
On Constructing Universal One-Way Hash Functions

from Arbitrary One-Way Functions

Jonathan Katz∗† Chiu-Yuen Koo∗

Abstract

A fundamental result in cryptography is that a digital signature scheme can be constructed
from an arbitrary one-way function. A proof of this somewhat surprising statement follows
from two results: first, Naor and Yung defined the notion of universal one-way hash functions
and showed that the existence of such hash functions implies the existence of secure digital
signature schemes. Subsequently, Rompel showed that universal one-way hash functions could
be constructed from arbitrary one-way functions. Unfortunately, despite the importance of the
result, a complete proof of the latter claim has never been published. In fact, a careful reading
of Rompel’s original conference publication reveals a number of errors in many of his arguments
which have (seemingly) never been addressed.

We provide here what is — as far as we know — the first complete write-up of Rompel’s proof
that universal one-way hash functions can be constructed from arbitrary one-way functions.

∗Dept. of Computer Science, University of Maryland. {jkatz,cykoo}@cs.umd.edu
†This research was supported in part by NSF CAREER award #0447075.

1 Introduction and Motivation

A key focus of modern cryptography is the construction of cryptographic tools (encryption schemes,
digital signatures, etc.) from ever-more-basic cryptographic primitives (trapdoor permutations, one-
way functions, etc.). A central question in this area is to determine the minimal possible assump-
tions under which various cryptographic tools can be constructed. The case of digital signature
schemes [5] is representative in this regard. Due to their wide-ranging importance, constructions
of signature schemes have been the subject of much investigation. The first provably-secure con-
structions were based on specific, number-theoretic assumptions [6, 5] (more generally, claw-free
trapdoor permutations), and this was subsequently improved to show a construction based on ar-
bitrary trapdoor permutations [1]. Somewhat surprisingly, Naor and Yung [8] showed that the
presence of a “trapdoor” is not necessary: they introduced the notion of universal one-way hash
functions (UOWHFs), showed that UOWHFs suffice to construct signature schemes, and finally
demonstrated that UOWHFs could be constructed from one-way permutations. De Santis and
Yung [2] improved upon this result by generalizing the class of one-way functions under which
UOWHFs could be constructed (roughly speaking, they show how to construct UOWHFs from
regular one-way functions). Settling the question — since it is relatively easy to see that one-
way functions are necessary for UOWHFs or secure signature schemes — Rompel [9] proved that
one-way functions suffice to construct UOWHFs, and hence signature schemes.

Unfortunately, despite the fundamental importance of the above result no complete version
of Rompel’s proof seems to exist. Making matters worse, the conference version of Rompel’s
paper [9] (the only version of which we are aware) contains a number of errors and/or omissions1

which, at best, means that no complete proof is available, and, at worst, calls into question the
correctness of various details of Rompel’s construction. The lack of a clear and rigorous proof of
this result is regrettable, and we hope this paper adequately corrects the situation. We stress that
the construction shown here essentially follows that of [9], except for some minor changes made for
clarity. Our contribution is thus the proof, not the construction.

It is our hope also that making this result accessible to a wider audience will lead to improve-
ments and/or simplifications of the construction, as well as further applications of the techniques.

1.1 A High-Level Overview of Rompel’s Construction

The construction and its proof are rather technical, and we therefore begin by briefly outlining
the main steps in the construction at a relatively high level. It is stressed that the following is
necessarily informal, but all formal details are available in the relevant sections of this paper.

Let us begin by recalling the notion of universal one-way hash families [8, 4]. Throughout this
work, we will let n denote our security parameter.

Definition 1 A collection of function families H = {Hn}n∈N, where each Hn is a function family
Hn = {hs : {0, 1}`1(n) → {0, 1}`2(n)}s∈{0,1}k(n) is a universal one-way hash family if:

Efficient The functions `1(·) and k(·) are polynomially-bounded; furthermore, given n and strings
s ∈ {0, 1}k(n) and x ∈ {0, 1}`1(n), the value hs(x) can be computed in poly(n) time. We
make the simplifying assumption that k(·) is monotonically increasing so that the value k(n)
uniquely determines n (this allows us to simplify our notation, but is otherwise inessential).

1Throughout our write-up, we will sometimes point out these errors and omissions. We stress that, ultimately,
Rompel’s construction is correct. Nevertheless, we still believe that having a complete and correct proof of security
for this construction is important.

1

Compressing For all n we have `2(n) < `1(n).

“Universal one-way” For all ppt algorithms A, the following is negligible (in n):

Pr[x← A(1n); s← {0, 1}k(n);x′ ← A(1n, s, x) : x, x′ ∈ {0, 1}`1(n) ∧ x 6= x′ ∧ hs(x) = hs(x′)].

♦

For the remainder of this informal overview, we fix the security parameter n and so will not explicitly
write it in what follows.

Given an arbitrary one-way function f0 : {0, 1}`′ → {0, 1}`′ , the construction proceeds in the
following stages:

1.1.1 Constructing a one-way function with partially-known structure

A difficulty in dealing directly with f0 is that we know nothing about its structure. Specifically,
for x ∈ {0, 1}`′ define the sibling set of x (under f0) as

siblingsf0(x) def= {x′ : f0(x′) = f0(x)}

and, for 0 ≤ i ≤ `′, let
sizei(f0) def= {x : 2i ≤ |siblingsf0(x)| < 2i+1};

i.e., sizei(f0) consists of those x ∈ {0, 1}`′ which have at least 2i siblings but fewer than 2i+1 siblings
(under f0). We know nothing about how big sizei(f0) is for various i. To remedy this, we construct
a function f : {0, 1}` → {0, 1}` such that (1) f is one-way if f0 is, and (2) |sizei(f)| is identical for
all i in the range (roughly) [`

5 ,
4`
5]. This function f is used in everything that follows.

1.1.2 A Hash Family with Some Hard Siblings

Paraphrasing Definition 1 informally, our goal is to construct a family {hs} such that, for any x and
randomly-chosen s, it is infeasible for a computationally-bounded adversary to output any sibling
of x with respect to hs (of course, the sibling should be different from x). Toward this, we first
show how to construct a family {hs} with the properties that: (1) for any x and randomly-chosen
s, it is infeasible for a computationally-bounded adversary to output any so-called “hard” sibling
of x with respect to hs (the precise definition of “hard” is unimportant for what follows, but we do
stress that x is never a hard sibling of itself); and (2) for any x and with “high” probability over
choice of s, the fraction of siblings of x that are hard is “large”. Putting these properties together
implies (very roughly speaking) that, on average, there is some noticeable fraction of the siblings
of x which are difficult for a ppt adversary to find. We remark that, in some sense, this is the crux
of the entire construction, and requires the most involved proof.

Of course, the above says nothing about how easy it might be for an adversary to find other
(non-hard) siblings of x with respect to hs. In what follows, however, we will gradually eliminate
such “easy” siblings.

1.1.3 Making Most Siblings Hard

We define a new hash family {h′~s} by running multiple copies of {hs} (as in the previous section)
in parallel. Specifically, set

h′s1···sI
(x1 · · ·xI)

def= hs1(x1) · hs2(x2) · · ·hsI (xI),

2

where I is a parameter whose value is unimportant right now. We then say that x′1 · · ·x′I is a
hard sibling of x1 · · ·xI (with respect to h′~s) if for any i it holds that x′i is a hard sibling of xi

(with respect to hsi). This definition is justified by a simple hybrid argument which shows that it
remains computationally difficult for a ppt adversary to find any hard sibling of a fixed x1 · · ·xI

with respect to h′~s (since, informally, any such adversary could be used to find a hard sibling of a
fixed xi with respect to hsi , for some i).

More interestingly, it is not too difficult to see — and not much more difficult to prove — that
the above construction increases (on average, over random choice of ~s) the fraction of siblings that
are hard for any given string x1 · · ·xI . We will call those siblings of x1 · · ·xI that are not hard
(with respect to a given h′~s) “easy”.

1.1.4 Making All Siblings Hard

We now show how to make all siblings of a given initial string hard to find. Roughly speaking, we
do this by ensuring that no easy siblings remain. The intuition behind the step is actually rather
straightforward (although the formal details, which we do not discuss here, are trickier): Say family
{h′~s} from the previous section maps `in-bit strings to `out-bit strings. From the previous section,
we know that for any fixed string y ∈ {0, 1}`in and random choice of ~s, the fraction of easy siblings
of y with respect to h′~s is “small” on average. For the sake of argument, assume we knew that the
number of easy siblings of y was at most 2E with all but negligible probability over choice of ~s.

Consider the family {hµ,~s : {0, 1}`′in → {0, 1}`out}, where µ : {0, 1}`′in → {0, 1}`in is an pairwise2

independent function (cf. Definition 3, below), and function evaluation is defined via

hµ,~s(x)
def= h′~s(µ(x)).

For any string x ∈ {0, 1}`′in(n), say x′ is a hard sibling of x (with respect to hµ,~s) if µ(x′) is a hard
sibling of µ(x) (with respect to h′~s). It is straightforward to see that it remains computationally
difficult for a ppt adversary to find any hard sibling of a fixed x with respect to hµ,~s when µ,~s are
chosen at random (since any such adversary could be used to find a hard sibling of the fixed string
µ(x) with respect to h′~s for randomly-chosen ~s). We now see under what conditions we can argue
that all siblings of x are hard (with all but negligible probability).

Fix y = µ(x). We know that with all but negligible probability y has at most 2E easy siblings.
Assuming this to be the case, the probability that there exists an easy sibling of x with respect to
hµ,~s (which is the probability that there exists an x′ 6= x such that µ(x′) is an easy sibling of y with
respect to h′~s) is at most

2`′in · 2E

2`in
,

using pairwise independence of µ and a union bound. Setting `′in so that `in −E − `′in = Ω(n), we
see that in this case there are no easy siblings of x except with negligible probability. (Of course,
we also do not want `′in to be too small or else we will have a hard time achieving compression; see
the discussion in the next section.)

1.1.5 Completing the Construction

It seems that we are done. That is not quite true, however, as there are two problems left to resolve.
The first problem is that the functions {hµ,~s} may not be length-decreasing! This is relatively easy

2In the actual construction, µ will actually be n-wise independent.

3

to resolve, though, by hashing the output of hµ,~s using another pairwise independent function. The
second problem is that we assumed knowledge of E in the construction of the previous section. This
problem, too, is relatively easy to resolve (though some additional subtleties crop up) by simply
enumerating all possible values for E, of which there are only polynomially-many.

2 Preliminaries

We let x · y denote the concatenation of strings x and y. A function ε : N→ [0, 1] is negligible if for
any c > 0 there exists an nc such that ε(n) < n−c for all n > nc. We use “non-negligible” and “not
negligible” interchangeably. We say an event occurs with all but negligible probability if it occurs
with probability 1− ε(n) for some negligible function ε. A function ρ : N→ R is noticeable if there
exists a c > 0 and an nc such that ρ(n) > n−c for n > nc. Note that a function may be neither
negligible nor noticeable.

2.1 One-Way Function Families

We first recall the standard definition of one-way function families:

Definition 2 A (uniformly) one-way function family F = {fn : {0, 1}`(n) → {0, 1}`(n)}n∈N is a
family of functions for which:

Efficient fn(x) can be computed in time poly(n) (note in particular that this implies that `(·) is
a polynomially-bounded function).

Hard to invert For all probabilistic, polynomial time (ppt) algorithms A, the following is negli-
gible (in n):

Pr[x← {0, 1}`(n);x′ ← A(1n, fn(x)) : fn(x′) = fn(x)].

Using padding techniques (cf. [3, Sect. 2.2.3.2]), the assumption that fn is length-preserving is
without loss of generality. We will also assume that `(n) ≥ n3 and that `(n) is strictly increasing.
By padding appropriately, this is again without loss of generality. ♦

When dealing with a function family {fn}, we will often simply let f denote fn when n is
understood. For a function f , let domain(f) denote the domain of f . For S ⊆ domain(f), we let
f(S) denote {f(x)}x∈S . Using this notation, we let image(f) def= f(domain(f)). We also define:

1. siblingsf (x) def= {x′ : f(x′) = f(x)}; i.e., all values mapped by f to f(x).

2. sizei(f) def= {x : 2i ≤ |siblingsf (x)| < 2i+1}; i.e., the set of x’s for which
⌊
log |siblingsf (x)|

⌋
= i.

3. imagei(f) def= f(sizei(f)); i.e., the set of y ∈ image(f) whose inverses all lie in sizei(f).

For a function whose domain is {0, 1}`(n), the last two notations are meaningful for i ranging from
0 to `(n). For completeness, we define sizei(f) = ∅ and imagei(f) = ∅ when i is outside this range.
We state the following facts for convenience, and will use them in the rest of the paper without
further comment:

Fact 1 If x′ ∈ siblingsf (x) and x ∈ sizei(f), then siblingsf (x′) = siblingsf (x) and x′ ∈ sizei(f).

Fact 2 For all i such that sizei(f) 6= ∅ we have 2i ≤ |sizei(f)|
|imagei(f)| < 2i+1.

4

2.2 n-Wise Independent Function Families

We use the following slight generalization of the standard notion of n-wise independent function
families:

Definition 3 A collection of function families U = {Un}n∈N, where each Un is a function family
Un = {µs : {0, 1}`1(n) → {0, 1}`2(n)}s∈{0,1}k(n) is n-wise independent if:

Efficient As in Definition 1. In particular, we continue to make the simplifying assumption that
k(n) uniquely defines n.

n-wise independence For all n, any distinct values x1, . . . , xn ∈ {0, 1}`1(n), and any (arbitrary)
values y1, . . . , yn ∈ {0, 1}`2(n) we have:

Pr[µs(x1) = y1 ∧ · · · ∧ µs(xn) = yn] = 2−n·`2(n),

where the probability is over random selection of s ∈ {0, 1}k(n).

Efficient sampling For all j, n with 1 ≤ j ≤ n, any distinct x1, . . . , xj ∈ {0, 1}`1(n), and any
y1, . . . , yj ∈ {0, 1}`2(n), one can sample uniformly in poly(n) time from the set{

s ∈ {0, 1}k(n) : µs(x1) = y1 ∧ · · · ∧ µs(xj) = yj

}
.

♦

We write µ ∈ Un to mean that there exists an s ∈ {0, 1}k(n) such that the functions µ and µs are
identical. Similarly, the notation “µ ← Un” simply means that we choose s uniformly at random
from {0, 1}k(n) and set µ equal to the funtion µs.

2.3 Probabilistic Lemmas

In our analysis, we will rely on a number of “Chernoff-Hoeffding”-type bounds. Let us first state a
version of the standard Chernoff-Hoeffding bound for reference:

Lemma 1 Let X be the sum of independent random variables Xi, each in the interval [0, 1], and

such that Exp[X] = µ. Then for any a > 0 we have Pr [|X − µ| ≥ a] ≤ max
{

2 · e−
a2

4µ , 2−a

}
.

Furthermore, for µ > a > 0 we have Pr [|X − µ| ≥ a] ≤ 2 · e−a2/3µ.

Proof For the first inequality, let δ def= a/µ and distinguish two cases. When δ > 2e − 1 > 1
(here, e is the base of natural logarithms), we have

Pr [|X − µ| ≥ a] = Pr [X ≥ (1 + δ)µ]
≤ 2−(1+δ)µ (see [7, Ex. 4.1])
≤ 2−a.

When δ ≤ 2e− 1, we have

Pr [|X − µ| ≥ a] = Pr [X ≥ (1 + δ)µ] + Pr [X ≤ (1− δ)µ]

≤ e−µδ2/4 + e−µδ2/2 (see [7, Thms. 4.2, 4.3])

< 2 · e−a2/4µ.

5

The second inequality is standard.

We now prove a variant of the Chernoff-Hoeffding bound for sums of independent random variables
that do not necessarily lie in [0, 1]:

Lemma 2 Let X be the sum of independent random variables Xi, each in the interval [0, L], and

such that Exp[X] = µ. Then for any a > 0 we have Pr [|X − µ| ≥ a] ≤ max
{

2 · e−
a2

4Lµ , 2−
a
L

}
.

Furthermore, for 0 < a < µ we have Pr [|X − µ| ≥ a] ≤ 2 · e−a2/3Lµ.

Proof Define Yi
def= Xi/L and Y def=

∑
i Yi; note that each Yi lies in the interval [0, 1], Y = X/L,

and ν def= Exp[Y] = µ/L. Now Pr [|X − µ| ≥ a] = Pr [|Y − ν| ≥ a/L]. Applying Lemma 1 gives the
claimed result.

The following extension of the Chernoff-Hoeffding bound to the case of n-wise independent
random variables (rather than completely independent random variables) will be used extensively
in our analysis:

Lemma 3 ([10, Theorem 5]) Let n ≥ 2 and let X be the sum of (any number of) n-wise
independent random variables, each in [0, 1], such that Exp[X] = µ. Then:

1. If δ ∈ (0, 1]:

(a) If n ≤ bδ2µe−1/3c, then Pr[|X − µ| ≥ δµ] ≤ e−bn/2c;

(b) If n ≥ bδ2µe−1/3c, then Pr[|X − µ| ≥ δµ] ≤ e−bδ2µ/3c.

2. If δ > 1:

(a) If n ≤ bδµe−1/3c, then Pr[|X − µ| ≥ δµ] ≤ e−bn/2c;

(b) If n ≥ bδµe−1/3c, then Pr[|X − µ| ≥ δµ] ≤ e−bδµ/3c.

We also state for future reference the following immediate corollary:

Corollary 4 Let n ≥ 2 and let X be the sum of (any number of) n-wise independent random
variables, each in [0, 1], such that Exp[X] ≤ µmax and µmax ≥ 2n. Then for any δ ∈ (0, 1]:

Pr[X ≥ (1 + δ) · µmax] ≤ e−bδ
2n/3c.

Proof We simply perform a case-by-case analysis using Lemma 3. Let µ def= Exp[X]. There are
two cases: If µ ≥ n then

Pr[X ≥ (1 + δ) · µmax] ≤ Pr[X ≥ (1 + δ) · µ]
≤ Pr[|X − µ| ≥ δµ]

≤ max
{
e−bn/2c, e−bδ2µ/3c

}
≤ e−bδ

2n/3c,

where the third inequality uses Case 1 of Lemma 3.

6

If, on the other hand, µ < n, then

Pr[X ≥ (1 + δ) · µmax] ≤ Pr[X − µ ≥ µmax − µ]
≤ Pr[|X − µ| ≥ n]

≤ max
{
e−bn/2c, e−bn/3c

}
≤ e−bδ

2n/3c,

using Case 2 of Lemma 3 for the third inequality, and δ ≤ 1 for the last inequality.

We will also use a counterpart of Lemma 3 which applies to weighted sums of random variables.
First, we recall the following result from [10]:

Lemma 5 ([10, Theorem 4(III)]) Let n ≥ 2 and let X be the sum of n-wise independent random
variables, each in the interval [0, 1], such that Exp[X] = µ. Then, for any δ > 0:

Pr[|X − µ| ≥ δµ] ≤
(

nC

e2/3δ2µ2

)bn/2c
,

where C ≥ max{n, σ2[X]}.

We then easily obtain the following:

Corollary 6 Let n ≥ 2, and let {Xi} be n-wise independent random variables in {0, 1} such that
Pr[Xi = 1] = p for all i. Let X =

∑
i λi · Xi for some constants λi ≥ 1. Set λ =

∑
i λi and

λmax = maxi{λi}, and let µ = Exp[X] = pλ. Then for any δ > 0:

Pr [|X − µ| ≥ δµ] ≤
(
nCλ2

max

e2/3δ2µ2

)bn/2c
,

where C = max {n, µ/λmax}.

Proof Define the random variables Yi = λiXi/λmax and note that Yi ∈ [0, 1] for all i. Set
Y =

∑
i Yi = X/λmax, and let ν = Exp[Y] = µ/λmax. Applying Lemma 5 gives:

Pr [|X − µ| ≥ δµ] = Pr [|Y − ν| ≥ δν]

≤
(

nC

e2/3δ2ν2

)bn/2c

=
(
nCλ2

max

e2/3δ2µ2

)bn/2c
, (1)

for C ≥ max{n, σ2[Y]}. Now,

Exp[Y] =
∑

i

Exp[Yi]

≥
∑

i

σ2[Yi] (since Yi ∈ [0, 1])

= σ2[Y] (using pairwise independence of the {Yi}),

so Eq. (1) certainly holds for C ≥ max{n,Exp[Y]}. The corollary follows.

7

3 Constructing a Universal One-Way Hash Family

We now give the formal details of the steps outlined in Section 1.1. Our starting point is a one-way
function family F0 = {f0

n : {0, 1}`′(n) → {0, 1}`′(n)}n∈N. For simplicity in the proofs that follow, we
assume that certain quantities are powers of two when convenient (this means we can avoid using
floors and ceilings, and using appropriate padding this is anyway without loss of generality).

3.1 Constructing a One-Way Function with Partially-Known Structure

We first construct a one-way function family F whose structure can be better characterized.

Construction 1 Let `(n) def= 5`′(n) + log `′(n) + 2. Define function family F = {fn : {0, 1}`(n) →
{0, 1}`(n)}n∈N as follows:

Let x ∈ {0, 1}`′(n), y ∈ {0, 1}4`′(n), and z ∈ {0, 1}log 4`′(n) = {0, 1}log `′(n)+2. Then:

fn(x · y · z) def= f0
n(x) ·

(
y ∧ (0z · 14`′(n)−z)

)
· z,

where y ∧ y′ represents the bit-wise AND of y and y′, and z ∈ {0, 1}log 4`′(n) is identified with an
integer in the range {0, . . . , 4`′(n)− 1}. ♣
It is trivial to see that F is a one-way function family if F0 is, and so we omit the proof. More
interestingly:

Lemma 7 For all n, i with `′(n) ≤ i < 4`′(n), we have

|sizei(fn)| = 2`(n)

4`′(n)
and

2`(n)−i

8`′(n)
< |imagei(fn)| ≤ 2`(n)−i

4`′(n)
.

Furthermore, for any i ∈ {0, . . . , `(n)} we have |sizei(fn)| ≤ 2`(n)

4`′(n) .

Proof Fix n and i as in the statement of the lemma and let f denote fn and f0 denote f0
n. First,

note that f(x · y · z) = f(x̄ · ȳ · z̄) if and only if z = z̄, f0(x) = f0(x̄), and the final (4`′(n)− z) bits
of y and ȳ are equal; in particular, then, the first z bits of y and ȳ can be arbitrary. It follows that
x · y · z ∈ sizei(f) if and only if x ∈ sizei−z(f0). This, in turn, means that for arbitrary ẑ we have

|{x · y · ẑ ∈ sizei(f)}| = 2|y| · |sizei−ẑ(f0)|
= 24`′(n) · |sizei−ẑ(f0)|.

Summing over all ẑ, we obtain:

|sizei(f)| =
4`′(n)−1∑

ẑ=0

|{x · y · ẑ ∈ sizei(f)}| =
4`′(n)−1∑

ẑ=0

24`′(n) · |sizei−ẑ(f0)|

= 24`′(n) ·
i∑

j=i−4`′(n)+1

|sizej(f0)|. (2)

Recall that sizej(f0) = ∅ when j 6∈ {0, . . . , `′(n)}. When `′(n) ≤ i < 4`′(n), we thus have:

|sizei(f)| = 24`′(n) ·
`′(n)∑
j=0

|sizej(f0)|

= 24`′(n) · |domain(f0)| = 25`′(n) =
2`(n)

4`′(n)
,

8

as desired. The bound on |imagei(fn)| follows by Fact 2. The final statement of the lemma follows
using Eq. (2) and the observation that

∑
j |sizej(f0)| ≤ |domain(f0)|.

3.2 A Hash Family with Some Hard Siblings

We now take the one-way function family F constructed in the previous section and construct a
hash family for which it is computationally hard to find some noticeable fraction of siblings for any
fixed x and randomly-chosen hash function from the family.

In the rest of the paper, we will omit the explicit dependence of certain values on n unless we
want to explicitly highlight this dependency. Thus, for example, we will let ` = `(n) and `′ = `′(n)
(as in Construction 1) in all that follows. We also sometimes write f instead of fn for convenience.

Construction 2 Let F = {fn} be as in Construction 1 and let U1 = {U1
n}n∈N and U2 = {U2

n}n∈N
be n-wise independent function families such that U1

n = {µ1,s : {0, 1}`/2 → {0, 1}`}s∈k1(n) and
U2

n = {µ2,s : {0, 1}` → {0, 1}`/2−2 log `}s∈k2(n). (From now on, we drop explicit mention of the
key s and simply speak of functions µ1 ∈ U1

n and µ2 ∈ U2
n.) Construct H = {Hn}n∈N where

Hn = {hµ1,µ2 : {0, 1}`/2 → {0, 1}`/2−2 log `}µ1∈U1
n; µ2∈U2

n
, and hµ1,µ2 is defined as follows:

hµ1,µ2(x)
def= µ2(fn(µ1(x))).

♣

To analyze the above construction, we first define a notion of “hard” siblings:

Definition 4 Given µ1, µ2, and x ∈ {0, 1}`/2, define the hard sibling set hardhµ1,µ2
(x) to be the set

of x′ ∈ siblingshµ1,µ2
(x) for which f(µ1(x′)) 6= f(µ1(x)) and µ1(x′) ∈ size `

2
(f). Note that the latter

condition is equivalent to requiring that f(µ1(x′)) ∈ image `
2
(f). Also, note that x 6∈ hardhµ1,µ2

(x).
♦

We show that over random choice of µ1, µ2, it is computationally infeasible to find a hard sibling
of any fixed x with respect to hµ1,µ2 .

Theorem 8 Assuming F is a one-way function family, the following is negligible for all ppt A:

Succhard
A (n) def= Pr[x← A(1n);µ1 ← U1

n;µ2 ← U2
n; x̄← A(1n, µ1, µ2, x) : x̄ ∈ hardhµ1,µ2

(x)].

Proof Assume toward a contradiction that there exists a ppt A for which Succhard
A (n) is not

negligible. We construct an algorithm B which inverts f = fn with non-negligible probability. This
gives the desired result.

B takes as input z̄ = f(ȳ) for some ȳ, and is defined as follows:

B(1n, z̄)
x← A(1n)
µ1 ← U1

n

Pick µ2 uniformly at random from the set
{
µ2 ∈ U2

n : µ2(f(µ1(x))) = µ2(z̄)
}

x̄← A(1n, µ1, µ2, x)
If f(µ1(x)) = z̄, output µ1(x)
If f(µ1(x̄)) = z̄, output µ1(x̄)
Otherwise, output ⊥.

9

Let U` denote the uniform distribution over strings of length `, and let sizei and imagei denote
sizei(f) and imagei(f), respectively. Say that “B inverts z̄” if f(B(1n, z̄)) = z̄. Our goal is to show
that Prz̄←f(U`)[B inverts z̄] is not negligible. The following claim indicates that if we can show
that B succeeds in inverting z̄ with non-negligible probability when z̄ is is uniformly distributed
in image `

2
, the proof is complete. Informally, this is because: (1) size `

2
, which is the pre-image

of image `
2
, is a noticeable fraction of domain(f) (and so a ȳ chosen uniformly in domain(f) has

noticeable probability of being in size `
2
); and (2) for any two elements z̄, z̄′ ∈ image `

2
, the number

of pre-images of z̄ is within a factor of two of the number of pre-images of z̄′ (and so choosing
z̄ uniformly in image `

2
is “close enough” to choosing ȳ uniformly in size `

2
and setting z̄ = f(ȳ)).

Formally:

Claim 9 Prz̄←f(U`)[B inverts z̄] ≥ 1
8`′ · Prz̄←image `

2

[B inverts z̄].

Proof (of claim) We have:

Pr
z̄←f(U`)

[B inverts z̄] ≥ Pr
z̄←f(U`)

[B inverts z̄
∧
z̄ ∈ image `

2
]

=
∑

z∈image `
2

Pr[B inverts z] · Pr
z̄←f(U`)

[z̄ = z]. (3)

Furthermore, for any z ∈ image `
2

we have

Pr
z̄←f(U`)

[z̄ = z] = Pr
z̄←f(U`)

[z̄ = z | z̄ ∈ image `
2
] · Pr

z̄←f(U`)
[z̄ ∈ image `

2
]

= Pr
z̄←f(U`)

[z̄ = z | z̄ ∈ image `
2
] · Pr

ȳ←U`

[ȳ ∈ size `
2
]

= Pr
z̄←f(U`)

[z̄ = z | z̄ ∈ image `
2
] ·
|size `

2
|

2`

=
1

4`′
· Pr

z̄←f(U`)
[z̄ = z | z̄ ∈ image `

2
] , (4)

using Lemma 7. Now, for any z ∈ image `
2

Pr
z̄←f(U`)

[z̄ = z | z̄ ∈ image `
2
] = Pr

ȳ←U`

[f(ȳ) = z | ȳ ∈ size `
2
] =

|{ȳ : f(ȳ) = z}|
|size `

2
|

>
2`/2

2`/2+1 · |image `
2
|

=
1

2 · |image `
2
|
. (5)

Combining Eqs. (3)–(5), we obtain:

Pr
z̄←f(U`)

[B inverts z̄] ≥ 1
8`′
·
∑

z∈image `
2

Pr[B inverts z] · 1
|image `

2
|

=
1

8`′
· Pr

z←image `
2

[B inverts z] ,

10

as desired.

To complete the proof of the theorem, we proceed in two stages. First, we show that

Succ′A(n) def= Pr

[
x← A(1n); z̄ ← image `

2
;µ1 ← U1

n;
µ2 ← {µ2 : µ2(f(µ1(x))) = µ2(z̄)} ; x̄← A(1n, µ1, µ2, x)

: x̄ ∈ hardhµ1,µ2
(x)

]
is within a constant multiplicative factor of Succhard

A (n). (Note that Succ′A(n) is the probability that
A outputs a hard sibling of x when A is invoked by B, assuming the input to B is uniformly dis-
tributed in image `

2
.) Next, we show that whenever A outputs a hard sibling of x (in the experiment

described by Succ′A), then B outputs an inverse of z̄ with noticeable probability. Under the as-
sumption that Succhard

A is not negligible, these imply that Prz̄←image `
2

[B inverts z̄] is not negligible;

applying Claim 9 then completes the proof of the theorem.

Claim 10 For n large enough, Succ′A(n) ≥ 1
3 · Succhard

A (n).

Proof (of claim) We may write

Succhard
A (n) =

∑
µ̂1,µ̂2

Pr[x← A(1n); x̄← A(1n, µ̂1, µ̂2, x) : x̄ ∈ hardhµ̂1,µ̂2
(x)] · 1

|U1
n|
· 1
|U2

n|

and

Succ′A(n) =
∑
µ̂1,µ̂2

Pr
[
x← A(1n); x̄← A(1n, µ̂1, µ̂2, x) : x̄ ∈ hardhµ̂1,µ̂2

(x)
]

· 1
|U1

n|
· Pr

[
z̄ ← image `

2
;µ2 ← {µ2 : µ2(f(µ̂1(x))) = µ2(z̄)} : µ2 = µ̂2

]
,

where the above sums are taken over µ̂1 ∈ U1
n and µ̂2 ∈ U2

n. Let z def= f(µ̂1(x)). To show that
Succ′A(n) ≥ 1

3 · Succhard
A (n) (for n large enough), it suffices to show that for any z ∈ {0, 1}`, the

value of

Pr[B picks µ̂2 | z]
def= Pr

[
z̄ ← image `

2
;µ2 ← {µ2 : µ2(z) = µ2(z̄)} : µ2 = µ̂2

]
is at least 1

2·|U2
n|

except for a negligible fraction of the µ̂2 ∈ U2
n (note that any individual term in

either of the above sums is negligible, since 1/|U1
n| is negligible).

Fix any z ∈ {0, 1}`, and let

Pr[B picks µ̂2 | z, z̄]
def= Pr

[
µ2 ←

{
µ2 : µ2(z) = µ2(z̄)

}
: µ2 = µ̂2

]
.

Define3 Gz(µ̂2)
def=
{
z̄ : z̄ ∈ image `

2

∧
µ̂2(z̄) = µ̂2(z)

}
. Then:

Pr[B picks µ̂2 | z] =
∑

z̄∈Gz(µ̂2)

Pr[B picks µ̂2 | z, z̄] · Pr
z̄′←image `

2

[z̄′ = z̄]

=
∑

z̄∈Gz(µ̂2)

Pr[B picks µ̂2 | z, z̄]
|image `

2
|

=
∑

z̄∈Gz(µ̂2)

1
|{µ2 : µ2(z̄) = µ2(z)}| · |image `

2
|
. (6)

3We define Gz(µ̂2) differently from [9]. The reason is that, in contrast to what is claimed in [9], the extended
Chernoff bound (Lemma 3) does not seem to apply to G(µ̂2) as defined there.

11

Consider first the case that z /∈ image `
2

(and hence z 6∈ Gz(µ̂2)). Since U2
n is an n-wise indepen-

dent function family, we have |{µ2 : µ2(z̄) = µ2(z)}| = |U2
n| · 2−

`
2
+2 log ` for any z̄ ∈ Gz(µ̂2) (recall

that `/2− 2 log ` is the output-length of functions in U2
n). Eq. (6) then gives:

Pr[B picks µ̂2 | z] = |Gz(µ̂2)| ·
2

`
2
−2 log `

|U2
n|

· 1
|image `

2
|
. (7)

In the expression above, only |Gz(µ̂2)| depends on µ̂2. Viewing |Gz(µ̂2)| as a random variable (over
random choice of µ̂2, with z fixed), we have:

Expµ̂2←U2
n

[|Gz(µ̂2)|] =
∑

z̄∈image `
2

Pr
µ̂2←U2

n

[µ̂2(z̄) = µ̂2(z)]

= |image `
2
| · 2−

`
2
+2 log `.

From Lemma 7, we have |image `
2
| = Θ

(
2`/2

`′

)
. Using the fact that `′ = Θ(`), we see that

Expµ̂2←U2
n

[|Gz(µ̂2)|] = Θ(`). Now, note that |Gz(µ̂2)| is a sum (over z̄ ∈ image `
2
) of the indi-

cator random variables δz̄ such that δz̄ = 1 iff µ̂2(z̄) = µ̂2(z). Since U2
n is an n-wise independent

function family, the {δz̄} are n-wise independent and hence Lemma 3 applies. Setting δ = 1
2 and

applying the lemma shows that for all but a negligible fraction of the µ̂2 ∈ U2
n, the value of |Gz(µ̂2)|

is within a factor of two of its expectation; i.e., for all but a negligible fraction of µ̂2 ∈ U2
n we have

|Gz(µ̂2)| ≥
1
2
· |image `

2
| · 2−

`
2
+2 log `.

Plugging this into Eq. (7) gives the desired result that Pr[B picks µ̂2 | z] ≥ 1
2·|U2

n|
for all but a

negligible fraction of the µ̂2 ∈ U2
n.

For the case when z ∈ image `
2
, the analysis proceeds as above except that we need to deal

separately with the special case z = z̄ (in which case {µ2 : µ2(z̄) = µ2(z)} = U2
n, which only helps).

We omit the details. This concludes the proof of the claim.

To conclude the proof, we show that whenever A outputs a hard sibling of x (in the experiment
defining Succ′A), B outputs an inverse of z̄ with noticeable probability Ω(1/`). As shown in the
proof of the preceding claim, for any z = f(µ1(x)) and all but a negligible fraction of µ̂2 ∈ U2

n we
have |Gz(µ̂2)| = Θ(`). Given the entire view of A (and assuming z 6= z̄, since B will anyway output
the desired inverse in this case), z̄ is uniformly distributed in Gz(µ̂2) \ {z}. If A outputs a hard
sibling x̄ of x, then by definition f(µ1(x̄)) ∈ Gz(µ̂2) \ {z}. Thus, conditioned on A’s outputting
a hard sibling, the probability that f(µ1(x̄)) = z̄ and B outputs the correct inverse is at least
1/|Gz(µ̂2) \ {z}| = Ω(1/`).

The previous theorem shows that it is computationally infeasible to find “hard” siblings of
any fixed x. We now show4 that for any fixed x and with constant probability over choice of
µ1 ∈ U1

n, µ2 ∈ U2
n, the hard siblings of x are a noticeable fraction of all siblings of x.

Theorem 11 Let x ∈ {0, 1}`/2 be arbitrary. Then for ` large enough it holds that with probability
at least 1/3 (over random choice of µ1 ∈ U1

n and µ2 ∈ U2
n) we have:

|hardhµ1,µ2
(x)|

|siblingshµ1,µ2
(x)|

≥ 1
`
.

4Theorem 11 corresponds to [9, Lemma 5], but the lemma as stated there is actually incorrect.

12

I.e., with probability at least 1/3 the hard siblings of x are a noticeable fraction of all siblings of x.

Proof We show that |siblingshµ1,µ2
(x)| ≤ 4`2

5 with probability at least 34/100 and furthermore
that |hardhµ1,µ2

(x)| ≥ ` with all but negligible probability. Applying a union bound, we see that
with probability at least 1/3 both bounds hold. The theorem follows.

We write sizei and imagei for sizei(f) and imagei(f), respectively, and also let sizei,j
def=
⋃j

k=i sizek

and imagei,j
def=
⋃j

k=i imagek. It will be useful to recall that |sizei| = 2`

4`′ for `′ ≤ i < 4`′ (cf. Lemma 7)
and the fact that ` > 5`′. We stress also that x is fixed throughout what follows.

Claim 12 For ` large enough, with probability at least 34/100 over choice of µ1, µ2 we have
|siblingshµ1,µ2

(x)| ≤ 4`2

5 .

Proof (of claim) If x′ ∈ siblingshµ1,µ2
(x), then exactly one of the following is true:

1. x′ = x;

2. x′ 6= x but f(µ1(x′)) = f(µ1(x));

3. f(µ1(x′)) 6= f(µ1(x)) but µ2(f(µ1(x′))) = µ2(f(µ1(x))).

The following two sub-claims bound the number of x′ falling into the second and third categories,
respectively.

Sub-claim Let Sµ1

def= {x′ : x′ 6= x ∧ f(µ1(x′)) = f(µ1(x))}; i.e., Sµ1 contains the x′

falling into the second category above. Then for ` large enough, with probability at least
37/100 (over choice of µ1) we have |Sµ1 | < 2`.

Proof (of sub-claim) We first show that the event “µ1(x) ∈ size0, `
2
+log `−1” occurs

with probability at least 3/8 over choice of µ1; we then show that the desired bound on
|Sµ1 | holds with all but negligible probability conditioned on this event.

An straightforward calculation gives:

Pr
µ1←U1

n

[
µ1(x) ∈ size0, `

2
+log `−1

]
=

∑
w∈size

0, `
2+log `−1

Pr
µ1←U1

n

[µ1(x) = w]

≥
∑

w∈size`′,5`′/2

2−`

≥
(

5`′

2
− `′

)(
2`

4`′

)
1
2`

=
3
8
, (8)

and so with probability at least 3/8 we have µ1(x) ∈ size0, `
2
+log `−1. Let Good denote

this event, and let Good∗ denote the event that µ1(x) ∈ size `
2
+log `−1. It is evident that

Pr
[
|Sµ1 | ≥ 2`

∣∣Good
]
≤ Pr

[
|Sµ1 | ≥ 2`

∣∣Good∗
]
, (9)

13

since µ1(x) has the most siblings when Good∗ occurs. (An argument as above shows
that the probability of Good∗ is non-zero, so conditioning on this event is ok.) Now,

Expµ1←U1
n

[
|Sµ1 |

∣∣Good∗
]

=
∑
x′ 6=x

Pr
µ1←U1

n

[
f(µ1(x′)) = f(µ1(x))

∣∣Good∗
]

=
∑
x′ 6=x

∑
y∈ size `

2+log `−1

Pr
µ1←U1

n

[
µ1(x) = y

∧
µ1(x′) ∈ siblingsf (y)

∣∣Good∗
]

=
∑
x′ 6=x

∑
y∈ size `

2+log `−1

Pr
µ1←U1

n

[
µ1(x) = y

∣∣Good∗
]
· Pr

µ1←U1
n

[
µ1(x′) ∈ siblingsf (y)

]
,

where we omit the (implicit) conditioning on the event “µ1(x) = y” in the second
probability since U1

n is n-wise independent. Continuing:

Expµ1←U1
n

[
|Sµ1 |

∣∣Good∗
]

=
∑
x′ 6=x

∑
y∈ size `

2+log `−1

1
|size `

2
+log `−1|

·
(
2−` · |siblingsf (y)|

)

=
∑

y∈ size `
2+log `−1

1
|size `

2
+log `−1|

·
(
2−`/2 − 2−`

)
· |siblingsf (y)|.

For y ∈ size `
2
+log `−1, we have `·2`/2

2 ≤
∣∣siblingsf (y)

∣∣ < ` · 2`/2, and therefore

`

2
·
(
1− 2−`/2

)
≤ Expµ1←U1

n

[
|Sµ1 |

∣∣Good∗
]
< ` ·

(
1− 2−`/2

)
.

Letting δx′ be an indicator random variable which is 1 if and only if f(µ1(x′)) =
f(µ1(x)), we see that |Sµ1 | =

∑
x′ 6=x δx′ . Relying on the fact that the δx′ are (n − 1)-

wise independent5 and applying Lemma 3, we see that |Sµ1 | ≥ 2` with only negligible
probability conditioned on occurrence of Good∗, and hence (by Eq. (9)) |Sµ1 | ≥ 2` with
only negligible probability conditioned on occurrence of Good. Since we have already
argued that Good occurs with probability at least 3/8, we conclude that, for ` large
enough, with probability at least 37/100 over choice of µ1 we have |Sµ1 | < 2`.

Sub-claim Let

S′µ1,µ2

def=
{
x′ : f(µ1(x′)) 6= f(µ1(x))

∧
µ2(f(µ1(x′))) = µ2(f(µ1(x)))

}
= siblingshµ1,µ2

(x) \ (Sµ1 ∪ {x}) ;

i.e., S′µ1,µ2
contains the x′ falling into the third category from above. Fix arbitrary

constant δ ∈ (0, 1]. Then with probability at least 1− `−1/2 − negl(n) we have

|S′µ1,µ2
| ≤ (1 + δ)2

`2

4`′

(
`

2
+

3
2

log `+ 1
)
.

5Since we are conditioning on µ1(x) ∈ size `
2+log `−1, we are left with only n− 1 degrees of freedom.

14

Proof (of sub-claim) First, we show that with probability at least 1 − `−1/2 over
choice of µ1, µ2, the set µ1(S′µ1,µ2

) lies entirely within size0, `
2
+ 3

2
log ` . We then show

that |S′µ1,µ2
∩µ−1

1 (size0, `
2
+ 3

2
log `)| is at most the claimed quantity with all but negligible

probability. Applying a union bound proves the claim.
Observe that∣∣∣image `

2
+ 3

2
log `+1,`

∣∣∣ =
∑̀

i= `
2
+ 3

2
log `+1

|imagei(f)|

≤
∑̀

i= `
2
+ 3

2
log `+1

(
2`

4`′

)
· 2−i ≤ 2

`
2

16`′`
3
2

, (10)

using Lemma 7. We now bound the probability that µ1(S′µ1,µ2
) ⊆ size0, `

2
+ 3

2
log ` by:

Pr
µ1,µ2

[
∀x′ ∈ S′µ1,µ2

: µ1(x′) ∈ size0, `
2
+ 3

2
log `

]
= 1− Pr

µ1,µ2

[
∃x′ : f(µ1(x′)) 6= f(µ1(x))

∧
µ2(f(µ1(x′))) = µ2(f(µ1(x)))∧

µ1(x′) ∈ size `
2
+ 3

2
log `+1,`

]
≥ 1− Pr

µ1,µ2

[
∃z′ ∈ image `

2
+ 3

2
log `+1,` : z′ 6= f(µ1(x))

∧
µ2(z′) = µ2(f(µ1(x)))

]
(setting z′ = f(µ1(x′)) to obtain the final inequality). Continuing, and using Eq. (10),
we have:

Pr
µ1,µ2

[
∀x′ ∈ S′µ1,µ2

: µ1(x′) ∈ size0, `
2
+ 3

2
log `

]
≥ 1− Pr

µ1,µ2

[
∃z′ ∈ image `

2
+ 3

2
log `+1,` : z′ 6= f(µ1(x))

∧
µ2(z′) = µ2(f(µ1(x)))

]
≥ 1−

∑
z∈image `

2+3
2 log `+1,`

(
1

2
`
2
−2 log `

)

≥ 1−

(
2

`
2

16`′`
3
2

)(
`2

2
`
2

)
≥ 1− `−1/2 ,

as desired.
We next work toward bounding the expected size of

S′′µ1,µ2

def=
{
x′ : x′ ∈ S′µ1,µ2

∧
µ1(x′) ∈ size0, `

2
+ 3

2
log `

}
= S′µ1,µ2

⋂
µ−1

1

(
size0, `

2
+ 3

2
log `

)
over choice of µ1, µ2. Toward this end, let y = µ1(x) be arbitrary and define

Wµ2

def=
{
y′ : f(y′) 6= f(y)

∧
µ2(f(y′)) = µ2(f(y))

∧
y′ ∈ size0, `

2
+ 3

2
log `

}
.

We will first bound the expected size of Wµ2 (over choice of µ2) and then use this and
the fact that µ1(S′′µ1,µ2

) ⊆Wµ2 to bound the size of S′′µ1,µ2
(over choice of µ1, µ2).

15

We can express |Wµ2 | as

|Wµ2 | =
∑

y′∈size
0, `

2+3
2 log `

\siblingsf (y)

δy′ ,

where the δy′ are indicator random variables equal to 1 iff µ2(f(y′)) = µ2(f(y)). Since
for y′ involved in the sum we have f(y′) 6= f(y), it holds that:(
|size0, `

2
+ 3

2
log `| − 2

`
2
+ 3

2
log `+1

)
· `

2

2`/2
≤ Expµ2←U2

n
[|Wµ2 |] ≤ |size0, `

2
+ 3

2
log `| ·

`2

2`/2

(depending on whether or not y ∈ size0, `
2
+ 3

2
log `). Using Lemma 7, we see that(

`

2
+

3
2

log `− `′
)
· 2`

4`′
≤ |size0, `

2
+ 3

2
log `| ≤

(
`

2
+

3
2

log `+ 1
)
· 2`

4`′
,

and so |size0, `
2
+ 3

2
log `| = Θ(2`) and µ def= Expµ2←U2

n
[|Wµ2 |] satisfies

µ = Θ(2`/2`2) and µ ≤
(
`

2
+

3
2

log `+ 1
)
· 2

`/2`2

4`′
.

Unfortunately, we cannot apply Lemma 3 to bound the deviation of |Wµ2 | from its
expectation since the indicator random variables {δy′} are not independent (in partic-
ular, if f(y′1) = f(y′2) then δy′1 = δy′2). Instead, we express |Wµ2 | as a weighted sum of
random variables as follows:

|Wµ2 | =
∑

z′∈image
0, `

2+3
2 log `

\{f(y)}

λz′ · δ′z′ ,

where the δ′z′ are indicator random variables equal to 1 iff µ2(z′) = µ2(f(y)), and λz′

is the number of pre-images of z′ under f . The {δ′z′} are n-wise independent, and so
we may apply Corollary 6. Note that λmax = maxz′{λz′} satisfies λmax = Θ(2`/2`3/2)
and so µ/λmax = Θ(`1/2), implying that µ/λmax > n for n large enough (recall that
` = Ω(n3)). So

Pr
µ2←U2

n

[
|Wµ2 | ≥ (1 + δ) ·

(
`

2
+

3
2

log `+ 1
)
· 2

`/2`2

4`′

]
≤ Pr

µ2←U2
n

[|Wµ2 | ≥ (1 + δ) · µ]

≤
(
nλmax

e2/3δ2µ

)bn/2c

= Θ
((n

`1/2

)bn/2c
)
,

where δ ∈ (0, 1] is an arbitrary constant to be fixed later. Using again the fact that
` = Ω(n3), the above is negligible.

Let SmallW denote the event that the bound

|Wµ2 | < (1 + δ) ·
(
`

2
+

3
2

log `+ 1
)
· 2

`/2`2

4`′

16

holds. Then:

Expµ1,µ2

[∣∣S′′µ1,µ2

∣∣ ∣∣ SmallW
]
≤ Expµ1,µ2

[∣∣{x′ : µ1(x′) ∈Wµ2

}∣∣ ∣∣ SmallW
]

=
∑

x′∈{0,1}`/2

Pr
µ1,µ2

[µ1(x′) ∈Wµ2

∣∣SmallW]

≤ 2`/2 ·

{
2−` · (1 + δ) ·

(
`

2
+

3
2

log `+ 1
)
· 2

`/2`2

4`′

}

= (1 + δ) · `
2

4`′

(
`

2
+

3
2

log `+ 1
)
.

(Recall that the set Wµ2 and the event SmallW depend only on µ2 and the value of
y = µ1(x); the fact that µ1 is chosen from an n-wise independent function family
thus justifies the above calculation.) We may view |S′′µ1,µ2

| as a sum of the indicator
random variables δ′′x′ which take on the value 1 iff µ1(x′) ∈ Wµ2 . Since the {δ′′x′} are
(n−1)-independent we may apply Corollary 4, and so with all but negligible probability
(conditioned on occurrence of SmallW):

∣∣S′′µ1µ2

∣∣ ≤ (1 + δ)2
`2

4`′

(
`

2
+

3
2

log `+ 1
)
. (11)

Since SmallW occurs with all but negligible probability, it follows that the above bound
on |S′′µ1,µ2

| holds with all but negligible probability over choice of µ1, µ2 (i.e., even
without conditioning on occurrence of SmallW).

Putting everything together, we have shown that with probability at least 1− `−1/2

it holds that µ1(S′µ1,µ2
) ⊆ size0, `

2
+ 3

2
log ` . So, with at least this probability we have

|S′µ1,µ2
| = |S′′µ1,µ2

|. We have also shown that with all but negligible probability Eq. (11)
holds. Applying a union bound, we see that with probability at least 1− `−1/2−negl(n)
we have ∣∣S′µ1µ2

∣∣ ≤ (1 + δ)2
`2

4`′

(
`

2
+

3
2

log `+ 1
)
,

as desired.

Combining the previous two sub-claims, we see that with probability at least 34/100 (for ` large
enough):∣∣∣siblingshµ1,µ2

(x)
∣∣∣ = 1 +

∣∣Sµ1 ∪ S′µ1,µ2

∣∣ ≤ 1 + 2`+ (1 + δ)2
`2

4`′

(
`

2
+

3
2

log `+ 1
)

≤ 2`+ (1 + δ)2
`2

4`′
(3`′) ≤ 4

5
`2

for ` large enough and by choosing (constant) δ small enough.

Claim 13 With all but negligible probability over choice of µ1, µ2 we have |hardhµ1,µ2
(x)| ≥ `.

Proof (of claim) Recall that

hardhµ1,µ2
(x) def=

{
x′ : f(µ1(x′)) 6= f(µ1(x))

∧
µ2(f(µ1(x′))) = µ2(f(µ1(x)))

∧
µ1(x′) ∈ size `

2

}
.

17

The analysis here is similar to the above, except that we now want to prove a lower bound. Let
y = µ1(x) be arbitrary, and define

Wµ2

def=
{
y′ : f(y′) 6= f(y)

∧
µ2(f(y′)) = µ2(f(y))

∧
y′ ∈ size `

2

}
.

We will bound the expected size of Wµ2 (over choice of µ2) and then bound the expected number
of x′ (over choice of µ1) such that µ1(x′) ∈Wµ2 . As in the proof of the previous sub-claim, we may
write |Wµ2 | as

|Wµ2 | =
∑

z′∈image `
2
\{f(y)}

λz′ · δz′ ,

where the δz′ are indicator random variables equal to 1 iff µ2(z′) = µ2(f(y)), and λz′ is the number of
pre-images of z′ under f . The value of µ def= Expµ2←U2

n
[|Wµ2 |] is exactly `2

2`/2 ·
∣∣∣size `

2
\ siblings(µ1(x))

∣∣∣,
and so

`2

2`/2
·
(

2`

4`′
− 2

`
2
+1

)
≤ µ ≤ `2

2`/2
· 2`

4`′

(using Lemma 7). In particular, µ = Θ(` · 2`/2). Furthermore, λmax
def= max{λz} = Θ(2`/2). We

now apply Corollary 6. Since µ/λmax = Θ(`), we have µ/λmax > n for large enough n (recall that
` = Ω(n3)). Let δ be a constant to be fixed later. Then, as in the previous sub-claim, with all but
negligible probability we have

|Wµ2 | ≥ (1− δ) · `
2

2`/2
·
(

2`

4`′
− 2

`
2
+1

)
.

Let LargeW be the event that the above bound holds. Conditioned on the occurrence of LargeW,
the expected number of x′ that µ1 maps to Wµ2 (which is the expected value of |hardhµ1,µ2

|) is:

∑
x′∈{0,1}`/2\{x}

2−` · |Wµ2 | ≥
(
2`/2 − 1

)
· 2−` · (1− δ) · 2

`/4`′ − 2`/2+1

2
`
2
−r

=
(

1− 1

2
`
2

)
(1− δ)

(
`2

4`′
− 2

2
`
2
−2 log `

)
= Θ(`).

(Here again, since the set Wµ2 and the event LargeW depend only on µ2 and the value of y = µ1(x);
the fact that µ1 is chosen from an n-wise independent function family justifies the above calculation.)
Applying Lemma 3, we see that with all but negligible probability (conditioned on occurrence of
LargeW):

|hardµ1,µ2(x)| ≥
(

1− 1

2
`
2

)
(1− δ)2

(
`2

4`′
− 2

2
`
2
−2 log `

)
≥ `

(
1− 1

2
`
2

)
(1− δ)2

(
5`′

4`′
− 2

`2
`
2
−2 log `

)
≥ `,

for ` large enough and by taking δ small enough. Since we have already shown that LargeW occurs
with all but negligible probability, this completes the proof of the claim.

Combining Claims 12 and 13 as discussed earlier completes the proof of Theorem 11.

18

3.3 Making Most Siblings Hard

The construction of the previous section has the property that for any x, the fraction of “hard”
siblings of x is noticeable with constant probability (cf. Theorem 11). Here, we show how to
“amplify” the construction so that the fraction of hard siblings is much larger; this is done by
simply running many copies of the previous construction in parallel.

Construction 3 Let ` = `(n) and let Hn = {hs : {0, 1}`/2 → {0, 1}`/2−2 log `}s∈S be as in Con-
struction 2. Set I = I(n) = 2`5. Construct H′ = {H ′n}n∈N where H ′n = {h′~s : {0, 1}`6 →
{0, 1}`6−4`5 log `}~s∈SI , and h′~s(~x) is defined via:

h′~s(x1 · · ·xI) = hs1(x1) · hs2(x2) · · ·hsI (xI),

for ~s = s1 · s2 · · · sI (with si ∈ S) and ~x = x1 · x2 · · ·xI (with xi ∈ {0, 1}`/2). ♣

Now, a hard sibling with respect to h′s1,...,sI
is simply a sibling whose ith component is a hard

sibling of hsi for some i. Formally:

Definition 5 Given ~s = s1, . . . , sI and x = x1 · · ·xI ∈ {0, 1}`
6
, define hardh′

~s
(x) to be the set of

x̄ = x̄1 · · · x̄I such that x̄i ∈ hardhsi
(xi) for some i. We also define the easy sibling set easyh′

~s
(x) def=

siblingsh′
~s
(x) \ hardh′

~s
(x). ♦

A straightforward hybrid argument in conjunction with Theorem 8 shows:

Lemma 14 Assuming F is a one-way function family, the following is negligible for all ppt A:

Pr[x← A(1n);~s← SI ; x̄← A(1n, ~s, x) : x̄ ∈ hardh′
~s
(x)].

More interesting is the following, which shows that the fraction of hard siblings is now much larger.

Lemma 15 Let x ∈ {0, 1}`
6

be arbitrary and define Ratio~s(x)
def= log

|siblingsh′
~s
(x)|

|easyh′
~s
(x)| . Then Ratio

def=

Exp~s←SI [Ratio~s(x)] does not depend on x, and Ratio ≥ `4/2 for ` large enough.

Proof The proof is straightforward. Let x = x1 · · ·xI , and let ψi denote an indicator random
variable which is equal to 1 if and only if∣∣∣easyhsi

(xi)
∣∣∣∣∣∣siblingshsi

(xi)
∣∣∣ ≤ 1− 1

`

(where easyhsi
(xi) is defined in the natural way as siblingshsi

(xi) \ hardhsi
(xi)). Note that the {ψi}

are independent. By Theorem 11, each ψi takes on the value 1 with probability at least 1/3.
Therefore, Exp[

∑
i∈I ψi] ≥ 2`5/3. Using a standard Chernoff bound, we see that with all but

negligible probability we have
∑

i∈I ψi ≥ 7`5/12. When this is the case, we have∣∣∣easyh′
~s
(x)
∣∣∣∣∣∣siblingsh′

~s
(x)
∣∣∣ =

∏
1≤i≤I

∣∣∣easyhsi
(xi)

∣∣∣∣∣∣siblingshsi
(xi)

∣∣∣ ≤
(

1− 1
`

)7`5/12

≤ e−7`4/12.

Hence with all but negligible probability we have Ratio~s(x) ≥ 7`4/12. The lemma follows.

19

3.4 Making All Siblings Hard

We now give a construction in which all siblings are hard with high probability. The construction
is parameterized by a value B = B(n); the role of B will become clear from Theorem 16.

Construction 4 Let U3 = {U3
n}n∈N be an n-wise independent function family such that U3

n =
{µ3,s : {0, 1}`6−B → {0, 1}`6}. (From now on, we drop explicit mention of the key s and simply
speak of functions µ3 ∈ U3

n.) Let H ′n = {h′~s}~s∈SI be as in Construction 3. Construct HB = {HB
n }

where HB
n = {hB

µ3,~s : {0, 1}`6−B → {0, 1}`6−4`5 log `}µ3∈U3
n;~s∈SI and hB

µ3,~s is defined as follows:

hB
µ3,~s(x) = h′~s(µ3(x)).

♣

We now prove the following:

Theorem 16 For y ∈ {0, 1}`6, define

Sibs~s(y)
def= log

∣∣∣siblingsh′
~s
(y)
∣∣∣ , Sibs

def= Exp~s←SI [Sibs~s(y)]

Easy~s(y)
def= log

∣∣∣easyh′
~s
(y)
∣∣∣ , Easy

def= Exp~s←SI [Easy~s(y)]

(as in Lemma 15, Sibs and Easy do not depend on the specific choice of y). Assume B satisfies

1
2
(
Sibs + Easy

)
≤ B ≤ 1

2

(
Sibs + Easy +

`4

4

)
,

and fix x ∈ {0, 1}`
6−B. Then with all but negligible probability (over choice of µ3, ~s), there does not

exist an x′ ∈ {0, 1}`6−B such that µ3(x′) ∈ easyh′
~s
(µ3(x)). In particular, then, with all but negligible

probability, if x′ is a sibling of x (with respect to hB
µ3,~s), then µ3(x′) is a hard sibling of µ3(x) (with

respect to h′~s).

We remark that only the lower bound on B is used in proving this theorem; the upper bound on
B will be used subsequently but we find it convenient to state it here.

Proof We will show something slightly stronger: namely, that the statement of the theorem
holds even when conditioned on the event µ3(x) = y, for arbitrary y ∈ {0, 1}`6 . (We let this
conditioning be implicit in everything that follows.) Letting Ratio be as in Lemma 15, we see that
Ratio = Sibs− Easy. We can then easily derive:

1
2
·
(
B − Easy

)
≥ 1

2
·
(

1
2
·
(
Sibs + Easy

)
− Easy

)
=

1
4
·
(
Sibs− Easy

)
=

1
4
· Ratio ≥ `4/8 ,

where the last inequality holds for ` large enough using Lemma 15.
Let µ3(x) = y = y1 · · · yI where I = 2`5 and yi ∈ {0, 1}`/2. Let Easy

(i)
si (yi)

def= log |easyhsi
(yi)|

and notice that Easy~s(y) =
∑

i∈I Easy
(i)
si (yi) and that the

{
Easy

(i)
~s (yi)

}
i∈I

are independent random

20

variables. Furthermore, we have 0 ≤ Easy
(i)
si (yi) ≤ `

2 since each yi ∈ {0, 1}`/2 can have at most 2`/2

siblings under hsi . Similarly, Easy~s(y) ≤ `6 (and hence the same bound holds for Easy). Applying
Lemma 2, we thus obtain:

Pr
~s←SI

[
Easy~s(y)− Easy ≥ 1

2
(
B − Easy

)]
≤ Pr

~s←SI

[∣∣Easy~s(y)− Easy
∣∣ ≥ `4/8] ≤ 2 · e−Ω(`),

and so with all but negligible probability,

Easy~s(y)−B ≤
1
2
(
Easy −B

)
≤ −`4/8.

When this is the case, the probability (over choice of µ3) that there exists an x′ ∈ {0, 1}`
6−B for

which µ3(x′) ∈ easyh′
~s
(y) is at most

2`6−B ·
|easyh′

~s
(y)|

2`6
= 2Easy~s(y)−B ≤ 2−`4/8

(using pairwise independence of U3
n), which is negligible. We conclude that with all but negligible

probability there does not exist an x′ ∈ {0, 1}`6−B such that µ3(x′) ∈ easyh′
~s
(µ3(x)).

As an immediate corollary of Lemma 14 and Theorem 16, we have:

Corollary 17 Assume B satisfies the condition stated in Theorem 16, and that F is a one-way
function family. Then the following is negligible for all ppt A:

Pr[x← A(1n);µ3 ← U3
n;~s← SI ; x̄← A(1n, µ3, ~s, x) : hB

µ3,~s(x) = hB
µ3,~s(x̄)

∧
x 6= x̄].

Given the above corollary, we are almost done. However, two problems remain to be solved.
The first problem is that whenever B(n) ≥ 4`(n)5 log `(n), functions in the family HB

n do not
compress their input. The second problem is that we do not, in general, know the value of B(n) as
required by Theorem 16. We address each of these problems in turn in the following sections.

3.5 Achieving Compression

First, we show how to ensure compression without affecting the result stated in Corollary 17.

Construction 5 Let U4 = {U4
n}n∈N be a pairwise independent function family such that U4

n =
{µ4,s : {0, 1}`6−4`5 log ` → {0, 1}`6−B− `

300 }. (From now on, we drop explicit mention of the key s
and simply speak of functions µ4 ∈ U4

n.) Let HB = {HB
n } be as in Construction 4. Construct

GB = {GB
n } where GB

n = {gB
µ3,~s,µ4

: {0, 1}`6−B → {0, 1}`6−B− `
300 }, and gB

µ3,~s,µ4
is defined as follows:

gB
µ3,~s,µ4

(x) = µ4(hB
µ3,~s(x)).

♣

We now show:

Theorem 18 Assume B satisfies the condition stated in Theorem 16, and fix x ∈ {0, 1}`6−B. Then
with all but negligible probability (over choice of µ3, ~s, µ4) we have siblingsgB

µ3,~s,µ4

(x) = siblingshB
µ3,~s

(x);
i.e., µ4 induces no additional collisions for x.

21

Proof If we can show that
∣∣∣image(hB

µ3,~s)
∣∣∣ ≤ 2`6−B− `

200 with all but negligible probability, then

the theorem follows using a simple union bound. Let Ratio~s(y) and Ratio be as in Lemma 15, and
Sibs~s(y), Easy~s(y), Sibs, and Easy be as in Theorem 16. Note that:

Sibs−B ≥ Sibs− 1
2
(Sibs + Easy)− `4

8
(using the assumed upper-bound on B)

=
1
2
(Sibs− Easy)− `4

8

=
1
2
Ratio− `4

8

≥ `4

8
(for ` large enough, by Lemma 15), (12)

and so, in particular, Sibs > B. We derive the desired bound on
∣∣∣image(hB

µ3,~s)
∣∣∣ by separately

bounding the expected sizes of image(hB
µ3,~s) intersected with, respectively, the sets

⋃
i≥Sibs

imagei(h
′
~s),⋃

Sibs>i≥B

imagei(h
′
~s), and

⋃
i<B

imagei(h
′
~s).

Claim 19 For ` large enough,

∣∣∣∣∣∣image(hB
µ3,~s) ∩

 ⋃
i≥Sibs

imagei(h
′
~s)

∣∣∣∣∣∣ ≤ 2`6−B− `4

8 .

Proof (of claim) This follows easily, since:∣∣∣∣∣∣image(hB
µ3,~s) ∩

 ⋃
i≥Sibs

imagei(h
′
~s)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃

i≥Sibs

imagei(h
′
~s)

∣∣∣∣∣∣
≤

`6∑
i=Sibs

2−i|sizei(h′~s)|

≤ 2−Sibs
`6∑

i=0

|sizei(h′~s)|

= 2`6−Sibs ≤ 2`6−B− `4

8

(for ` large enough), where the final inequality uses Eq. (12).

Claim 20 For any µ3 and with all but negligible probability over choice of ~s, we have6∣∣∣∣∣∣image(hB
µ3,~s) ∩

 ⋃
Sibs>i≥B

imagei(h
′
~s)

∣∣∣∣∣∣ ≤ 2`6−B− `
200
−2

for ` large enough.

6In [9], the bound obtained is 2`6−B+ `
40−1 which is not sufficient for the remainder of the proof there.

22

Proof (of claim) Again, we have:∣∣∣∣∣∣image(hB
µ3,~s) ∩

 ⋃
Sibs>i≥B

imagei(h
′
~s)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃

Sibs>i≥B

imagei(h
′
~s)

∣∣∣∣∣∣ ≤
Sibs−1∑
i=B

2−i|sizei(h′~s)| .

For arbitrary y ∈ domain(h′~s) = {0, 1}`6 , write y = y1 · · · yI where I = 2`5 and yi ∈ {0, 1}`/2. Let

Sibs
(i)
si (yi)

def= log |siblingsh′si
(yi)| and notice that Sibs~s(y) =

∑
i∈I Sibs

(i)
si (yi) and that the random

variables {Sibs
(i)
si (yi)}i∈I are independent. Furthermore, we have 0 ≤ Sibs

(i)
si (yi) ≤ `

2 since each
yi ∈ {0, 1}`/2 can have at most 2`/2 siblings. Similarly, Sibs ≤ `6. Applying Lemma 2 for any
a < Sibs, we see that:

Pr
~s←SI

[
|Sibs~s(y)− Sibs| ≥ a

]
< 2 · e−

2a2

3`7

which implies

Pr
~s←SI

[∣∣∣siblingsh′
~s
(y)
∣∣∣ ≤ 2Sibs−a

]
< 2 · e−

2a2

3`7 .

Since the above holds for any y, a standard calculation shows that for any ε < 1 at least
a (1 − ε) fraction of ~s satisfy the following condition: The fraction of y ∈ {0, 1}`6 such that

|siblingsh′
~s
(y)| < 2Sibs−a is at most 2 · e−

2a2

3`7 /ε. Fix ε = 2 · 2−
`

400 . For any i < Sibs, setting
a = Sibs − i − 1 shows that with probability at least 1 − ε (over choice of ~s), the fraction of
y ∈ {0, 1}`6 with fewer than 2i+1 siblings under h′~s is at most e−

2
3
(Sibs−i−1)2`−7

/2−
`

400 . Taking a
union bound over all i < Sibs, and using the fact that ε · Sibs is negligible, we have that with all
but negligible probability over choice of ~s, the following holds for all i < Sibs:

The fraction of y ∈ {0, 1}`6 with fewer than 2i+1 siblings is at most e−
2
3
(Sibs−i−1)2`−7

/2−
`

400 .

An equivalent way of expressing this is that with all but negligible probability over choice of ~s the
following holds for any i < Sibs:∑

j≤i

|sizei(h′~s)| ≤ 2`6+ `
400 e−

2
3
(Sibs−i−1)2`−7

(13)

and so, in particular, with all but negligible probability over choice of ~s:

|sizei(h′~s)| ≤ 2`6+ `
400 e−

2
3
(Sibs−i−1)2`−7

for all i < Sibs. (14)

It follows that with all but negligible probability over choice of ~s

Sibs−1∑
i=B

2−i|sizei(h′~s)| ≤
Sibs−1∑
i=B

2−i · 2`6+ `
400 · e−

2
3
(Sibs−i−1)2`−7

≤ 2`6+ `
400

Sibs−B−1∑
j=0

2j−Sibs+1 · e−
2
3
j2`−7

(setting i = Sibs− j − 1)

≤ 2`6+ `
400
−Sibs+1

Sibs−B−1∑
j=0

2j− 2
3
j2`−7

≤ 2`6+ `
400
−Sibs+1

Sibs−B−1∑
j=0

2Sibs−1−B− 2
3
(Sibs−1−B)2`−7

,

23

using for the last inequality the fact that j − 1
2j

2`−7 is increasing for j < `7 and Sibs ≤ `6.
Continuing, with all but negligible probability over choice of ~s we have:

Sibs−1∑
i=B

2−i|sizei(h′~s)| ≤ 2`6+ `
400
−Sibs+1 · Sibs · 2Sibs−1−B− 2

3
(Sibs−1−B)2`−7

= Sibs · 2`6+ `
400
−B− 2

3
(Sibs−1−B)2`−7

≤ 2`6−B+ `
400

+7 log `− 1
96

(`4−8)2`−7
(using Sibs ≤ `7 and Eq. (12))

≤ 2`6−B− `
200
−2,

where the final inequality holds for ` large enough. This completes the proof of the claim.

Claim 21 With all but negligible probability over choice of µ3, ~s, we have:∣∣∣∣∣image(hB
µ3,~s) ∩

(⋃
i<B

imagei(h
′
~s)

)∣∣∣∣∣ ≤ 2`6−B− `
200
−1.

Proof (of claim) Note that∣∣∣∣∣image(hB
µ3,~s) ∩

(⋃
i<B

imagei(h
′
~s)

)∣∣∣∣∣ ≤
∣∣∣∣∣
{
x′ ∈ {0, 1}`6−B : µ3(x′) ∈

⋃
i<B

sizei(h′~s)

}∣∣∣∣∣ .
Now, with all but negligible probability over choice of ~s we have:∣∣∣∣∣⋃

i<B

sizei(h′~s)

∣∣∣∣∣ =
B−1∑
i=0

|sizei(h′~s)|

≤ 2`6+ `
400 · e−

2
3
(Sibs−B)2`−7

(by Eq. (13))

≤ 2`6+ `
400 · 2−

1
96

(`4)2`−7
(using Eq. (12) and e > 2)

≤ 2`6− `
128 ,

where the final inequality holds for ` large enough. Assuming the above bound holds, the expecta-
tion (over choice of µ3) of the number of points x′ ∈ {0, 1}`6−B for which µ3(x′) ∈

⋃
i<B sizei(h′~s) is

at most 2`6−B− `
128 . Applying Corollary 4 shows that with all but negligible probability, the number

of x′ mapped to
⋃

i<B sizei(h′~s) is less than 2`6−B− `
200
−1. The claim follows.

Combining the preceding three claims (and applying a union bound), we see that with all but
negligible probability over choice of µ3, ~s we have

|image(hB
µ3,~s)| ≤ 2`6−B− `4

8 + 2`6−B− `
200
−2 + 2`6−B− `

200
−1

≤ 2`6−B− `
200 ,

for ` large enough. This completes the proof of the theorem, as discussed earlier.

Combining Corollary 17 and Theorem 18, we obtain:

24

Corollary 22 Assume B satisfies the condition stated in Theorem 16, and that F is a one-way
function family. Then the following is negligible for all ppt A:

Pr
[

x← A(1n);µ3 ← U3
n;~s← SI ;µ4 ← U4

n;
x̄← A(1n, µ3, ~s, µ4, x)

: gB
µ3,~s,µ4

(x) = gB
µ3,~s,µ4

(x̄)
∧
x 6= x̄

]
.

Proof By Theorem 18, with all but negligible probability over choice of µ3, ~s, and µ4 it holds
that any x̄ satisfying gB

µ3,~s,µ4
(x̄) = gB

µ3,~s,µ4
(x) also satisfies hB

µ3,~s(x̄) = hB
µ3,~s(x). So if there exists a

ppt A which outputs a sibling of x under gB
µ3,~s,µ4

with non-negligible probability, then there exists
a ppt A′ which outputs a sibling of x under hB

µ3,~s with non-negligible probability, contradicting
Corollary 17.

3.6 Removing the Non-Uniformity

There remains one final problem to solve. Corollary 22 holds only for values of B satisfying the
condition stated in Theorem 16. While this demonstrates the existence of a universal one-way hash
family via a non-uniform construction (which chooses a correct value of B = B(n) for each n),
it does not immediately yield a uniform construction of a universal one-way hash family. This
problem, however, is relatively easy to resolve. Recall from Theorem 16 that we only require B to
be within an additive factor of `4

16 from the quantity α = 1
2

(
Sibs + Easy

)
+ `4

16 . Furthermore, we
have 0 ≤ α < 2`6. Thus, by running sufficiently-many copies of gB in parallel (using all relevant
values of B) we will obtain a uniform construction of a universal one-way hash family. We give the
details now.

First, using GB and standard techniques [8, 4] we construct a family ḠB = {ḠB
n } where ḠB

n =
{ḡB

κ : {0, 1}`6 → {0, 1}`3} and such that, for B satisfying the condition stated in Theorem 16 an
appropriate analogue of Corollary 22 holds. Then, we proceed as follows:

Construction 6 Let ḠB be as discussed above. Let J = J(n) = 2`6/(`4/8) = 16`2. Construct
H̄ = {H̄n} where H̄n = {h̄κ0,...,κJ : {0, 1}`6 → {0, 1}(J+1)`3} and h̄~κ is defined as follows:

h̄κ0,...,κJ (x) = ḡ0
κ0

(x) · · · ḡi· `
4

8
κi (x) · · · ḡJ · `

4

8
κJ (x).

♣
Note that H̄ indeed compresses its input (for large enough n). Furthermore, an adversary who

finds a value x̄ 6= x for which h̄~κ(x̄) = h̄~κ(x) (for a pre-determined input x and randomly chosen
~κ) also finds a value x̄ 6= x for which ḡBi

κi
(x̄) = ḡBi

κi
(x) for all i (where Bi = i · `4

8). Since we are
guaranteed that Bi satisfies the conditions of Theorem 16 for some i ∈ {0, . . . , J}, a straightforward
hybrid argument yields the main result:

Theorem 23 Assuming F is a one-way function family, H̄ is a universal one-way hash family.

References

[1] M. Bellare and S. Micali. How to sign given any trapdoor permutation. J. ACM, 39(1):214–233,
1992.

[2] A. De Santis and M. Yung. On the design of provably-secure cryptographic hash functions. In
Advances in Cryptology — Eurocrypt ’90, volume 473 of Lecture Notes in Computer Science,
pages 412–431. Springer, 1991.

25

[3] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press,
2001.

[4] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge University
Press, 2004.

[5] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[6] S. Goldwasser, S. Micali, and A. Yao. Strong signature schemes. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, pages 431–439. ACM Press, 1983.

[7] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1997.

[8] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 33–43.
ACM Press, 1989.

[9] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, pages 387–394. ACM Press,
1990.

[10] J.P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications with
limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

26

