
Chapter 8

Implementation Pitfalls

We have now learned about several very important cryptographic objects, including block ciphers,
encryption schemes, message authentication schemes, and hash functions. Moreover, we discussed
how to construct instances of some of these cryptographic objects such that the constructs are
provably secure under reasonable assumptions. For example, in Theorem 5.19 we show that CBC$
is a secure encryption scheme under chosen-plaintext attacks if we assume that the base block cipher
is a secure PRF or PRP with a large block size. We have also shown that some cryptographic objects
are insecure, e.g., the attack against CBCC in Section 5.5.3.

Let us now step back for a moment and ask ourselves how to apply what we have learned in
practice. Suppose that our employer asks us to design and implement the cryptographic portion
of some software application. How should we proceed and, more importantly, what should we be
careful about? Similarly, what should we look out for when deciding whether to use someone else’s
cryptographic product?

There are plenty of mistakes that one could accidentally make when designing and implementing
the cryptographic portion of a system. Here we look at some of the most common pitfalls, and we
discuss how these pitfalls relate to what we have already learned in class. At a very high level, to
avoid the most common pitfalls, we suggest that people implementing cryptography:

1. Use widely accepted and believed to be secure cryptographic primitives (like AES).

2. Use a construction that is provably secure under reasonable assumptions (like CBC$; Theorem
5.19).

3. Do not assume that a construction has any security properties besides what you have proven
(e.g., an encryption scheme may not provide authenticity).

4. Realize that simply the use of a secure scheme (like CBC$) does not immediately imply that
your entire system will be secure.

5. Make sure that your implementation corresponds exactly to what you or someone else proved
secure (e.g., be careful about how you generate “random” bits for keys and IVs).

1

2 IMPLEMENTATION PITFALLS

8.1 Not using standard primitives

¿From our discussions in Chapters 3 and 6, it should be clear that it is very difficult to design
strong cryptographic primitives like DES, AES, and SHA1. Classically, one of the biggest pitfalls
in designing systems that use cryptography is to try to invent a new cryptographic primitive and
to not subject the security of that new primitive to the scrutiny of the cryptographic community.

Let us consider one example: a block cipher standardized by the ITU and used in ATM-based
passive optical networks [8]. The block cipher, CHURN: {0, 1}8 × {0, 1}4, works as follows.

algorithm CHURNK(M)
Parse M as bits M [1]‖M [2]‖M [3]‖M [4]
Parse K as bits K[1]‖K[2]‖K[3]‖K[4]‖K[5]‖K[6]‖K[7]‖K[8]
If K[1] = 1 then swap M [1] and M [2]
If K[2] = 1 then swap M [3] and M [4]
N [1] = M [1]⊕K[3] ; N [2] = M [3]⊕K[4]
N [3] = M [2]⊕K[5] ; N [4] = M [4]⊕K[6]
If K[7] = 1 then swap N [1] and N [2]
If K[8] = 1 then swap N [3] and N [4]
return N [1]‖N [2]‖N [3]‖N [4]

The inverse is defined in the natural way.

Can you spot what is wrong with this design? It’s an incredibly simply design, and very insecure.
The key is only 8-bits long. And the block size is only 4-bits long. Yet this scheme will supposedly
see widespread use on ATM-based passive optical networks [8]. After reading Chapters 3 and 4, we
doubt that anyone in this class would think of using the CHURN block cipher. Yet it might seem
like an attractive design to someone who has not taken this course.

There are other block ciphers that might appear secure at first glance, but really are not. A
wonderful example is the block cipher FEAL: {0, 1}64 × {0, 1}64 → {0, 1}64 [7]. We don’t describe
the cipher here, but note that it is possible to recover the key using only several thousand known
plaintexts [3], or 8 chosen plaintexts [2]. This means that we can construct a practical adversary

A such that Adv
prf
FEAL(A) is very close to 1. Let’s follow the implications of this to CBC$ built

from FEAL. Theorem 5.19 tells us that given an adversary A against CBC$, we can construct an
adversary B against FEAL such that

Adv
ind-cpa
CBC$ (A) ≤ Adv

prf
FEAL(B) +

σ2

265
.

Here we assume that adversary A’s oracle queries total at most σ 64-bit blocks. But since
Adv

prf
FEAL(B) may be very close to 1, this theorem does not imply that Adv

ind-cpa
CBC$ (A) is small, as

would be necessary for us to conclude that CBC$ built from FEAL is secure. Therefore, we cannot
use Theorem 5.19 to argue the security of CBC$ built from FEAL. (This is as it should be since
CBC$ built from FEAL is not secure. Given only the information above, can you see why?)

(There have also been a number of published attacks against custom built stream ciphers for
the cell phone industry. If there is interest, we can discuss these results too.)

The lesson here is to use widely accepted and believed-to-be secure cryptographic primitives,
and to be wary of any product that does not. There are not too many such believed-to-be secure
primitives. AES, DES, and SHA1 are among the select few.

Kohno 3

8.2 Using a construct without proofs of security

There have been numerous cryptographic protocols, like encryption schemes and MACs, that did
not come with proofs of security. That’s not surprising since people did not start to prove the
security of block cipher-based encryption schemes and MACs until the 1990s. What is unfortunate
is that, without proofs of security, it is impossible to know whether a construction is actually secure
or not. In fact, in the exercises you have already been asked to find attacks against constructions
that do not come with proofs of security, even if they might appear secure at first sight.

Nowadays, many more people understand that it is important to use cryptographic protocols
that come with proofs of security. Still, it is not uncommon to find homebrew security software
using the ECB encryption mode, or something akin to CBCC. (We’ll get back to some examples
later.)

Hopefully, the discussions in Chapters 4 through 7 strongly motivate the fact that, whenever
possible, software applications should use constructions that are provably secure under reasonable
assumptions.

8.3 Not considering the security bounds

Another common implementation pitfall is to not fully understand the security bounds in the proofs.
We saw a little bit of this when we discussed CBC$ with FEAL in Section 8.1 of this chapter. But
now let’s consider the case where we actually believe that the underlying cryptographic primitive
is secure.

Let us define the encryption scheme CTRS$[L] = (K, E ,D) with a block cipher E: {0, 1}k ×
{0, 1}n → {0, 1}n. Here L is an integer between 1 and n−1, and is a parameter of our construction.
The key generation algorithm returns a randomly selected value from {0, 1}k. The encryption algo-
rithm is shown below, and the decryption algorithm is defined in the natural way. This construction
is very similar to CTR$ from Chapter 5.

algorithm EK(M)
m← d|M |/ne
If m ≥ 2n−l then return ⊥

R
$

← {0, 1}L

Pad← EK(R‖〈1〉)‖EK(R‖〈2〉)‖ · · ·EK(R‖〈m〉)
Pad← the first |M | bits of Pad
C ′ ←M⊕Pad
C ← R‖C ′

return C

Here 〈x〉 denotes the n− L-bit encoding of the integer x ∈ {0, . . . , 2n−L − 1}.
We can prove the following result about the above construction.

Theorem 8.3.1 Let E: {0, 1}k×{0, 1}n → {0, 1}n be a family of functions, let L ∈ {1, . . . , n− 1}
be an integer, and let CTRS$[L] = (K, E ,D) be the corresponding CTRS$[L] symmetric encryp-
tion scheme as described above. Let A be an adversary (for attacking the IND-CPA security of
CTRS$[L]) that runs in time at most t and asks at most q queries, these totaling at most σ n-bit
blocks. Then there exists an adversary B (attacking the PRF security of E) such that

Adv
ind-cpa
CTRS$[L](A) ≤ Adv

prf
E (B) +

q2

2L+1
. (8.1)

4 IMPLEMENTATION PITFALLS

Furthermore B runs in time at most t′ = t + O(q + nσ) and asks at most q′ = σ oracle queries.

Do you think that this theorem means that CTRS$[L] is secure, assuming that the block cipher E
is secure?

The answer is: it depends. Since L is a parameter of the above construction, those implementing
the above construction may set L to any value of their choice, e.g., 24, 40, 64, or 80. The only
requirement is that L should not change between successive invocations of E and D. Regardless of
what we choose to use for L, we need to plug L, and reasonable values of q, into Equation (8.1)
before using Theorem 8.3.1 to argue that our implementation is secure.

The Wired Equivalent Privacy (WEP) encryption scheme for IEEE 802.11 wireless networks
uses something like CTRS$[L], with L = 24 [4]. (WEP actually uses a stream cipher named RC4,
but that detail does not affect our discussion here. Its worth noting that there are many other
problems with WEP.) If we substitute the fact that WEP uses L = 24 into Equation (8.1), we get
that

Adv
ind-cpa
CTRS$[24](A) ≤ Adv

prf
E (B) +

q2

225
.

If we continue by replacing q with 4096, the equation becomes

Adv
ind-cpa
CTRS$[24](A) ≤ Adv

prf
E (B) +

1

2
.

This means that we cannot use Theorem 8.3.1 to argue that WEP will provide privacy against
adversaries that make a small number of chosen-plaintext oracle queries. The above equation alone
should be enough of an indication to us that it might not be a good idea to use CTRS$[L], for small
L like L = 24. That intuition is correct. Indeed, one can construct an efficient adversary against
the chosen-plaintext privacy of CTRS$[24] such that the adversary has high advantage. (Can you
construct such an adversary?)

Using CTRS$[L] for large L, like L = 80, is still certainly reasonable.

8.4 Not using the right tool

Another very common pitfall is accidentally using the wrong tool for a task. In particular, it
is very tempting to believe that encryption schemes provide some sort of message authenticity
guarantees. Unfortunately, this is not necessarily true. We discussed this a lot in Section 7.2
when we motivated the need for message authentication codes. Still, confusing the properties of a
cryptographic construct is serious enough and common enough to warrant re-mentioning here.

The general principle here is: it is very risky to assume that a cryptographic construct has
properties other than what you or others can prove. Using a provably secure construction, but
assuming the wrong properties, raises effectively the same concerns that we raised in Section 8.2,
except that the problem here is more subtle: because the construction has a proof (of a different
property), it is very easy to become confused about what properties the construction actually has.

Unfortunately, many systems have been attacked because the designers apparently assumed
that an encryption scheme also provides message authenticity. For example, message authentication
codes were not an integral part of the original IPsec specification, and this made IPsec vulnerable
to certain attacks [1]. The first version of SSH also did not use a message authentication code [10].
And the IEEE 802.11 WEP construction does not use a message authentication code [4].

Kohno 5

8.5 Not implementing exactly the construction that is provably

secure

Another general class of failures is taking something that is provably secure, like CBC$ with a
believed-to-be-secure block cipher, but not implementing the construction exactly the way it was
described when it was proven secure.

The problem is, unfortunately, that even the slightest tweak to a provably secure construct can
render it insecure. This is again basically a rephrasing of our concern in Section 8.2 since, if one
changes even a small portion of a construction that is provably secure, the original proof may no
longer apply.

Let us consider some examples. The electronic voting machine manufacturer Diebold decided
to encrypt their voting records using CBC$, but instead of using a random IV, they chose to always
use the all zero block as the IV [6]. Let’s refer to this variant of CBC$ as CBC0 since the IV is
always zero. Unfortunately, Diebold’s decision to remove the randomness from CBC$ makes CBC0
stateless and deterministic. This has the same problems as encrypting a message with ECB mode
— it will leak information. So the discussion earlier about not wanting to leak voter preferences
via a stateless and deterministic encryption scheme was not very far off.

As another example, Microsoft was recently in the media because their Microsoft Word and
Excel products use something like CTRS$[L], except that they chose to use the same value for
R each time they encrypt a file [9]. Unfortunately, by not implementing CTRS$[L] exactly as
described in Section 8.3 of this chapter, the encryption method in Microsoft Word and Excel fails
to provide privacy under chosen-plaintext attacks.

As another example simple change that could render a implementation insecure, consider CTRC
from Scheme 5.7. If a developer forgot to make the ctr variable static (i.e., if E reset ctr to 0
upon every invocation), then the implementation would not provide privacy under chosen-plaintext
attacks.

8.6 Random numbers

Random numbers play an incredibly important role in cryptography. Consider any of the provably
secure encryption or message authentication schemes from the previous chapters. Notice that they
all use random coins in some way or another. For example, the encryption algorithm for CBC$
uses random coins every time it encrypts a message. And all of the provably secure encryption
schemes and message authentication schemes use random coins in their key generation algorithms.

For concreteness, let us consider the key generation and encryption algorithms for CBC$ built
with the block cipher E: {0, 1}k × {0, 1}n → {0, 1}n (copied here from Figure 5.2):

algorithm K

K
$

← {0, 1}k

return K

algorithm EK(M)
if (|M | mod n 6= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]

IV
$

← {0, 1}n

C[0]← IV
for i← 1 to m do

C[i]← EK(C[i− 1]⊕M [i])
C ← C[i] · · ·C[m]
return 〈IV, C〉

6 IMPLEMENTATION PITFALLS

Given this description, and a description of the block cipher E, any experienced C or Java program-
mer should be able to easily implement most parts of the above algorithms. This is because almost
all of the operations in the above pseudocode are common to all popular languages. For example,
the “←” operation corresponds to the standard assignment operator (“=” in C and Java). The

programmer might, however, be puzzled about how to implement the “
$

←” randomized assignment
operator from the lines

K
$

← {0, 1}k

and

IV
$

← {0, 1}n .

It is worth thinking about how a programmer might instantiate the “
$

←” operation in C or Java.
In order to implement the algorithms exactly as described in the above pseudocode, the operation

“
$

←” must select bits independently and uniformly at random. If an implementation of CBC$
does not do this, then the implementation is not exactly the object described above and in Figure
5.2. At a minimum, this means that the security of the software implementation of CBC$ does
not immediately follow from Theorem 5.19. In the worst case, not only might the security of
the software implementation not follow from Theorem 5.19, but the software implementation may
actually be insecure.

The first problem is that it is hard for computers, which are inherently deterministic, to select
bits independently and uniformly at random. Therefore, people implementing cryptosystems are

left to approximate the
$

← operation as best they can. The second problem is that there are many

natural approaches for trying to implement the
$

← operation in C or Java, and some of these
approaches can actually yield an insecure implementation. We consider some example (flawed)

approaches for instantiating
$

← here.

8.6.1 The C random number generator

The C programming language has a built in “random number generator,” called rand. Associated

to rand is another function named srand. Therefore, a natural way to try to implement
$

← would
be to use rand and srand.

At a high level, the way a programmer is supposed to use rand and srand is as follows. The
program is first supposed to call srand(seed), where seed is the “seed” to the C random number
generator. After calling srand, the program can invoke rand() any number of times. Each time
rand() will return a value that is supposed to appear random. Therefore, a natural way for trying
to generate a large number of random bits is to invoke rand() as many times as necessary. Here
we ignore how the programmer picks seed.

Let us look under the hood and see how rand and srand work. Although different systems
implement these functions in slightly different ways, there is a lot of commonality between the
code for these functions on different systems. Below we show the code for srand and rand on one
popular system. For this system, state is a global 32-bit unsigned integer. We do not present
actual C code, but try to capture as the essence of these functions in C-like pseudocode.

procedure srand(seed)

state = seed;

function rand()

state = ((state * 1103515245) + 12345)

mod 2147483648;

return state

Kohno 7

Here 2147483648 is 231.
Let us now consider how a programmer might use rand to implement the CBC$ encryption

scheme’s key generation algorithm. We show our traditional pseudocode on the left, and a C-like
pseudocode on the right.

algorithm K

K
$

← {0, 1}k

return K

function keygen()

key = rand();

return key

The first observation that we make is that, since rand returns a 32-bit integer, key must also be
a 32-bit integer. If k > 32, then the implementation would clearly not be using a key selected
randomly from the set of all strings k-bit strings {0, 1}k. The security implications of this should
be clear. While we consider it impractical to exhaustively search a randomly selected 128-bit AES
key, it would be practical to exhaustively search a 32-bit key generated via the above keygen code.

To fix the problem, one might try invoking rand() multiple times. For example, if the block
cipher is AES with k = 128, the above pseudocode might change to:

algorithm K

K
$

← {0, 1}128

return K

function keygen()

key[0] = rand(); key[1] = rand();

key[2] = rand(); key[3] = rand();

return key

where key is a now a four-element array of 32-bit unsigned integers.
But there is still something seriously wrong with the above implementation of keygen that

could compromise the security of CBC$. To see the problem, let us return to how rand works. By
looking at how rand works, we find that

key[1] = ((key[0] · 1103515245) + 12345) mod 231

key[2] = ((((key[0] · 1103515245) + 12345) · 1103515245) +

12345) mod 231

key[3] = ((((((key[0] · 1103515245) + 12345) · 1103515245) +

12345) · 1103515245) + 12345) mod 231

This means that now, even though key is now a 128-bit value (an array of four 32-bit elements),
there are only 232 possibilities for key. An adversary could therefore exhaustively search key using
at most 232 tries.

8.6.2 Key generation and the Netscape browser

¿From the above discussion, it should be clear that there are serious problems in one of the most
natural approaches for trying to generate random numbers in software (using rand). There are two
problems with rand. First, the state variable of rand is only 32-bits long, which means that the
state can be exhaustively search using reasonable resources. Second, knowing one value of state

(e.g., Key[0]) allows us to compute all previous or subsequent outputs of rand (e.g., Key[1],
Key[2], and Key[3]).

Rather than use (rand), another natural approach for trying to create random numbers is to
try to exploit properties of believed-to-be secure cryptographic objects, like AES or SHA1. This is
exactly what version 1.1 of the Netscape browser did [5]. The following C-like pseudocode shows

8 IMPLEMENTATION PITFALLS

the two main functions in Netscape’s random number generator. We simplify the functions in order
to capture the important properties.

procedure NetscapeRandSetup()

pid = process ID;

ppid = parent process ID;

seconds = current time of day
(seconds);

microseconds = current time of day
(microseconds);

x = concatenation of pid, ppid,
seconds, microseconds;

NSseed = SHA1(x);

function NetscapeGetRand()

rv = SHA1(NSseed);

NSseed = NSseed + 1 mod 2160;

return rv;

Here NSseed is a global 160-bit (20 byte) string, which we sometimes interpret as a 160-bit unsigned
integer; NS standards for Netscape, to avoid confusion with the seed variable used with C’s standard
rand function. As for why NSseed is 160-bits long, recall that SHA1 outputs a 160-bit value. This
construction does seem better than rand. For example, given an output of NetscapeGetRand,
and assuming reasonable properties of SHA1, it would seem hard to predict the next output of
NetscapeGetRand. Or at least that’s the intuition.

Below we show how Netscape 1.1 would instantiate K using the above functions:

algorithm K

K
$

← {0, 1}128

return K

function keygen();

NetscapeRandSetup();

tmp = NetscapeGetRand();

key = first 128-bits of tmp;
return key

Does the above keygen function generate keys uniformly and independently at random? Certain
keygen uses a strong cryptographic object (SHA1) in its design, and it might be tempting to assume
that the use of SHA1 “randomizes” the value of the output key.

Unfortunately, this reasoning is flawed. In particular, note that key ultimately depends only
on the values of pid, ppid, seconds, and microseconds. If an adversary observes the time that
it sees a user send an encrypted message, it would likely be able to guess seconds. Further, under
many natural assumptions, the adversary would also be able to guess or exhaustively search the
values for pid, ppid, and microseconds. Thus, an adversary would be able to exhaustively search
key using a reasonable amount of resources, even though key is a 128-bit value.

8.6.3 Randomness during encryption

Let us now turn our attention to the CBC$ encryption algorithm. Recall that the CBC$ encryption
algorithm is supposed to select the IV uniformly at random from {0, 1}128. It turns out that if the
implementation of the encryption algorithm tries to do this, but instead selects the IV in a way
that the adversary could predict, then the CBC$ implementation will fail to preserve the privacy of
the encapsulated messages. (This is similar to Diebold’s mistake, from Section 8.5, of always using
the all zero block as the IV. However, in this case we assume that the designer is actually trying
to implement CBC$ exactly as specified in Figure 5.2.)

Kohno 9

Let us consider a simple example. Let us define a variant of CBC$, called CBCCIV. This variant
uses the assumption that the last ciphertext block of a CBC$-encrypted message has “randomness”
properties, and therefore can be used as the IV to encrypt the next message. This is a seductive
assumption since we can prove that CBC MAC (Scheme 7.4) on fixed length messages is a secure
PRF (the proof of this property is not stated in Chapter 7, but it is used in the proof of Theorem
7.5). For clarity, we show the encryption algorithm for CBCCIV below:

algorithm EK(M)

if IV is undefined then IV
$

← {0, 1}n

if (|M | mod n 6= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
C[0]← IV
for i← 1 to m do

C[i]← EK(C[i− 1]⊕M [i])
C ← C[i] · · ·C[m]
IV← C[m] // save last block as IV for next invocation
return 〈IV, C〉

The designers of IPsec, SSL, and SSH all seem to have made the assumption that the last ciphertext
block of an encrypted message is random, and therefore implement CBCCIV instead of CBC$.

Can you come up with an attack, in the IND-CPA setting, against the privacy of CBCCIV?
Hint 1: at the time you encrypt the message Mi+1, the last ciphertext block for message Mi is
known and, therefore, the IV used to encrypt the message Mi+1 will not be chosen at random
during the encryption process. Hint 2: try to generalize the attack in Section 5.5.3 against CBCC.
Although this attack breaks CBCCIV in the IND-CPA setting, how easy do you think it would be
to mount this attack in practice? If you don’t think that it would be easy to mount in practice, do
you think that you would be justified in still using CBCCIV?

Consider also instantiating CBC$, where the key generation algorithm somehow actually selects
key uniformly at random from all 128-bit strings, but the encryption algorithm uses NetscapeGetRand()
to generate the IVs. Can you come up with an attack against the privacy of this implementation?
As above, try to generalize the attack in Section 5.5.3 against CBCC. And recall the earlier
problems with NetscapeGetRand.

8.7 Not taking the security of the whole system into account

The cryptographic objects that we have learned about (e.g., encryption schemes and MACs) are
very important tools for helping ensure the security of many systems. For example, if it were not
for cryptography, many of us would never think of doing things like online banking or Internet
shopping. That said, the provably secure cryptographic objects that we have learned about (like
CBC$ or CBC MAC) are not, by themselves, sufficient to guarantee the security of a system that
uses them. Said another way, one needs to be careful not to make the assumption that simply the
use of a provably secure encryption scheme or MAC in a product will make that product secure.
Let us consider two examples.

10 IMPLEMENTATION PITFALLS

8.7.1 Combining cryptographic schemes

Just as the use of a believed-to-be-secure block cipher like AES in an encryption scheme does not
necessarily mean that the encryption scheme is secure, the use of a provably secure encryption
scheme or a MAC in a system does not necessarily mean that the system is secure.

For example, suppose that we wanted to implement something to protect both the privacy and
the authenticity of encapsulated data. (Such objects are called authenticated encryption schemes
in the literature.) Since we know that encryption schemes are designed to provide privacy (Section
7.2 and Section 8.4), and since we know that MACs are designed to provide authenticity, a natural
approach for trying to create an authenticated encryption scheme would be to combine a provably
secure encryption scheme with a provably secure MAC.

Given an encryption scheme SE = (Ke, E ,D) and a MACMA = (Km, MAC, VF), we might try
to construct an authenticated encryption AE = (K, E ,D) scheme as follows. The syntax for AE
is exactly like a standard encryption scheme, and it has the same correctness requirement (if you
encrypt a message under some key and then decrypt the resulting ciphertext with the same key,
you will get back the original message).

Algorithm K

Ke
$

← Ke

Km
$

← Km

Return 〈Ke, Km〉

Algorithm E 〈Ke,Km〉(M)

σ
$

← EKe
(M)

τ
$

← MACKm
(M)

C ← 〈σ, τ〉
Return C

Algorithm D〈Ke,Km〉(C)

Parse C as 〈σ, τ〉
M ← DKe

(σ)
v ← VFKm

(M, τ)
If v = 1 then return M
Else return ⊥

The intuition for this construction is as follows: the encryption of the message M via the operation

σ
$

← EKe
(M) is supposed to protect the privacy of the message. And the MACing of the message

via τ
$

← MACKm
(M) is supposed to protect the authenticity of the message.

The above construction seems like a very natural way to combine an encryption scheme with a
MAC. In fact, it is basically the composition method employed by recent versions of the popular
SSH protocol (recall from Section 8.4 that the first version of the SSH protocol did not use a MAC).
But does the above construction AE provide both privacy and authenticity assuming that SE is
IND-CPA secure and that MA is UF-CMA secure?

The answer is: not necessarily. Consider, for example, the above construction where SE is
CBC$ and MA is CBC MAC. In this, if 〈σ, τ〉 is the output of E 〈Ke,Km〉(M), then because CBC
MAC is stateless and deterministic, τ will leak information about the message M . This is basically
an extension to the basic problem of using a stateless and deterministic encryption scheme, like
ECB.

8.7.2 Key management

Key management is a critical part of any system that uses cryptography. We already know that it
is important for cryptographic keys to be generated randomly. But how does a system control the
distribution or updating of keys? For example, if Alice and Bob want to use a symmetric encryption
scheme SE to communicate privately, they both have to know the same secret key K.

In an IEEE 802.11 wireless network using WEP encryption, all participants will use the same
encryption key K. Similarly, to encrypt the voting records, all Diebold electronic voting machines
(at least up until summer 2003) used the same encryption key. In fact, in the case of Diebold, the
encryption key was hard-coded into the software via the following line of C code:

Kohno 11

#define DESKEY ((des_key*)"F2654hD4")

Even if the WEP or Diebold encryption keys were initially generated randomly, giving them to all
members of a wireless network or all voting machines is not a good idea. For example, if one of the
participants in the network or one of the authors or maintainers of the voting machines turned out
to be malicious or subvertable, he or she could compromise the privacy of the encrypted content.

12 IMPLEMENTATION PITFALLS

Bibliography

[1] Steven M. Bellovin. Problem areas for the IP security protocols. In Proceedings of the 6th
USENIX Security Symposium, San Jose, California, July 1996.

[2] Eli Biham and Adi Shamir. Differential cryptanalysis of Feal and N-Hash. In Donald W.
Davies, editor, Advances in Cryptology – EUROCRYPT’91, volume 547 of Lecture Notes in
Computer Science, Brighton, UK, April 8–11, 1991. Springer-Verlag, Berlin, Germany.

[3] Bert Den Boer. Cryptanalysis of F.E.A.L. In C. G. Günther, editor, Advances in Cryptology
– EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science, Davos, Switzerland,
May 25–27, 1988. Springer-Verlag, Berlin, Germany.

[4] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile communications: The
insecurity of 802.11. In Seventh Annual International Conference on Mobile Computing and
Networking, 2001.

[5] Ian Goldberg and David Wagner. Randomness and the Netscape browser. Dr. Dobb’s Journal,
January 1996.

[6] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. Analysis of an
electronic voting system. In IEEE Symposium on Security and Privacy 2004, pages 27–40.
IEEE Computer Society, May 2004.

[7] Akihiro Shimizu and Shoji Miyaguchi. Fast data encipherment algorithm FEAL. In Walter
Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in
Computer Science, Konstanz, Germany, May 11–15, 1997. Springer-Verlag, Berlin, Germany.

[8] Stephen Thomas and David Wagner. Insecurity in ATM-based passive optical networks. In
IEEE International Conference on Communications (ICC 2002), Optical Networking Sympo-
sium, 2002.

[9] Hongjun Wu. The misuse of RC4 in Microsoft Word and Excel. Cryptology ePrint Archive,
Report 2005/007, 2005. http://eprint.iacr.org/.

[10] Tatu Ylonen. SSH — Secure login connections over the Internet. In Sixth USENIX Security
Symposium, pages 37–42, 1996.

13

