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Abstrat. We formalize the notion of a ryptographi ounter, whih

allows a group of partiipants to inrement and derement a rypto-

graphi representation of a (hidden) numerial value privately and ro-

bustly. The value of the ounter an only be determined by a trusted

authority (or group of authorities, whih may inlude partiipants them-

selves), and partiipants annot determine any information about the

inrement/derement operations performed by other parties.

Previous eÆient implementations of suh ounters have relied on fully-

homomorphi enryption shemes; this is a relatively strong requirement

whih not all enryption shemes satisfy. We provide an alternate ap-

proah, starting with any enryption sheme homomorphi over the ad-

ditive group Z

2

(i.e., 1-bit xor). As our main result, we show a general

and eÆient redution from any suh enryption sheme to a general

ryptographi ounter. Our main redution does not use additional as-

sumptions, is eÆient, and gives a novel implementation of a general

ounter. The result an also be viewed as an eÆient onstrution of a

general n-bit ryptographi ounter from any 1-bit ounter whih has

the additional property that ounters an be added seurely.

As an example of the appliability of our onstrution, we present a

ryptographi ounter based on the quadrati residuosity assumption

and use it to onstrut an eÆient voting sheme whih satis�es universal

veri�ability, privay, and robustness.

1 Introdution

1.1 Cryptographi Counters

In this paper we present an eÆient and seure protool for alulating the sum

of integers, where eah integer is held privately by a single partiipant. Although

it is lear that this an be ahieved via the ompleteness results for multi-party

omputation (see [14℄ for a omplete review of multi-party omputation and



related results), suh onstrutions are only of theoretial interest as they are

too ineÆient to be of pratial use. In order to onstrut our seure addition

protool, we introdue an abstration we all a ryptographi ounter that may

be of independent interest. In partiular, suh ounters may have a variety of

appliations, espeially as subroutines in larger multi-party omputations. We

give a formal de�nition of ryptographi ounters, and provide a onstrution

based on any enryption sheme homomorphi over the additive group Z

2

.

Informally, a ryptographi ounter is a publi string whih an be viewed as

an enryption of a value suh that the value is hidden from all partiipants exept

a trusted authority (who holds some seret key). Only the trusted authority an

derypt and thereby determine the value of the ounter, whereas all partiipants

have the ability to inrement or derement (update) the ounter by an arbitrary

amount. Information about updates (e.g., whether the ounter was inremented

or deremented) is kept hidden from all other partiipants. We also onsider

restrited ryptographi ounters for whih the set of legal update operations is

onstrained in some publily-known way.

Previous onstrutions of ryptographi ounters (in the ontext of voting

shemes) have relied on what we all fully-homomorphi enryption. Informally,

this is an enryption sheme for whih, for any n

0

> 0, there is some hoie of

the seurity parameter suh that the resulting enryption is homomorphi over

(the additive group) Z

n

, where n � n

0

. It is lear how a ryptographi ounter

an be onstruted given this strong property (the diÆult aspets of previous

onstrutions were providing eÆient proofs of validity and ahieving threshold

deryption). In this paper, we provide a onstrution of an n-bit ryptographi

ounter based on any 1-bit ryptographi ounter that also allows seure addition

(mod 2) of multiple ounters. This immediately implies a onstrution from any

enryption sheme homomorphi overZ

2

. As a onrete example, we present an

eÆient n-bit ounter based only on the quadrati residuosity assumption.

Addition is a useful funtion to ompute privately, as many of the urrently-

proposed appliations of seure multi-party omputation rely heavily on sum-

ming seret values held by di�erent individuals. It has partiular relevane to the

problem of seure eletroni voting, in whih eah partiipant holds a vote whih

is either 0 or 1, and the partiipants wish to determine the tally without revealing

individual votes. As an example of the appliability of ryptographi ounters, we

use them to build a seure voting sheme and ompare it to previously-proposed

solutions. In partiular, ours is the �rst eÆient onstrution of a voting sheme

whih is not based on fully-homomorphi enryption.

1.2 Seure Eletroni Voting

An eletroni voting sheme is a protool allowing voters to ast a vote by

interating with a set of authorities who ollet the votes, tally them, and publish

the �nal result. There are a variety of properties whih may be desired of an

eletroni voting sheme; however, the ryptographi literature has traditionally

foused on the following three requirements:



Privay ensures that an individual's vote is kept hidden from (any reasonably-

sized oalition of) other voters and even the authorities themselves.

UniversalVeri�abilitymeans that any party, inluding a passive observer, an

be onvined that all votes ast were valid and that the �nal tally was omputed

orretly.

Robustness guarantees that the �nal tally an be orretly omputed even in

the presene of faulty behavior of a number of parties.

It is furthermore desirable to minimize the interation between parties. In par-

tiular, voters should not have to interat with eah other to ast a vote or

(ideally) to prove validity of votes, and the authorities should be able to remain

o�-line until the eletion is onluded. Other features are not onsidered in the

present work. For example, information-theoreti privay is sometimes required

[8℄, while we only require omputational privay. Reeipt-freeness [2℄ and pre-

venting vote-dupliation an be ahieved by other means (see, for example, [17℄)

and are not onsidered here.

Many voting shemes meeting the above requirements have been proposed

[6,3, 4, 8, 9, 23, 10℄. However, all previously-known shemes ahieving universal

veri�ability rely on fully-homomorphi enryption shemes, where the homomor-

phism is over additive group Z

n

and n is larger than the number of voters (our

use of the term \fully-homomorphi" is explained above). One typial paradigm

is as follows: say voter i wishes to ast vote v

i

, where, for a valid vote, we have

v

i

2 f0; 1g. To vote, voter i publily posts

1

E

pk

(v

i

), the enryption of v

i

under

some publi key established by the set of authorities. When everyone has voted,

the authorities ompute the produt of the enryptions (whih an be publily

omputed) and derypt the result; this gives the orret �nal tally sine:

D

sk

(E

pk

(v

1

) � � �E

pk

(v

N

)) = v

1

+ � � �+ v

N

;

where equality holds by the homomorphi properties of the enryption sheme.

Depending on the level of trust in the authorities, they may also provide a (pub-

lily veri�able) proof that deryption was done orretly. In this way, everyone

is assured that all votes were orretly ounted.

Many examples of fully-homomorphi enryption shemes are known (for ex-

ample: [12, 6, 21℄). The voting shemes of [6, 3, 4℄ are based on the r-th residuosity

assumption, those of [8, 9, 23℄ are based on the disrete logarithm assumption in

prime groups, and the sheme of [10℄ is based on hardness of deiding residue

lasses in Z

�

N

2

. Even so, it is interesting to determine the minimal assumptions

under whih an eÆient voting protool an be onstruted.

We show how privay and universal veri�ability an be ahieved without

fully-homomorphi enryption. Our onstrution uses an n-bit ounter whih, in

turn, is onstruted from any enryption sheme homomorphi overZ

2

(i.e., the

1

This might be aompanied by a proof of validity, but for simpliity we fous here

on that portion of the protool whih relies on the homomorphi properties of the

enryption.



Size of Vote + Proof Voter Computation Authority Computation

[8℄ O(k

1

M) O(k

3

1

M) O(k

3

1

L)

[9℄ O(k

1

) O(k

3

1

) O(k

3

1

L)

Present work O(k

1

k

2

log L) O(k

2

1

k

2

log L) O(k

2

1

log L+ L)

Table 1. EÆieny of some voting shemes. L is the number of voters,M is the number

of authorities, k

1

is a seurity parameter, and 2

�k

2

is a bound on the probability of

heating (in [8, 9℄, the probability of heating is 2

�k

1

). Computation is measured in

bitwise operations, assuming multipliation of k-bit numbers requires O(k

2

) operations.

1-bit xor operation). Using as a spei� example the well-studied enryption

sheme based on the hardness of deiding quadrati residuosity [16℄, we show

how to ahieve robustness as well.

Often, basing a result on a weaker assumption results in an impratial

sheme. However, our resulting voting sheme is eÆient enough to be pratial.

A omparison of the eÆieny of our onstrution with those of [8,9℄ appears in

Table 1. Our simplest solution, while being both size- and omputation-eÆient,

requires sequential exeution and hene O(L) rounds (as ompared with previ-

ous solutions whih require O(1) rounds). We disuss ways of dealing with this

issue in Setion 5.

2 De�nitions

In this setion we formalize the notion of a ryptographi ounter. Although

related notions have been folklore in the ryptographi ommunity (partiularly

in the ontext of eletroni voting), a formal de�nition has, to the best of our

knowledge, not previously appeared.

Counters. In order to more easily de�ne a ryptographi ounter, we �rst need

a formal de�nition of a ounter.

De�nition 1. An n-ounter onsists of a set S along with a pair of algorithms

(D;T ) in whih:

{ S = fs

1

; : : :g represents the set of states of the ounter.

{ D, the deoding algorithm, is a deterministi algorithm whih takes as input

a state s 2 S and returns a number i 2 Z

n

. This de�nes a mapping from

states in S to numbers in the range [0; n� 1℄.

{ T , the transition algorithm, is a probabilisti algorithm whih takes as input

a state s 2 S and an integer i 2Z

n

and returns a state s

0

2 S. This funtion

de�nes legal update operations on the ounter.

We require that for all s 2 S and i 2Z

n

, if s

0

 T (s; i), then D(s

0

) = D(s) +

i mod n.

Note that subtration of integer i an be done by simply omputing the inverse

of i inZ

n

and adding �i using the transition algorithm.



Cryptographi Counters. We now turn to the de�nition of a ryptographi

ounter. We �rst de�ne its omponents, and follow this with de�nitions of se-

urity against two types of adversaries: honest-but-urious and maliious. All

algorithms are assumed to run in time polynomial in the seurity parameter k,

and n is �xed independently of k.

De�nition 2. A ryptographi n-ounter is a triple of algorithms (G; D; T ) in

whih:

{ G, the key generation algorithm, is a probabilisti algorithm that on input

1

k

outputs a publi key/seret key pair ( pk,sk) and a string s

0

. The seret

key, in turn, impliitly de�nes

2

an assoiated set of states S

sk

. It is the ase

that s

0

2 S

sk

.

{ D, the deryption algorithm, is a deterministi algorithm that takes as input

a seret key sk and a string s. If s 2 S

sk

, then D outputs an integer i 2Z

n

.

Otherwise, D outputs ?.

{ T , the transition algorithm, is a probabilisti algorithm that takes as input

the publi key pk, a string s, and an integer i 2Z

n

and outputs a string s

0

.

For any ( pk, sk) output by G(1

k

), de�ne D

0

= D(sk; �) and T

0

= T (pk; �; �). Then

we require that the set S

sk

along with algorithms (D

0

; T

0

) de�ne an n-ounter.

Furthermore, we require that D

0

(s

0

) = 0 (this represents initialization of the

ounter to 0).

Seurity (Honest-but-Curious). We briey desribe the attak senario

before giving the formal de�nition. Adversary A is given the publi key and the

initial state s

0

. The adversary then outputs

3

a sequene of integers i

1

; : : : ; i

`

2

Z

n

. The state is updated aordingly; that is, the transition algorithm T is run

` times, generating s

1

; : : : ; s

`

. All intermediate states are given to the adversary,

who then outputs x

0

; x

1

2 Z

n

. A bit b is seleted at random, and the ounter

is inremented by x

b

to give state s

�

. The adversary, given s

�

, must then guess

the value of b.

De�nition 3. We say that ryptographi n-ounter (G; D; T ) is seure against

honest-but-urious adversaries if, for all poly-time adversaries A, the following

is negligible (in k):

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Pr

2

6

6

6

6

6

6

6

6

4

(pk; sk; s

0

) G(1

k

)

(i

1

; : : : ; i

`

) A(1

k

; pk; s

0

)

s

1

 T (pk; s

0

; i

1

); : : : ; s

`

 T (pk; s

`�1

; i

`

)

(x

0

; x

1

) A(s

1

; : : : ; s

`

)

b f0; 1g

s

�

 T (pk; s

`

; x

b

)

b

0

 A(s

�

)

: b

0

= b

3

7

7

7

7

7

7

7

7

5

� 1=2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

2

Note that membership in S

sk

may not be eÆiently deidable when given only pk.

We require, however, that membership is eÆiently deidable, given sk.

3

These integers may be hosen adaptively, but for simpliity we present the non-

adaptive ase here. Note that the onstrution of Setion 3.2 ahieves seurity against

an adaptive adversary as well.



Seurity (Maliious). An honest-but-urious adversary is restrited to hav-

ing the inrement operations (whih he must distinguish between) performed

on a state distributed aording to the output of the transition algorithm T . A

maliious adversary, in ontrast, is allowed to selet the state to be inremented

freely. In fat, we allow the adversary to selet any string to be inremented

by T ; this allows us to deal with the ase in whih there is no eÆient way to

determine whether a string s is a valid state (i.e., whether s 2 S

sk

).

De�nition 4. We say that ryptographi n-ounter (G; D; T ) is seure against

maliious adversaries if, for all poly-time adversaries A, the following is negli-

gible (in k):

�

�

�

�

�

�

�

�

�

�

Pr

2

6

6

6

6

4

(pk; sk; s

0

) G(1

k

)

(s; x

0

; x

1

) A(1

k

; pk; s

0

)

b f0; 1g

s

�

 T (pk; s; x

b

)

b

0

 A(s

�

)

: b

0

= b

3

7

7

7

7

5

� 1=2

�

�

�

�

�

�

�

�

�

�

:

Verifiable Counters. It may sometimes be useful to verify whether tran-

sitions were indeed omputed orretly. For example, when using a ounter for

voting, it should be publily veri�able that eah voter ated in a orret manner.

We therefore de�ne the notion of a veri�able ryptographi ounter as follows:

De�nition 5. A veri�able ryptographi n-ounter is a tuple (G; D; T; V ) suh

that:

{ (G; D; T ) is a ryptographi n-ounter.

{ V , the veri�ation algorithm, is a probabilisti algorithm satisfying omplete-

ness and soundness for all (pk; sk) output by G, as follows:

1. (Completeness) For all s 2 S

sk

, if s

0

 T (pk; s; i) for some i 2Z

n

, then:

V (pk; s; s

0

) = 1:

(Note that V does not require i as input.)

2. (Soundness) For all s and all strings s

0

suh that for all i, s

0

is not in

the range of T (pk; s; i), the following probability is negligible (in k):

Pr[V (pk; s; s

0

) = 1℄:

Restrited Counters. De�nitions 1, 2, and 5 may be modi�ed to allow for the

possibility that although the ounter an store values in Z

n

, update operations

are restrited to some subset ofZ

n

. We all ounters with this property restrited.

An illustrative example is a ounter used in a voting sheme. Although the

ounter needs to be able to store values up to L (the number of voters), it may

be required to restrit update operations to the set f0; 1g (representing a yes/no

vote). Modi�ations to the de�nitions are straightforward.



Additive Counters. The transition algorithms desribed above take an old

state s and an integer i and output a new state s

0

whih represents the old value

inremented by i. However, de�nitions 1 and 2 may be modi�ed suh that the

transition algorithm takes an old state s and a seond state s

0

and then outputs a

new state s

00

whih represents the old value inremented by the value stored in s

0

.

Suh ounters are termed additive. Note that additive ryptographi n-ounters

inlude the ase of homomorphi enryption over Z

n

; yet, the former are more

general sine the transition algorithm need not be multipliation. De�nitions 3

and 4 an be modi�ed for the ase of additive ounters in the natural way.

3 Construting Cryptographi Counters

In Setions 3.1 and 3.2, we desribe the onstrution of a ryptographi n-ounter

based on any 1-bit additive ryptographi ounter. We also disuss the extension

to the ase of veri�able ryptographi ounters. In Setion 3.4, using as a par-

tiular example the enryption sheme based on quadrati residuosity [16℄ (see

Appendix A), whih is homomorphi over Z

2

, we give an eÆient onstrution

of a veri�able ryptographi n-ounter where update operations are restrited

to f0; 1g. This provides a natural foundation for a voting protool; we disuss

this onnetion further in Setion 4.

3.1 Linear Feedbak Shift Registers

Before presenting our main result, we provide an introdution to the theory of

linear feedbak shift registers; a more omprehensive treatment an be found

in [20, 19℄. Let r

1

; r

2

; : : : 2 f0; 1g be a sequene of elements (alled registers)

satisfying the k-th order linear reurrene relation:

r

j+k

= b

k

r

j+k�1

+ � � �+ b

1

r

j

; (1)

where b

i

2 f0; 1g (throughout this setion, addition is over the �eld Z

2

). The

sequene r

1

; r

2

; : : : is alled a linear reurring sequene. One the terms r

1

; : : : ; r

k

have been �xed, the rest of the sequene is uniquely determined. De�ne the j-

th state of this sequene to be the vetor (r

j

; : : : ; r

j+k�1

). Equation (1) de�nes

transitions between these states: given state s = (r

1

; : : : ; r

k

), the next state

s

0

= (r

0

1

; : : : ; r

0

k

) an be omputed as follows:

r

0

i

=

�

r

i+1

1 � i < k

f(r

1

; : : : ; r

k

) i = k

;

where the funtion f is given by (1) as:

f(r

1

; : : : ; r

k

) = b

k

r

k

+ � � �+ b

1

r

1

:

This sequene of states de�nes a linear feedbak shift register (LFSR). For the

present appliation, it is important to note that f an be omputed using xor

operations only.



Sine an LFSR has a �nite set of states, the sequene of states eventually

repeats. The number of states whih appear before the �rst state repeats (and

the sequene begins again) is alled the period. Clearly, an LFSR with period n

an be used to ount from 0 to n�1: hoose an arbitrary initial state giving rise

to a sequene of period n, label this initial state \0", and label every sueeding

state by one more than the label of its predeessor.

It is possible to assoiate with every LFSR (whose underlying reurrene

relation is given by Equation (1)) the harateristi polynomial g(x) = x

k

�

b

k

x

k�1

� � � � � b

1

. The period of an LFSR is related to the order of its hara-

teristi polynomial. In partiular, if the harateristi polynomial of an LFSR is

primitive

4

, then the LFSR has maximum possible period 2

k

� 1 (assuming the

initial state of the LFSR is not the zero vetor) [20, 19℄. Primitive polynomials

an be generated eÆiently using a probabilisti algorithm [22℄. It is thus pos-

sible to eÆiently onstrut an LFSR whih ounts from 0 to n � 1 using the

minimum possible dlog

2

ne registers (eah representing a single bit).

Given a state s of an LFSR (and assuming knowledge of the initial state),

it is easy to deode the state and determine the number it represents by either

ounting down from s to the initial state, or ounting up from the initial state

until state s is reahed. This requires time O(n). This proedure is fast, however,

even for large

5

n, sine eah state transition onsists of only simple, bitwise

manipulations (shifts and xors). More eÆient approahes are mentioned in

Setion 3.3.

3.2 General Constrution of a Cryptographi Counter

Theorem 1. An additive ryptographi 2-ounter seure against honest-but-

urious (resp. maliious) adversaries implies the existene of a ryptographi

n-ounter seure against honest-but-urious (resp. maliious) adversaries, for

all n of the form n = 2

x

� 1.

Sketh of Proof An enryption sheme homomorphi over (the additive

group) Z

2

is an example of an additive ryptographi 2-ounter seure against

honest-but-urious adversaries. For ease of exposition, we desribe the onstru-

tion of a ryptographi n-ounter using an enryption sheme (G; E ;D) whih is

homomorphi over Z

2

; it should be lear, however, that a substantially-similar

onstrution yields a ryptographi n-ounter starting from any additive ryp-

tographi 2-ounter.

We show how to use the enryption sheme as a building blok to onstrut

a ryptographi n-ounter. First, note that an LFSR (as desribed in Setion

3.1) is an n-ounter. The idea behind the onstrution is as follows: sine only

xor operations are needed to e�et transitions, the enryption sheme allows

4

A polynomial g 2Z

2

[x℄ of degree k is primitive if the smallest integer N for whih

gj(x

N

� 1) is N = 2

k

� 1.

5

For a typial voting sheme, n will be on the order of the number of voters. So, even

for the U.S. eletion, we have n only (roughly) 10

8

.



a partiipant to hange the ounter without leaking any information about the

transition. Below is a omplete desription of the protool (here, ` = dlog

2

ne):

Key Generation Algorithm G

0

(1

k

):

1. Run G(1

k

) to generate publi key pk

0

and seret key sk

0

.

2. Generate a primitive polynomial g 2Z

2

[x℄ of degree ` using [22℄.

3. Set r

1

= E

pk

0

(1) and r

2

= E

pk

0

(0); : : : ; r

`

= E

pk

0

(0).

4. Set s

0

= (r

1

; : : : ; r

`

), sk = (sk

0

; g), and pk = (pk

0

; g). Output pk; sk, and

s

0

.

Transition Algorithm [de�ned for i 2Z

n

℄ T ((pk

0

; g); (r

1

; : : : ; r

`

); i):

1. Polynomial g de�nes (nonzero) f(r

1

; : : : ; r

`

) = b

`

r

`

+ � � �+ b

1

r

1

(see Setion

3.1).

2. Repeat the following proedure i times

6

:

(a) Set r

0

1

= r

2

; : : : ; r

0

`�1

= r

`

.

(b) Set r

0

`

=

Q

`

i=1

r

b

i

i

.

() Set r

1

= r

0

1

; : : : ; r

`

= r

0

`

.

3. Set r

0

i

= r

i

� E

pk

0

(0), for 1 � i � `. Output s

0

= (r

0

1

; : : : ; r

0

`

).

Deryption AlgorithmD(sk = (sk

0

; g); s = (r

1

; : : : ; r

`

)):

1. Let r

�

i

= D

sk

0

(r

i

), for 1 � i � `.

2. Let s

�

= (r

�

1

; : : : ; r

�

k

)

3. Inrement the LFSR de�ned by polynomial g, beginning with initial state

(1; 0; : : : ; 0), until reahing state s

�

. Let t be the number of transitions made.

Output t.

The protool desribed above is a ryptographi n-ounter seure against an

honest-but-urious adversary. To see this, �x n. The size of the LFSR, `, is thus

a onstant (independent of the seurity parameter). A simple hybrid argument

shows that an adversary annot distinguish between random representations of

any two states of the ounter. Therefore, an adversary annot gain any infor-

mation about the urrent value of the ounter, nor about transitions made. We

leave a formal proof to the full version of the paper.

Note that if we start with a ryptographi 2-ounter seure against maliious

adversaries, the above onstrution is also seure against maliious adversaries.

When using an arbitrary enryption sheme homomorphi over Z

2

, the above

onstrution is seure against maliious adversaries if it an be eÆiently deter-

mined (given pk) whether a string represents a valid iphertext

7

; in this ase,

the transition algorithm must �rst hek whether every register in s represents

a valid iphertext before omputing s

0

(if this is not true, it aborts). ut

6

This algorithm an be made signi�antly more eÆient to run in time polynomial

in log n. This is disussed briey in Setion 3.3.

7

For example, in the ase of enryption using quadrati residuosity, it is possible to

tell whether a string C is a valid iphertext by heking that the Jaobi symbol of

C is 1.



In order to make the above onstrution veri�able, only a few hanges are

needed. First, we inlude a random string � in the publi key. Additionally, we

hange the transition algorithm so that after s

0

has been output, we append a

non-interative zero-knowledge proof (NIZK) [5℄ using random string � that the

transition from s to s

0

was valid. The veri�ation algorithm V runs the proof-

veri�ation algorithm for the NIZK proof. If the proof veri�ation sueeds, the

veri�ation algorithm outputs 1; otherwise, it outputs 0. A veri�able, restrited

n-ounter an be onstruted in a similar way.

3.3 Observations on the Cryptographi Counter Constrution

Linear feedbak shift registers have an algebrai interpretation: the state of an

`-bit LFSR represents an element of GF

�

(2

`

). Inrementing the ounter or-

responds to multipliation of the state by a generator, g, of the multipliative

group in GF

�

(2

`

). This allows for two important gains in eÆieny, whih are

highlighted below.

First, the ounter may be eÆiently updated by values larger than 1. In

partiular, the ounter may be inremented by value i in only O(`

2

log i) steps,

as opposed to the O(` � i) steps used in the transition funtion of Setion 3.2.

Next, note that the state of the LFSR an be viewed as an element of the

form g

j

in GF

�

(2

`

). Therefore, one an use algorithms for solving the disrete

logarithm problem to determine the value represented by the state of the LFSR,.

In partiular, it is relatively straightforward to determine the value of an `-bit

LFSR in time

p

2

`

, and an algorithm due to Coppersmith [7℄ allows deoding in

time O(2

`

1=3

(log

2=3

`)

).

3.4 An EÆient Cryptographi Counter

The well-known enryption sheme based on quadrati residuosity [16℄ (see Ap-

pendix A) is homomorphi over Z

2

. Appliation of Theorem 1 (see also foot-

note 7) shows that the onstrution outlined there results in a ryptographi

ounter seure against maliious adversaries when instantiated with this enryp-

tion sheme. If we are interested in veri�ability, however, the generi onstrution

of Setion 3.2 will be impratial unless there exists an eÆient NIZK proof that

the transition algorithm was exeuted orretly. In the ase of quadrati resid-

uosity, we show that eÆient NIZK proofs are possible. Sine we are interested

in eventual appliations to eletroni voting, we fous on the ase of a restrited

ounter where transitions are limited to either no hange in the ounter (a 0

vote) or inrementing the ounter by 1 (a 1 vote).

Consider the ryptographi ounter protool of Setion 3.2, instantiated with

enryption based on quadrati residues. Let N be a Blum integer whih is part

of the assoiated publi key. The string s = (r

1

; : : : ; r

`

) (with r

i

2 Z

+1

N

) is a

ryptographi representation of some state of the LFSR, but this underlying

state annot be determined unless one knows the seret key. However, following

a transition to s

0

= (r

0

1

; : : : ; r

0

`

), there are two possibilities: either

QR

N

(r

0

i

) = QR

N

(r

i

); for 1 � i � `; (2)



Prover Veri�er

r

1

; : : : ; r

`

2

R

Z

�

N

s

1

; : : : ; s

`

2

R

Z

�

N

b 2

R

f0; 1g

t

1

= r

2

1

X

1

; : : : ; t

`

= r

2

`

X

`

u

1

= s

2

1

Y

b

1

; : : : ; u

`

= s

2

`

Y

b

`

-

t

1

; : : : ; t

`

; u

1

; : : : ; u

`

 2

R

f0; 1g

�



b

0

= b� ; b

00

= b

0

� 1

z

1

= r

1

x

b

00

1

; : : : ; z

`

= r

`

x

b

00

`

-

z

1

; : : : ; z

`

; s

1

; : : : ; s

`

; b

0

; b

b

0

� b

?

= 

z

2

1

X

b

0

1

?

= t

1

; : : : ; z

2

`

X

b

0

`

?

= t

`

s

2

1

Y

b

1

?

= u

1

; : : : ; s

2

`

Y

b

`

?

= u

`

Fig. 1. Proof of validity for a ounter transition.

whih represents a 0 vote, or

QR

N

(r

0

i

) = QR

N

(r

i+1

); for 1 � i < ` and QR

N

(r

0

`

) = QR

N

(

`

Y

i=1

r

b

i

i

); (3)

(with b

i

as de�ned in Setion 3.2), whih represents a 1 vote. We seek an NIZK

proof that either ondition (2) or ondition (3) holds. Note that these onditions

are equivalent to the following: either

QR

N

(r

0

i

� r

i

) = 0; for 1 � i � `; (4)

or else

QR

N

(r

0

i

� r

i+1

) = 0; for 1 � i < ` and QR

N

(r

0

`

�

`

Y

i=1

r

b

i

i

) = 0: (5)

Therefore, an NIZK proof that one of (4) or (5) holds is suÆient.

In Figure 1 we desribe a protool whih takes as input two sequenes

X

1

; : : : ; X

`

and Y

1

; : : : ; Y

`

, and proves the following statement:

((QR

N

(X

1

) = 0)^� � �̂ (QR

N

(X

`

) = 0))_((QR

N

(Y

1

) = 0)^� � �̂ (QR

N

(Y

`

) = 0)):

(6)

By the arguments of the previous paragraph, this is suÆient for our appliation.

The prover knows the square roots of every element of at least one of these

sequenes

8

(for someone who honestly inrements the ounter by either 0 or 1,

8

Without loss of generality, we assume the prover knows the square roots for the

�rst input sequene; thus, in Figure 1, we assume the prover knows fx

i

g suh that

x

2

i

= X

i

, for 1 � i � `.



this will be the ase); these are the witnesses that these elements are quadrati

residues.

By repeating this protool k

2

times, the probability of heating is redued to

2

�k

2

. This protool an be made non-interative using the Fiat-Shamir heuristi

[13℄, by whih the hallenge of the veri�er is replaed by applying a hash funtion

(viewed as a random orale [1℄) to the statement to be proved and the �rst

message of the prover. Let H be a suitable hash funtion. The prover need only

send z

1

; s

1

; : : : ; z

`

; s

`

; b

0

; b as his proof. The veri�er an ompute t

i

= z

2

i

X

b

0

i

and

u

i

= s

2

i

Y

b

i

and then verify whether b

0

� b = H(X

1

; Y

1

; t

1

; u

1

; : : : ; X

`

; Y

`

; t

`

; u

`

).

Theorem 2. Take the ryptographi ounter as desribed in Theorem 1, instan-

tiated with enryption based on quadrati residuosity. An update of the ounter

now inludes a non-interative proof (as outlined in Figure 1 and using the Fiat-

Shamir heuristi) for statement (6). This then onstitutes a veri�able, restrited

ryptographi n-ounter (for all n of the form n = 2

x

�1) whih is seure against

maliious adversaries.

Sketh of Proof The protool given in Figure 1 onstitutes an honest-veri�er

perfet zero knowledge proof with soundness probability 1=2. The proof of this

fat follows from tehniques outlined in [11℄; we refer the reader there for disus-

sion and a omplete proof. Repeating the proof k

2

times (non-interatively, using

the Fiat-Shamir heuristi) redues the probability of heating to 2

�k

2

, and is a

non-interative zero-knowledge proof (in the random orale model). The ounter

is thus restrited in that updates are limited to adding an integer from f0; 1g,

and veri�able in that updates an be publily veri�ed as being in this range.

The seurity of the onstrution against a maliious adversary follows from

Theorem 1 and the zero-knowledge properties of the above protool. ut

3.5 Distributed Deryption of the Counter

We mention that robustness with respet to the trusted authorities an be

ahieved via distributed generation of the seret key along with threshold deryp-

tion of the �nal ounter (whih an always be ahieved via general multi-party

tehniques [15℄). For the partiular ase when enryption is done using quadrati

residuosity, we are able to ahieve eÆient distributed key generation and thresh-

old deryption [18℄. As this is not the fous of this work, we defer a omplete

disussion until the full version of the paper.

4 Voting with Cryptographi Counters

We briey disuss the appliation of ryptographi ounters to the problem of

eletroni voting. The disussion will be kept as general as possible. For eÆient

implementation, we have outlined above how it is possible to build an eÆient

sheme using the enryption sheme based on quadrati residuosity.

We follow the model introdued by Benaloh, et al. [6, 3, 4℄. The parties parti-

ipating in the eletion onsist of a set of voters V

1

; : : : ; V

L

and a set of authorities



A

1

; : : : ; A

M

, whih need not be disjoint. We assume that everyone has aess to

a bulletin board to whih all voters will post their messages. Messages are au-

thentiated, and the identity of a sender annot be forged, nor an messages to

the bulletin board be tampered with. Messages are listed in order of arrival (or,

equivalently, every message inludes the time it was sent), and no one an erase

anything from the bulletin board one posted. Note that we do not assume any

private hannels between voters and the authorities. We now give a high-level

desription of a voting protool based on a restrited ryptographi ounter; this

proves the following theorem:

Theorem 3. A voting sheme satisfying universal veri�ability, privay, and ro-

bustness an be eÆiently onstruted from any (robust) veri�able, restrited

ryptographi ounter seure against maliious adversaries (where votes are re-

strited to the set f0; 1g).

Sketh of Proof We desribe the voting protool assuming the existene of a

veri�able, restrited ryptographi n-ounter (where votes are restrited to the

set f0; 1g) seure against maliious adversaries. Robustness (with respet to the

authorities) follows if the ounter itself is robust (as desribed in Setion 3.5).

System Setup. The authorities run the key generation algorithm for the ryp-

tographi n-ounter. Here, n is hosen to be equal to the total number of voters

(or an upper bound on the number of voters if the exat number is unknown). If

robustness is desired, and/or if some voters are also authorities, the key genera-

tion may be done in a robust manner as outlined in Setion 3.5. The publi key

pk and the initial state s

0

are announed to all voters. The key generation step

may be the most expensive part of the entire protool, but it is only a one-time

operation whih an be done months before the eletion takes plae.

Voting. The ounter always holds the urrent vote total. The urrent ounter

value is always de�ned as the most reently posted (valid) ounter value. Denote

the ounter after the i

th

vote by s

i

. The (i+ 1)

th

vote is ast as follows: a voter

looks at the urrent ounter and omputes new state s

i+1

using the transition

funtion, the previous state s

i

, the desired vote v 2 f0; 1g, and the publi key

pk. The voter publishes this updated state s

i+1

whih then beomes the urrent

state (sine it is the most reently posted ounter). This proeeds for L rounds

until every voter has voted one (see Setion 5 for ways to redue the number of

rounds).

Universal veri�ability (and hene vote orretness) follows from veri�ability

of the ounter, and voter privay follows from the de�nition of seurity against

a maliious adversary. Robustness with respet to the authorities follows from

the (robust) distributed key generation and deryption.

Tallying. When the eletion is omplete, the authorities determine the �nal

tally by derypting the last (valid) ounter. If there is more than one trusted

authority, threshold deryption (see Setion 3.5) will be neessary. It may also

be desirable to have the authorities prove orretness of the deryption; note

that it is not aeptable to just publish the seret key, sine this would allow



determination of every voter's vote retroatively. In the partiular ase where

enryption is done via quadrati residues, the authorities an easily prove that

deryption was done orretly by publishing an x for eah enrypted value y

suh that y = �x

2

. ut

5 Conlusion

For small-sale eletions, the voting sheme outlined here (when based on the

enryption sheme using quadrati residuosity) is eÆient enough to be pratial

(f. Table 1). The required omputation and vote size are quite reasonable. One

drawbak to this sheme is the number of rounds required for voting to take plae.

When a single ryptographi ounter is used, the number of rounds is equal to

the number of voters, L. However, by using k ryptographi ounters, assigning

eah voter to one of k groups, and allowing voting to take plae in parallel, the

number of rounds an be redued to L=k. Even in a national eletion, suh an

approah may be aeptable; for example, by assigning a set of ounters to eah

voting distrit.

From a theoretial point of view, the approah outlined in this paper is

espeially interesting sine it was previously unlear whether voting ould be

done eÆiently without using fully-homomorphi enryption.
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A The Quadrati Residuosity Assumption

These de�nitions are standard [16, 11℄. We say y 2Z

�

N

is a quadrati residue modulo

N i� there exists an x 2Z

�

N

suh that y = x

2

mod N ; otherwise, y is a quadrati non-

residue modulo N . De�ne the prediate QR

N

(y) to be 0 i� y is a quadrati residue

modulo N , and 1 otherwise. For p prime, the problem of deiding quadrati residuosity

is equivalent to omputing the Legendre symbol. In fat, the Legendre symbol of y

modulo p is de�ned by L

p

(y) = +1 i� y is a quadrati residue, and �1 otherwise.

Now, let p; q � 3 mod 4 be primes and let N = pq (suh N are known as Blum

integers). No eÆient algorithm is known for deiding quadrati residuosity modulo

a Blum integer whose fatorization is not known. Some information is given by the

Jaobi symbol, whih extends the Legendre symbol as J

N

(y) = L

p

(y)L

q

(y). Despite

the way the Jaobi symbol is de�ned, it is well-known that it an be omputed in

polynomial time without knowledge of the fators of N . Appliation of the Chinese

Remainder Theorem shows that if J

N

(y) = �1, then y annot be a quadrati residue

modulo N . On the other hand, if J

N

(y) = +1, no polynomial-time algorithm is known

for omputing QR

N

(y) if the fatorization of N is unknown.

De�neZ

+1

N

as the set of elements ofZ

�

N

with Jaobi symbol 1. It is easy to generate

a random y 2 Z

+1

N

whih is a quadrati residue: hoose random r 2 Z

�

N

and set

y = r

2

mod N . It is equally easy to generate a random quadrati non-residue: hoose

random r 2 Z

�

N

and set y = �r

2

mod N . This suggests the following semantially

seure enryption sheme [16℄: the publi key is a Blum integer N , and the seret key

is the prime fators of N . To enrypt a 0, send a random quadrati residue; to enrypt

a 1, send a random quadrati non-residue. This an be extended to n-bit messages in

the obvious way, by onatenating n single-bit enryptions.

When y

1

; y

2

2 Z

+1

N

, it is easily veri�ed that QR

N

(y

1

y

2

) = QR

N

(y

1

) �QR

N

(y

2

).

This shows that the above enryption sheme is homomorphi over addition in its

message spae Z

2

.


