper functionality Fwrap. Note that
each time a new copy of M is invoked, a fresh random tape is chosen for M .

To simplify the description of the functionality, we have assumed that M

represents a 2-round (4-message) protocol since our eventual construction of
commitment will use an M of this form. It should be clear how the functionality
can be extended for the more general case.



A real-world action that is not modeled here is the possible (physical) trans-

ference of a token from one party to another. An honest party is never supposed
to transfer a token; furthermore, in our eventual construction, tokens created
by honest parties allow easy identification of their creator. Thus, transference
does not represent a viable adversarial action, and so for simplicity we have not
modeled such an action within Fwrap.

The following real-world assumptions underly the existence of Fwrap:

– We assume that the party creating a hardware token “knows” the code
corresponding to the actions the token will take. This is evidenced by the
fact that the creator P must explicitly provide Fwrap with a description of M .
Looking ahead, this property will allow the simulator to “extract” the code
within any adversarially-created token.

– The hardware token must be completely tamper-proof, so that the user P ′

cannot learn anything about M that it could not learn given black-box ac-
cess. Furthermore, P ′ cannot cause M to use a “bad” (i.e., non-uniform)
random tape, or to use the same random tape more than once. We are thus
also assuming that the token has access to a built-in source of randomness.
This latter requirement is not needed if we are willing to assume that the
token can maintain state — in that case, we can use a hard-coded key for
a pseudorandom function to generate the random tape as needed. Unfor-
tunately we do not know how to prove security of this approach (for our
particular protocol) without relying on complexity leveraging.

– We also assume that the creator of a token cannot send messages to the
token once it is given to another party. (On the other hand, the token can
send messages to its creator, either directly or via a covert channel.)

Our results are meaningful only to the extent that one is prepared to accept
these assumptions as reasonable, or at least more reasonable than the existence
of a common reference string or the other setup assumptions discussed earlier.

3 Using Tamper-Proof Hardware for Secure Computation

We now show how to securely realize the multiple commitment functionality
Fmcom (see [8]) in the Fwrap-hybrid model, for static adversaries. By the results
of [8, 10], this implies the feasibility of computing any (well-formed) two-party
functionality, again for static adversaries. It is also not hard to see that the tech-
niques used in [10] can be used to show that our results imply the feasibility of
computing any (well-formed) multi-party functionality as well. We omit further
details from the present abstract.

For convenience, the multiple commitment functionality is given in Figure 2.
Although we could optimize our construction to allow commitment to strings,
for simplicity we focus on commitment to a single bit.

Before describing our protocol we introduce some notation. A tuple (p, g, h, ĝ,

ĥ) is called a Diffie-Hellman tuple if (1) p and q
def
= p−1

2
are prime; (2) g, h, ĝ, ĥ



Functionality Fmcom

Commit phase Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1},
record (cid, P, P ′, b) and send (receipt, sid, cid, P, P ′) to P ′ and the adversary. Ignore
subsequent values (commit, sid, cid, P, P ′, ?) from P .

Decommitment phase Upon receiving (open, sid, cid, P, P ′) from P , if the tuple
(cid, P, P ′, b) is recorded then send (open, sid, cid, P, P ′, b) to P ′ and the adversary.
Otherwise do nothing.

Fig. 2. The Fmcom functionality

are in the order-q subgroup
�

⊂ � ∗

p, with g, h generators; and (3) logg ĝ =

logh ĥ. If the first two conditions hold but logg ĝ 6= logh ĥ, then we refer to the

tuple as a random tuple. Given tuple = (p, g, h, ĝ, ĥ) with q as defined above,
we let Comtuple(b) denote the commitment defined by the two group elements

gr1hr2 , ĝr1 ĥr2gb, for randomly-chosen r1, r2 ∈ � q. It is well-known (and easy to
check) that if tuple is a random tuple then this commitment scheme is perfectly

hiding; on the other hand if tuple is a Diffie-Hellman tuple and r = logg ĝ = logh ĥ

is known, then b can be efficiently recovered from the commitment.
We now describe a complete protocol for realizing Fmcom for a sender P and

a receiver P ′. The security parameter is denoted by k.

Commitment phase. The parties perform the following steps:

1. P generates a public-key/secret-key pair (PK, SK) for a secure digital sig-
nature scheme, and constructs and sends a token to P ′ encapsulating the
following functionality M :
(a) Wait for a message (p, g, h). Check that p and p−1

2
= q are prime, that

p has length k, and that g, h are generators of the order-q subgroup�
⊂ � ∗

p, and aborts if these do not hold.
(b) Choose random elements g1, h1 ∈

�
. Using the Pedersen (perfectly-

hiding) commitment scheme [19] and the generators received in the pre-
vious step, commit to g1, h1.

(c) Wait for a message (g2, h2) where g2, h2 ∈
�

. (Abort if an invalid message
is received.)

(d) Set ĝ = g1g2 and ĥ = h1h2. Define tupleP→P ′

def
= (p, g, h, ĝ, ĥ), and

compute σP→P ′ = SignSK(P, P ′, tupleP→P ′ ). As the final message, send
σP→P ′ as well as decommitment information for the commitments sent
in the previous round.

P ′ symmetrically constructs and sends a token to P .

2. P interacts with the token sent to it by P ′ and in this way obtains tupleP ′→P

and σP ′→P . (If cheating on the part of the token is detected, then P aborts
the entire protocol.) Party P ′ acts symmetrically. From now on, the parties



communicate directly with each other and no longer need to access their
tokens.

3. P sends tupleP ′→P and σP ′→P to P ′, and P ′ acts symmetrically. Then P

checks that VrfyPK(tupleP→P ′ , σP→P ′ ) = 1 and, if not, it aborts the proto-
col. Party P ′ acts symmetrically.
At the end of this step each party holds tupleP ′

→P and tupleP→P ′ .

4. This step is the first that depends on the input bit b to be committed.
P first commits to b using any statistically-binding commitment scheme;
let C denote the resulting commitment. P also chooses random r1, r2 and
computes com = Comtuple

P→P ′
(b). It sends C and com to P ′, and then gives

an (interactive) witness indistinguishable proof that either (1) both C and
com are commitments to the same bit b, or (2) tupleP ′

→P is a Diffie-Hellman
tuple.

5. Upon successful completion of the previous step, party P ′ outputs (receipt,
sid, cid, P , P ′).

We remark that steps 1–3 need only be carried out once by parties P and P ′,
after which the values tupleP→P ′ and tupleP ′

→P can be used by these same par-
ties to commit to each other (with either party acting as the sender) arbitrarily-
many times.

Decommitment phase. P sends b to P ′ and gives a witness indistinguishable
proof that (1) C is a commitment to b, or (2) tupleP ′

→P is a Diffie-Hellman tuple.
Upon successful completion of this step, P ′ outputs (open, sid, cid, P, P ′, b).

3.1 Proof Intuition

The intuition underlying the security of the scheme is as follows. We need to
argue that for any real-world adversary A (interacting with parties running the
above protocol in the Fwrap-hybrid model), there exists an ideal-model simulator
S (running in the Fmcom-hybrid model), such that no ppt Z can distinguish
whether it is interacting with A or with S. When party P is honest and party
P ′ is malicious, the simulator S will be unable to “rewind” P ′ (specifically, in
the interaction of P ′ with the token that S must provides on behalf of P ), and
so the simulator cannot “force” the value of tupleP→P ′ to some desired value.
On the other hand, an information-theoretic argument shows that, with all but
negligible probability, a value tupleP→P ′ obtained by an interaction of P ′ with
P ’s token is always a random tuple regardless of the behavior of P ′ (note that
P ′ might interact with the token provided by P polynomially-many times, even
though it is supposed to interact with it only once). Security of the signature
scheme used (within the token) on behalf of the honest party P implies that P ′

can only send a value tupleP→P ′ that was output by the token. The upshot is
that, with all but negligible probability, a value tupleP→P ′ used by P in step 4
of the protocol will be a random tuple.

On the other hand, continuing to assume that P is honest and P ′ is malicious,
S can force the value of tupleP ′

→P to any desired value in the following way. By



simulating A’s access to the Fwrap functionality, S obtains from A the code MP ′

that is “placed” in the token that A provides (on behalf of the malicious party
P ′) to the honest party P . By rewinding MP ′ , it is possible for S to “force”
the output tupleP ′→P to, in particular, a (random) Diffie-Hellman tuple (for
which it knows the necessary discrete logarithms evidencing this fact). Under the
assumption that Diffie-Hellman tuples and random tuples are indistinguishable,
this difference will not be detectable to A or Z . The upshot is that S can set
tupleP ′

→P to be a Diffie-Hellman tuple in an undetectable manner.
Given the above, simulation follows in a fairly straightforward manner. Say

the honest party P is committing to some value. The simulator, who does not
yet know the value being committed to, will simply set C to be a commitment to
“garbage” while choosing the elements of com uniformly at random. Note that
Com here is perfectly hiding since tupleP→P ′ is a random tuple, so this aspect
of the simulation is fine. Furthermore, S can give a successful witness indistin-
guishable proof that it prepared the commitments correctly since tupleP ′

→P is
a Diffie-Hellman tuple (and S knows an appropriate witness to this fact).

In the decommitment phase, when S learns the committed value, it can
simply send this value and again give a successful witness indistinguishable proof
that it acted correctly (using again the fact that tupleP ′

→P is a Diffie-Hellman
tuple with discrete logarithm known to S).

The second case to consider is when the honest party P is the receiver. Say
the malicious sender P ′ sends values C and com in step 4, and also gives a
successful witness indistinguishable proof in that round. Since tupleP→P ′ is a
random tuple, this means that (with all but negligible probability) C and com

are indeed commitments to the same value. Furthermore, since tupleP ′
→P is a

Diffie-Hellman tuple (with the appropriate discrete logarithm known to S), it is
possible for S to extract the committed value b from com. Arguing similarly
shows that in the decommitment phase P ′ will only be able to successfully
decommit to the value b thus extracted.

Further details are provided in the following section.

3.2 Proof of Security

In this section, we sketch the proof that the protocol given earlier securely realizes
the Fmcom functionality. Let A be a static adversary interacting with parties run-
ning the above protocol in the Fwrap-hybrid model. We describe an ideal-model
simulator S running in the Fmcom-hybrid model, such that no ppt environment
Z can distinguish whether it is interacting with A or with S.

S runs an internal copy of A, forwarding all messages from Z to A and vice
versa. We now specify the actions of S in response to messages received from
Fmcom:

Initialization. When a commitment is about to be carried out between parties
P, P ′ for the first time, the simulator S does the following: say P is honest and
P ′ is corrupted (situations when both parties are corrupted or both parties are
honest are easy to simulate).



1. Adversary A submits a message of the form (create, sid, P ′, P, M) to the
(simulated copy of the) Fwrap functionality on behalf of P ′, and this mes-
sage is intercepted by S. Simulator S chooses coins for M at random and
runs an honest execution (on behalf of P ) with M . If this leads to an abort
on the part of P , then no further action is needed. Otherwise, in the stan-
dard way, S “rewinds” M and tries to generate an execution in which the
output tupleP ′→P is a (randomly-chosen) Diffie-Hellman tuple, with discrete
logarithm known to S. Using standard techniques and assuming the hard-
ness of the decisional Diffie-Hellman problem, this can be done with all but
negligible probability in expected polynomial time.

2. S, simulating the Fwrap functionality, sends the message (create, sid, P ) to P ′.
It then runs an honest execution of the token functionality with A (who is
acting on behalf of P ′). We stress that S does no rewinding here — indeed,
it cannot since it is not given the ability to rewind A (or, equivalently, Z).
S continues to simulate the actions of an honestly-generated token as many
times as A chooses (note that A may even request further interactions at
some later point in time).

Commitment when the sender is corrupted. Say S receives a message
(receipt, sid, cid, P ′, P ), the initialization as described above has already been
carried out, and the sender P ′ is corrupted but the receiver P is honest. S begins
by sending the value tupleP ′

→P and the corresponding signature (generated as
discussed above) to P ′. Then S receives values tupleP→P ′ and σP→P ′ from P ′

(this corresponds to step 3 of the commitment phase). If the signature does
not verify, then P can abort and no further action is needed. If the signature
verifies but tupleP→P ′ was not generated in one of the executions of P ′ in the
initialization phase described above, then S aborts. (This does not correspond
to a legal action in the real world, but occurs with only negligible probability
by security of the signature scheme.) Otherwise, in the following round S will
receive values C and com from P ′. It then acts as an honest receiver in the witness
indistinguishable proof given by P ′. If the proof fails, P will again abort as in the
real world. Otherwise, S extracts the committed bit b from com (this is possible
since tupleP ′

→P is a Diffie-Hellman tuple) and sends (commit, sid, cid, P ′, P, b) to
Fmcom (on behalf of corrupted party P ′).

In the decommitment phase, S again acts an an honest verifier. If the proof
fails, then no further action is required. Otherwise, assuming the bit b sent by
P ′ in this phase matches the bit extracted by S in the commitment phase, S

simply sends (open, sid, cid, P, P ′) to Fmcom. The other possibility is that the
proof succeeds but the bit b is different ; however, as argued informally in the
previous section, this will occur with only negligible probability.

Commitment when the receiver is corrupted. Say S receives a notification
(commit, sid, cid, P, P ′) from Fmcom that the honest party P has committed to
a bit, and the initialization described earlier has already been carried out. S

begins by sending the value tupleP ′
→P and the corresponding signature to P ′.

Then S receives values tupleP→P ′ and σP→P ′ from P ′ (this corresponds to step 3



of the commitment phase). If the signature does not verify, then P can abort
and no further action is needed. If the signature verifies but tupleP→P ′ was not
generated in one of the executions of P ′ in the initialization phase described
above, then S aborts. (This does not correspond to a legal action in the real
world, but occurs with only negligible probability by security of the signature
scheme.) Otherwise, S proceeds as follows: it computes C as a commitment to
the all-0 string, and sets the two components of commitment com to random
elements of the appropriate group. It sends these values to P ′ and then acts as
the honest prover in the witness indistinguishable proof, but using the witness
(that it knows) for the fact that tupleP ′→P is a Diffie-Hellman tuple.

When S later receives notification (open, sid, cid, P, P ′, b) that P has opened
to the bit b, the simulator simply sends this value b and then, again, acts as the
honest prover in the witness indistinguishable proof, but using the witness (that
it knows) for the fact that tupleP ′

→P is a Diffie-Hellman tuple.

We defer to the full version of this paper the details of the proof that S as
described above provides a good simulation of A.

4 Conclusions and Future Directions

UC multi-party computation is impossible without some extension to the so-
called “plain model.” We now know of a variety of extensions, or “setup assump-
tions,” that enable this impossibility result to be circumvented. An important
direction of research is to find realistic setup assumptions that could feasibly be
implemented and used. The suggestion made in this paper is to consider physical
assumptions instead of (or possibly in addition to) trust-based assumptions. A
particular example based on tamper-proof hardware was proposed, and shown
to be sufficient for realizing UC multi-party computation.

Some intriguing questions are left open by this work. Of course, alternate
(weaker?) models of tamper-proof hardware could be explored in an effort to
obtain easier-to-realize conditions under which UC multi-party computation ex-
ists. One interesting possibility here is to use tamper-evident tokens (that could
be returned to their creator at some intermediate point of the protocol) in place
of tamper-resistant ones. (This idea was suggested by an anonymous referee.)
Coming back to the model proposed here, it would be nice to show a protocol
secure against adaptive adversaries, and it would be especially gratifying to con-
struct a protocol based on general assumptions. (It is not hard to see that the
protocol can be based on a variety of standard number-theoretic assumptions
other than the DDH assumption.)
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