
ABSTRACT

Title of dissertation: AUTOMATING PERFORMANCE
DIAGNOSIS IN NETWORKED SYSTEMS

Justin N. McCann, Doctor of Philosophy, 2012

Dissertation directed by: Professor Michael W. Hicks
Department of Computer Science

Diagnosing performance degradation in distributed systems is a complex and

difficult task. Software that performs well in one environment may be unusably slow

in another, and determining the root cause is time-consuming and error-prone, even

in environments in which all the data may be available. End users have an even

more difficult time trying to diagnose system performance, since both software and

network problems have the same symptom: a stalled application.

The central thesis of this dissertation is that the source of performance stalls in

a distributed system can be automatically detected and diagnosed with very limited

information: the dependency graph of data flows through the system, and a few

counters common to almost all data processing systems.

This dissertation presents FlowDiagnoser, an automated approach for diag-

nosing performance stalls in networked systems. FlowDiagnoser requires as little as

two bits of information per module to make a diagnosis: one to indicate whether

the module is actively processing data, and one to indicate whether the module is

waiting on its dependents.

To support this thesis, FlowDiagnoser is implemented in two distinct environ-

ments: an individual host’s networking stack, and a distributed streams processing

system. In controlled experiments using real applications, FlowDiagnoser correctly

diagnoses 99% of networking-related stalls due to application, connection-specific,

or network-wide performance problems, with a false positive rate under 3%. The

prototype system for diagnosing messaging stalls in a commercial streams processing

system correctly finds 93% of message-processing stalls, with a false positive rate of

2%.

AUTOMATING PERFORMANCE
DIAGNOSIS IN NETWORKED SYSTEMS

by

Justin N. McCann

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Michael W. Hicks, Chair/Advisor
Professor Peter Keleher
Professor James Reggia
Professor Mark Shayman
Professor Neil Spring

c© Copyright by
Justin N. McCann

2012

Dedication

To Amber,
who always trusts,

always hopes,
always perseveres.

To Svea,
for never giving up,

patiently encouraging,
and writing even when it is no fun.

To Rory,
for reminding me of the joy

of playing outside
and laughing out loud.

To Tait,
for showing that love
comes in many forms,

often shaped like a monkey.

ii

Acknowledgments

To my academic advisor, Prof. Michael Hicks: thank you for questioning

assumptions, constantly pushing, and not being afraid to get rid of ideas that seemed

important at the time, but turned out to be not so necessary in the end. Your insight

and advice improved the research, the results, and the presentation all along the

way.

Prof. Neil Spring encouraged me to stick with an idea that was a bit too

ambitious from the start, provided great ideas to make it work, and constantly

reminded me to focus on proving a falsifiable thesis. Prof. Jim Reggia’s years of

experience in diagnosis systems gave us all the confidence to try something different;

thanks for reminding me that the Ph.D. process would not go on forever. Thank

you to Prof. Pete Keleher and Prof. Mark Shayman for your insightful questions

and direction.

Thanks to Dr. Thomas Dubois and Dr. Michael Marsh, who were instrumental

in finding a way to break cycles in the dependency graph while preserving the

important relationships.

Several people and groups helped in gathering and analyzing data from InfoS-

phere Streams and provided valuable feedback on StreamsDiagnoser. Special thanks

belongs to Dr. Octavian Udrea of IBM’s Thomas J. Watson Research Center, Dr.

John May of Lawrence Livermore National Laboratory, Andrew Skene, and Roshan

Punnoose for their work in this area, in spite of many competing demands for their

time.

iii

To my friends and colleagues at the University of Maryland and at work,

thank you for the many times you listened when I was stuck, and provided the

encouragement and ideas that kept me moving. And to all of my cycling buddies:

thanks for getting me out on my bike. My wife thanks you as well.

Thank you to Professor Jim Skon, a true friend whose support and advice I

treasure deeply. Thanks also to Mark Peterman and Ben Obrock, two of my oldest

and dearest friends: it is good to know that time does not weaken a friendship, but

only makes it stronger.

Special thanks goes to all of our friends and family at Bethany Community

Church, who have been a constant source of encouragment and support over the

years. I really cannot imagine doing this without you.

To my Mom and Dad, Mom and Dad Rhoton, Cavan, Jenn, Robin, Myron,

Brody, Emily, and all my nieces and nephews: thanks for supporting us all in this

dream of mine, even though it meant a lot of distraction and distance over these

years. We have thought of you constantly, love you dearly, and cannot wait to spend

more time with you.

Finally, all glory, honor, and praise be to God our Father and the Lord Jesus

Christ, whose Spirit is the breath of creativity that gives order to the universe.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Sources of performance stalls . 1
1.2 Latency’s impact on the bottom line 3
1.3 Stalls are hard to diagnose . 4
1.4 Thesis . 6
1.5 Goals . 6
1.6 Overview . 7
1.7 Contributions . 11

2 The FlowDiagnoser Approach 12
2.1 The Dataflow and Dependency Graphs 13
2.2 Module Counters . 16

2.2.1 Snapshots . 17
2.3 Dependency Analysis . 19

2.3.1 Diagnosis Criteria . 20
2.3.1.1 Active modules . 20
2.3.1.2 Determining if a module has work to do 21
2.3.1.3 Passing the blame 23

2.3.2 Diagnosis Algorithm . 24
2.3.2.1 Step 1: Break Cycles 26
2.3.2.2 Step 2: Merge Inactive Cycles 27
2.3.2.3 Step 3: Dependency Analysis 28
2.3.2.4 Discussion . 32

2.3.3 Correlating evidence . 34
2.4 Diagnosis Results . 36
2.5 Summary . 36

3 Diagnosing Problems in the Network Stack 38
3.1 The Network Stack Dependency Graph 39
3.2 Network Stack Counters . 41

3.2.1 Application and socket modules 42
3.3 Stack Dependency Analysis . 43

3.3.1 Interpreting the results . 43
3.3.2 Distinguishing connection-specific and network-level faults . . 46

3.4 Data Collection Prototype . 50
3.5 Experimental Results . 52

3.5.1 Experimental setup . 53
3.5.2 Diagnosis accuracy . 55

3.5.2.1 Reading the diagnosis table 56

v

3.5.2.2 NeST evaluation results 60
3.5.2.3 One active flow . 61
3.5.2.4 Multiple active flows experience congestion 61
3.5.2.5 Delayed connection recovery 61

3.5.3 Prototype efficiency . 62
3.5.4 Diagnosis scenarios . 63

3.5.4.1 Network-level fault injection 63
3.5.4.2 Connection-specific fault injection 67
3.5.4.3 Application fault injection 69

3.6 Potential Extensions . 72
3.6.1 Accounting for shared dependencies 72
3.6.2 Specifying expected application behavior 77

3.7 Summary . 79

4 Diagnosing Problems in InfoSphere Streams 80
4.1 Basic Streams Model . 81

4.1.1 Streams operators . 82
4.1.2 Example processing graph . 83
4.1.3 Streams counters . 84
4.1.4 Streams Performance Problems 85

4.2 The StreamsDiagnoser Dependency Graph 87
4.2.1 Option 1: Each PE is a module 87
4.2.2 Option 2: Ports as modules 89
4.2.3 Option 3: Stream connections as modules 89

4.3 Stream Connection Counters . 91
4.3.1 Recovering per-connection counters 92
4.3.2 Invariant violations . 93

4.4 Streams Dependency Analysis . 94
4.4.1 Detecting backpressure and inactive streams 95
4.4.2 Interpreting the results . 96

4.5 Data collection prototype . 97
4.6 Experimental Results . 99

4.6.1 Basic topologies . 99
4.6.2 Injected faults . 102
4.6.3 Diagnosis accuracy . 103

4.6.3.1 Barrier results . 105
4.6.3.2 Full-rate results . 107

4.7 Live application results . 108
4.8 Summary . 111

5 From Diagnosis to Fix 112
5.1 The Discovery Process . 112
5.2 Summarization and Visualization Outputs 114
5.3 Case Study: MergeTreeBarrier 117

5.3.1 Steps 1 and 2: Overview and Summary 117

vi

5.3.1.1 All-modules graph 119
5.3.1.2 Stalled modules list 120

5.3.2 Step 3: Analysis . 121
5.3.2.1 N12.Throttle starves the barrier 125
5.3.2.2 N10.Throttle starves the barrier 126

5.4 Conclusion . 127

6 Related Work 128
6.1 Protocol-Specific Analysis . 129
6.2 Required Information . 134

6.2.1 Extensive instrumentation . 134
6.2.2 Packet or event traces . 135

6.3 System-wide Instrumentation . 137
6.4 Summary . 140

7 Conclusion 141
7.1 Bottleneck detection . 141
7.2 Module-specific diagnosis . 142
7.3 Online diagnosis . 143
7.4 Additional systems . 143
7.5 Conclusion . 144

A Normalization Procedure for Streams Counters 145
A.1 Connection-counter normalization cases 145

A.1.1 [Case 1] 1 → 1 connections . 146
A.1.2 [Case 2] 1 → N fan-out connections 146
A.1.3 [Case 3] N → 1 fan-in connections 147
A.1.4 [Case 4] M → N multi-way connections 148

A.2 Counter normalization algorithm . 148

Bibliography 150

vii

List of Tables

2.1 Module counters . 16
2.2 FlowDiagnoser Diagnosis Criteria . 21

3.1 NeST module counters . 42
3.2 Abbreviations for evaluation tables. 58
3.3 NeST Diagnosis Accuracy . 59

4.1 StreamsDiagnoser module counters 92
4.2 Abbreviations for evaluation tables. 105
4.3 StreamsDiagnoser Diagnosis Accuracy 106

5.1 FlowDiagnoser Summaries . 114
5.2 MergeTreeBarrier stalled connections 118

A.1 Normalization steps for multi-connection ports 146

viii

List of Figures

1.1 Example network stack graph . 9
1.2 Streams Application . 10

2.1 The diagnosis process . 13
2.2 Example dependency graph . 14
2.3 Performance Stalls . 35

3.1 Example Network Stack. 40
3.2 Example Webkit diagnosis. 47
3.3 Inbound webkit dataflow graph with stalled connections. 49
3.4 Network Stack Trace collection architecture 52
3.5 Emulab experiment topology . 54
3.6 Network-fault inbound diagnosis plot 64
3.7 Connection-fault outbound diagnosis plot 68
3.8 Application-fault outbound diagnosis plot 71
3.9 Shared dependencies in the NS Graph 73

4.1 Streams Application . 82
4.2 Example Streams processing graph 84
4.3 Streams backpressure . 86
4.4 Streams counters . 88
4.5 StreamsDiagnoser graph transformation 90
4.6 Basic Streams Topologies . 101

5.1 Network Stack Trace module timeline 116
5.2 Network Stack Trace visualization prototype 116
5.3 MergeTreeBarrier case study. 118
5.4 MergeTreeBarrier diagnosis timeline 123

ix

Chapter 1

Introduction

Diagnosing performance degradation in distributed systems is a complex and

difficult task. Software that performs well in one environment may be unusably slow

in another, and determining the root cause is time-consuming and error-prone, even

in environments where all the data may be available. End users have an even more

difficult time trying to diagnose system performance. When a user’s video stream

has problems, it could be for any number of reasons: the browser plugin may be

buggy, the neighbors’ wireless networks may be creating interference, the user’s

computer or the video server may be overloaded, or there may be congestion on the

Internet path between the two. To the user of a distributed service or application,

the symptoms are all the same: a stalled or stuttering application.

1.1 Sources of performance stalls

This dissertation focuses on detecting and finding the source of short perfor-

mance stalls lasting a few hundred milliseconds to a few seconds. They can be

caused by faulty or slow software; contention for shared server resources such as

the CPU, disk I/O, backend database, or a shared lock; network congestion and

retransmission timeouts; or other errors in system components.

1

One common source of performance problems is the software itself. One com-

monly suspected culprit are browser plugins such as Adobe Flash. When Apple

famously refused to support Flash on their mobile platforms, Steve Jobs claimed,

“Flash is the number one reason Macs crash,” and “has not performed well on mo-

bile devices” [31]. Processing overhead and resource scheduling in monolithic web

browsers spurred Google researchers to redesign the browser to use a multi-process

architecture, leading to significant speedups in page load times [44].

Even well-written software such as the Apache web server can experience sud-

den spikes in request latency due to head-of-line blocking for disk accesses [46],

contending for shared resources [52], disk writes, or database queries [19]. Whether

these stalls in progress are due to bugs, inefficient locking mechanisms, or calls to

backend database servers, they prevent the application software from responding to

requests in a timely manner.

Another common source of performance stalls is network congestion. A 2011

study of user-facing network traffic at two Google datacenters [21] found that packet

loss and retransmissions are fairly common: 2.5–5.6% of all user-facing TCP con-

nections retransmit packets. While fast retransmit and selective acknowledgments

(SACK) can avoid complete throughput stalls when packet loss occurs, the study

also showed that roughly 1% of all connections stalled for at least 200 ms due to

a retransmission timeout (RTO). Even when TCP is able to avoid retransmission

timeouts, any retransmissions are costly: short web requests take on average 7–10

times as long to complete when the TCP connection retransmits any packets [21].

2

In modern distributed applications, seemingly rare events can have a signifi-

cant effect on response time. When applications depend on dozens or hundreds of

separate services to respond in a timely manner, the outliers in the long tail of the

latency distribution are not so uncommon. Amazon e-commerce applications can

consult up to 150 services to respond to one request, with each transaction poten-

tially experiencing low throughput or a transient stall due to network congestion,

server processing, contention for disk I/O, a longer-than-usual database query, or a

transient problem in the network [19]. Each service is required to meet a service-

level agreement (SLA), typically to complete 99.9% of transactions in under 300 ms.

Even assuming these 150 transactions are perfectly parallel, only 86% of requests

will be completed within 300 ms;1 serialized transactions increase delay.

1.2 Latency’s impact on the bottom line

While these transient stalls may be brief, and affect only a small percentage

of connections, their impact to users is disproportionate. No matter their source—

stalled network connections, overloaded server software or database systems, or

congested networks and normal processing time—user-visible delays directly affect

the bottom line of large Internet companies. Even small reductions in search or

page view volume add up to hundreds of millions of dollars in lost revenue [40].

Locating and correcting the causes of performance stalls and excessive latency

can have a significant positive impact on revenue. When Shopzilla completely re-

1 If PServiceT ime>300ms = 0.001, then PRequestT ime≤300ms =
150
∏

i=1

(1 − 0.001) = 0.86

3

designed their backend architecture in an effort to lower page load times, reducing

them from 6–9 seconds to 1.2 seconds on average, they saw a 120% increase in

search-engine referred traffic, a 7–12% increase in visitor conversion rates, and a

5–12% increase in gross revenue [20].

Earlier studies have found that user’s intent to keep using a website and their

performance in completing tasks starts to decline after two seconds of delay [23],

but recent large-scale studies at AOL, Google, and Microsoft show that users are

much more sensitive to latency than previously thought. In controlled experiments,

engineers at Google and Bing randomly selected users to experience added delays

in server processing, simulating a slower response from backend services. A 400 ms

increase in server-side latency reduced per-user searches (and ad views) at Google

by 0.76%; a 500 ms increase reduced per-user revenues by 1.2% at Bing. As latency

increased, the results were even more dramatic: per-user revenue dropped by 4.3%

when users were subjected to a two-second increase in delay [47]. AOL data show

an inverse relationship between page load times and the number of pages viewed

per visit [5].

1.3 Stalls are hard to diagnose

Many systems exist for monitoring and analyzing the performance of dis-

tributed applications. Some require invasive changes to instrument software source

code [26,45] and track individual messages as they are sent throughout the system.

While this can help developers and operators to track down subtle bugs and perfor-

4

mance problems, the required code changes create a high barrier to entry, especially

when monitoring a third-party system for which no source code is available.

Other approaches analyze per-packet network captures [6, 14, 15] to try to

infer the states of important system elements. While packet captures can be taken

without affecting the performance or source code of the monitored system, they are

too expensive to run and analyze continuously, and by nature have little information

when a system stops transmitting data. When traffic ceases, it could be that the

software has stalled, every transport-layer (TCP) connection has detected network

congestion and backed off its retransmissions, or the system has completed all of its

current work. Without monitoring the end hosts, it is difficult to reliably distinguish

between cause and effect.

Many sophisticated monitors aggregate data from throughout the network

[2, 6, 14, 15, 32, 60] to detect systemic problems. These systems are able to locate

and detect a wide range of network, software, and system misbehaviors, but mostly

rely on complicated analyses that are difficult to recreate, and are of little use for a

single host or end user.

Another common approach is to perform protocol-specific analysis [2, 15, 32,

35, 60] to detect performance problems exhibited by specific network technologies.

These analyses can be invaluable for tracking down difficult and nuanced problems

in modern systems of systems. However, applying these protocol-specific insights to

new problem domains is not straightforward.

While these systems all provide sophisticated and detailed analyses, they are

difficult to implement, expensive to run, and in many cases not generalizable.

5

1.4 Thesis

The central thesis of this dissertation is that the source of performance stalls in

a distributed system can be automatically detected and diagnosed with very limited

information: the dependency graph of data flows through the system, and a few

counters common to almost all data processing systems.

The automated fault diagnosis system requires as little as two bits of informa-

tion per module: one to indicate whether the module is actively processing data,

and one to indicate whether the module is waiting on its dependents.

To support this thesis, the approach is implemented and evaluated in two

distinct environments: an individual host’s networking stack, and a distributed

streams processing system.

1.5 Goals

The goal of this research is to create an approach to messaging performance

diagnosis that is efficient enough to run constantly, can automatically detect and re-

port performance stalls using as little information as possible, and is general enough

to apply across application domains. It also will enable the following:

• An end user will be able to tell whether their web browser, network connection,

or a single TCP stream is causing their performance problems.

• Individual hosts in a distributed system will be able to detect software,

connection-specific, or more widespread network problems and report them in

6

a succinct manner to a monitoring service for cross-correlation and analysis.

Such reports will also provide evidence to help pinpoint the root cause of the

stall, such as a faulty network interface.

• System administrators and developers will be able to monitor the health of

communication in a distributed system, to find which processes or subsystems

are preventing progress overall.

• Subject matter experts will apply the basic principles of the FlowDiagnoser

approach to finding performance stalls in their own systems.

1.6 Overview

Chapter 2 describes the FlowDiagnoser approach for locating the source of per-

formance stalls in distributed systems. FlowDiagnoser first constructs a dependency

graph, a directed graph that represents the movement of messages between modules

of the system. Rather than trace specific messages to see where they are getting

dropped or hung up, FlowDiagnoser periodically monitors a few basic counters ex-

ported by each node, and performs an abstract analysis of the modules’ behavior to

make a diagnosis.

Once FlowDiagnoser has constructed the dependency graph, diagnosis pro-

ceeds in three steps:

1. Periodically snapshot the message counters from each module.

2. Use the counters to infer the module’s (in)activity state.

7

3. Perform a dependency analysis, relating one module’s state to that of its de-

pendents and neighbors, to determine whether the module is misbehaving.

The resulting diagnosis is a set of annotations applied to the original graph, with

each module labeled to indicate whether it was healthy, blocked by another module,

stalled and preventing other modules’ progress, or its performance can safely be

ignored.

In addition to the automated diagnosis, FlowDiagnoser provides several visu-

alizations and summary reports which explain which modules were behaving well,

which ones stalled progress, and show the changes in counter values over time. These

reports and visualizations also help an expert user to determine if the diagnosis was

correct, given the how the counters in the system change over time.

Two applications of FlowDiagnoser show its ability to accurately diagnose

performance stalls lasting from hundreds of milliseconds to a few seconds in two

distinct settings.

The Network Stack Trace (NeST) is the first application of the FlowDiagnoser

approach, described in Chapter 3. NeST diagnoses the source of performance stalls

that are caused by applications, are specific to particular network connections, or

are due to network-level events, and does so using only the counters available at

a single end host’s networking stack. Figure 1.1 illustrates the NeST dependency

graph: each higher-layer module depends on its lower-layer modules to forward

messages provided to them, and to provide messages to read. Conversely, higher-

8

IPv4, addr=10.0.1.43

Ethernet, eth0

TCPw TCPx TCPy TCPz TCPkTCPj

webkit

pid=12343

fd 7fd 5fd 2 fd 24fd 8

pidgin

pid=317

fd 6

spotify

pid=408

Figure 1.1: Example network stack dependency graph. Application and socket
modules are shown in light grey, TCP instances in dark grey, and IPv4 and Ethernet
in white. Application modules are made up of component socket modules.

layer modules must produce messages for lower-layer modules to send, and consume

messages as they are received.

NeST is designed as an aid for system administrators and developers to de-

bug and correct the causes of network-related performance stalls that affect end-

user performance. A series of controlled experiments using real applications shows

that NeST is 99% effective at diagnosing performance stalls due to the applica-

tion (whether from bugs or resource contention), TCP retransmission timeouts, and

excessive network congestion, with a false positive rate under 3%.

Chapter 4 describes the second application of the FlowDiagnoser approach.

This tool, called StreamsDiagnoser, diagnoses the source of performance stalls in

InfoSphere Streams, a distributed real-time stream processing engine created by

IBM [24]. Stream processing engines are designed to continuously update query

results, transform data, and make decisions based on information as it flows through

a series of processing steps. An example Streams application is shown in Figure 1.2.

9

Figure 1.2: Example Streams Application showing the flow of messages between
processes; a logical view is also available.

Despite extensive tools for debugging [25] and visualizing performance infor-

mation [18], Streams users and researchers run into performance problems that are

hard to diagnose, since problems in one part of the system can quickly propagate to

others. Synthetic benchmarks and instrumentation of real applications show that

StreamsDiagnoser is 93% accurate in attributing the source of performance stalls

lasting more than two snapshot periods.

As FlowDiagnoser monitors a system over time, it develops a series of diagnosis

results which are assigned to each module in the system. Chapter 5 presents an

approach for analyzing these diagnosis results, using several summarization and

visualizations that FlowDiagnoser outputs. Chapter 6 discusses other approaches

for finding the source of performance problems in networked and distributed systems,

and Chapter 7 concludes with directions for future work.

10

1.7 Contributions

This dissertation describes a low-cost, general approach for detecting and diag-

nosing transient performance stalls in networked and distributed applications. This

approach is:

• Automatic and requires no user intervention

• Efficient as it relies only on commonly available counters, with little access to

historical data.

• Accurate at diagnosing the source of transient performance stalls before they

result in higher-level timeouts.

• General : it is useful for detecting performance stalls in both an end host’s

networking stack and modern streams-processing systems.

FlowDiagnoser is the first performance diagnosis system that provides a general, au-

tomated approach that applies to both network-related performance and distributed

system messaging, and specifies the minimum amount of information required for

diagnosis.

11

Chapter 2

The FlowDiagnoser Approach

This chapter describes the FlowDiagnoser approach to finding performance

stalls in networked and distributed systems. It consists of three parts, illustrated in

Figure 2.1:

1. Obtain the dependency graph which describes the movement of messages

through the system, discussed in Section 2.1.

2. Periodically snapshot counters for each module in the graph to determine each

module’s behavior. This is described in Section 2.2.

3. After each snapshot, perform a dependency analysis over the graph and coun-

ters to diagnose performance problems as described in Section 2.3.

The output of the dependency analysis is an annotated graph, where each module

is labeled with a diagnosis: it is healthy and performing well, blocked by one or

more of its dependents, faulty and blamed for blocking other modules from making

progress, or its performance is immaterial. The resulting output is described in

Section 2.4.

12

2.3

Dependency

Analysis

2.1

Dependency

Graph
2.4

Diagnosis

Results
2.2

Module

Counters

general-purpose

rules

system-specific

rules

Figure 2.1: The diagnosis process. Module counters are used to describe each
module’s activity, and combined with the dependency graph to determine the effect
of each module’s behavior. The dependency analysis consists of general-purpose and
system-specific rules. The resulting performance diagnosis is an annotated graph.

2.1 The Dataflow and Dependency Graphs

In the FlowDiagnoser model, a system can be viewed as a dataflow graph,

where nodes represent modules that process messages, and directed edges identify

flows of messages between modules. Each edge is a lossless, finite-capacity pipe with

exactly one module at each end. Each module has a finite work queue of messages

that it must process; during processing it may transmit messages to other modules.

Messages enter the system via sources (which have no incoming edges) and leave

the system via sinks (which have no outgoing edges).

A system may be either push-oriented or pull-oriented.1 In the former, dataflow

is driven by the source modules. A source module A connected to module B will

produce messages and attempt to write them to the pipe that connects it to B.

Since this pipe has finite capacity, A’s write may block; in this case, B is required

1Individual flows within a system could be either push- or pull-oriented, but such generality is

not required for the two applications of FlowDiagnoser, described in Chapters 3 and 4.

13

Figure 2.2: Example dependency graph. A depends on B for messaging service,
which in turn depends on C and D.

to read messages from the pipe (depositing them into its own work queue) before A

can write further messages. In a push-oriented system, if sources are not producing

messages, then the system is idle, but this is not necessarily a problem.

In pull-oriented systems, dataflow is initiated by sinks. A sink module A

connected to B will try to read messages from the pipe that connects the two. If

B fails to produce data for A, then A will block. In a pull-oriented system, if sinks

are not trying to read messages, then they have no need of data so it need not be

provided.

For purposes of diagnosis FlowDiagnoser employs a system dependency graph

which bears close relation to the dataflow graph. In this graph, nodes are modules,

and edges identify dependencies: A → B indicates that A depends on B to provide

it with messaging service. Root modules have no incoming dependency edges.

For push-oriented systems, dependency corresponds to dataflow. Since dataflow

originates at sources, if A sends to B, then A depends on B to read messages from

the connecting pipe so that A does not block. For pull-oriented systems, dependency

is the reverse of dataflow. Here, a sink A depends on upstream node B to have data

ready when A asks for it; if B has not produced data, then A cannot make progress

when it wants to.

14

Figure 2.2 illustrates an example dependency graph. When capturing depen-

dencies for a push-oriented system, all data in this system originates on the left

side at the root module A, which is the message source. Messages flow from left

to right through the graph to the message sinks on the right side (modules E and

F). Module A produces messages for B to consume and pass on to C and D. A

depends on B to consume the messages it has produced. If this graph were captur-

ing dependencies for a pull-oriented system, then data would originate at E and F ,

flowing in the opposite direction of the edges in the graph, driven by sink A.

Given an edge A → B in the dependency graph, A is the parent of B, which is

the child of A. A module’s ancestors are its parents, and recursively all of its parents’

parents, i.e., all modules along the paths leading from the module back to the roots

of the dependency graph. A module’s descendants are its children, and recursively

all of its children’s children. Intuitively, a module M ’s ancestors include all nodes

along paths from the roots to M , and its descendants are all modules from M to

the sinks. In Figure 2.2, module F ’s parent is D, and its ancestors are {D,B,A}.

Module E has two parents (C and D) and four ancestors {A,B,C,D}. Neither

module has children or descendants. Module B’s descendants are {C,D,E, F}.

At a high level modules can represent whatever system elements the designer

feels are important. A module in the graph could represent a piece of code that

explicitly sends and receives messages, an end host, or even an abstraction of a

complex system which is itself made up of many subelements. While in many

cases the dataflow graph is a multi-rooted tree, or directed acyclic graph (DAG),

FlowDiagnoser does not require this. The dataflow (and dependency) graph may

15

Counter Description

total_msgs Total messages emitted (required)

wait_time Total time spent waiting for service.

queued_msgs Current number of messages in the work queue

Table 2.1: Basic FlowDiagnoser module counters.

change over time, so the monitoring system observes and incorporates these updates

to the graph.

2.2 Module Counters

Once FlowDiagnoser has derived the dependency graph, it diagnoses the sys-

tem’s behavior by periodically snapshotting (up to) three counters associated with

each module, shown in Table 2.1:

• total_msgs counts the cumulative number of messages that a module has

processed (and thus it increases monotonically);

• wait_time counts the cumulative time (increasing monotonically) a module

has spent blocked waiting on its dependents to produce a message for it to

read (in a pull-oriented system) or to consume messages it has produced (in a

push-oriented system);

• queued_msgs tracks the length of the module’s work queue.

16

FlowDiagnoser uses these counters to determine two pieces of information:

1. whether a module is actively processing messages, and

2. whether a module attempted to process messages (or has something to do)

For total_msgs and wait_time counters, FlowDiagnoser considers the difference

between the current snapshot’s value and the prior snapshot’s value, denoted as

∆total_msgs and ∆wait_time. These differences indicate whether the module was active

(a nonzero ∆total_msgs) or was blocked waiting for service (a nonzero ∆wait_time). It

uses the current snapshot value of the module’s work queue (σqueued_msgs) to deter-

mine whether the module still had work to do when the period ended.

Each module in the system must implement total_msgs. In general, either

wait_time or queued_msgs must be supported by the root modules (furthest ances-

tors) in the dependency graph; this indicates whether the system as a whole should

be active. These two counters provide a signal of whether the modules have work to

do or are waiting on their dependents, and is transitively propagated from parents

to children as needed.

2.2.1 Snapshots

To be effective, FlowDiagnoser must take snapshots relatively frequently (from

50 ms to 10 seconds), but must not harm the performance of the monitored system.

As such, FlowDiagnoser does not require a consistent stop-the-world snapshot of

the entire graph: the counters can be read from each module one after the other

while the system continues to run. Doing so is better for the monitored system,

17

but gives rise to potential inconsistencies: according to the counters FlowDiagnoser

sees, a module could appear to have consumed more messages than its producers

have ever provided to it.

FlowDiagnoser also does not require that each module in the system count

messages in the same way: a single one-megabyte write by an application is counted

as one message, no matter how many IP datagrams it is turned into. It may also

experience race conditions while reading a single module’s counters. Chapter 3 and

4 discuss the implications of such anomalies.

While the actual implementations are timescale agnostic—i.e., they process on

a per-snapshot basis, no matter the frequency—snapshots must be frequent enough

to find short performance stalls. However, they should not be so frequent that

normal timing variations (e.g., inter-packet gaps) cause it to issue spurious warnings.

The following rule of thumb is useful: snapshot intervals should be longer than

normal (acceptable) pauses in communication, but at most half of the duration of

the longest stall the system designer is willing to tolerate. For example, if a 200 ms

stall is considered unacceptable, snapshots should be taken at least every 100 ms:

otherwise a 200 ms stall could straddle two subsequent snapshots and be missed

entirely. However, if modules are normally quiet for 150 ms at a time, a 100 ms

interval may generate false positives during normal operation.

Whatever the snapshot interval, reading each module’s counters serially (as

opposed to in one stop-the-world atomic transaction) can cause false positives. As-

sume that for a given snapshot, the child’s counters are actually read at time t, and

the parent’s at time t+ ε. If all of the parent’s messages were emitted between time

18

t and t + ε, these messages cannot be counted in the child’s counter (read at time

t). Thus it may appear that the child did not process messages the parent provided,

and the child may be blamed erroneously.

These problems can largely be avoided by ignoring transient one-snapshot

stalls, and requiring a two-snapshot confirmation of any positive diagnosis. The diag-

nosis summary outputs described in Chapter 5 highlight transient and consecutive-

snapshot stalls separately. The evaluation criteria used in Chapter 3 and Chapter 4

treat each diagnosis individually.

2.3 Dependency Analysis

The diagnosis algorithm takes the current dependency graph and counter val-

ues as inputs and assigns to each module in the graph one of four possible diagnosis

results :

• Healthy, which indicates that the module is actively processing messages;

• DontCare, which indicates that the module was inactive because it had no

work to do, and its performance did not adversely affect other modules in the

system;

• Blocked, which indicates that the module attempted to make progress, but

was prevented from doing so by another module; and

• Stalled, which indicates that the module is faulty and is the cause of system

performance problems.

19

These diagnosis results cover the four stall-related performance categories: either

a module is active (Healthy) or not. If it is inactive, it either has no work to

do (DontCare) or it should be active. If should be active, its performance is

either due to another module’s fault (Blocked) or its own (Stalled). The follow-

ing two subsections discuss the criteria used to arrive at these diagnoses, and the

FlowDiagnoser algorithm itself.

2.3.1 Diagnosis Criteria

Table 2.2 lists the diagnosis assigned to each module in the stack after each

snapshot. The first column lists the result and its description, while the second

column lists the criteria FlowDiagnoser uses to confer that diagnosis. The criteria

are labeled with superscript letters, which are referenced in the discussion. Each

result is mutually exclusive; a module is assigned exactly one of these results per

snapshot.

2.3.1.1 Active modules

FlowDiagnoser assumes that a module that has processed any messages

(∆M
total_msgs > 0) is providing adequate service to its dependents, and labels it as

Healthy (criterion (a)): it is not the source of a stall.2

2There are, of course, cases where a system designer would like to find the source of bottlenecks

in which some modules are actively processing data, but at rates that limit (rather than prevent)

the progress of other modules. In this case, it may make sense to apply some other diagnosis result,

even though the module is active. We defer such extensions to future work.

20

Module Diagnosis Diagnosis Criteria

Healthy

Module is active and
processing messages

[(∆M
total_msgs > 0)](a)

DontCare

Module has completed
its work, or ancestors
are fine

[(∆M
total_msgs = 0) and ¬HasWork(M)](b)

Blocked

Module cannot process
messages due to
another’s fault

[(∆M
total_msgs = 0) and HasWork(M)](c) and

[(∆M
wait_time > 0)(d) or

(wait_time unsupp. and CanPassBlame(M))(e)

]

Stalled

Module is not processing
messages and is blocking
others

[(∆M
total_msgs = 0) and HasWork(M)](f) and

[(∆M
wait_time = 0)(g) or

(wait_time unsupp. and ¬CanPassBlame(M))(h)

]

Table 2.2: FlowDiagnoser Diagnosis Criteria. For each snapshot, each module M
in the dependency graph is labeled with one of the diagnoses in the first column,
according to the criteria in the second.

In all other cases the module is inactive (∆M
total_msgs = 0), and the analysis

must determine if the module should be active.

2.3.1.2 Determining if a module has work to do

When a module M is inactive, FlowDiagnoser first determines if the module

has work to do by checking the queued_msgs counter and M ’s location in the de-

pendency graph. This is the HasWork(M) function used in criteria (b), (c), and (f),

which returns true if one of the following conditions is met:

1. M supports the queued_msgs counter, and σMqueued_msgs > 0;

21

2. M does not support the queued_msgs counter, and has a parent that is

Blocked; or

3. M does not support the queued_msgs counter, and is a root in the dependency

graph.

If M supports the queued_msgs counter, FlowDiagnoser knows whether the

module has work to do. If (σMqueued_msgs > 0), there are still messages in M ’s work

queue; otherwise M is inactive for a good reason: it had no work to.

IfM does not support queued_msgs, FlowDiagnoser infers whether the module

should be active by checking the module’s parents. If one of its parents is Blocked,

then FlowDiagnoser assumes that the inactive module had work to do. Note that

this assumes that M ’s parents have already received a diagnosis, which implies a

topological ordering on the graph.

Finally, if M does not support queued_msgs and is a root in the dependency

graph, FlowDiagnoser assumes thatM should be active. This means that an inactive

root module will always be diagnosed as Stalled unless it can pass the blame to

one of its descendants.

When an inactive module has no work to do (criterion (b)), FlowDiagnoser

marks the module as DontCare. This indicates that M ’s inactivity did not have

an adverse affect on any of its parents.

Otherwise, the analysis must determine why M did not complete its work:

either the module is blocked by one of its children (meeting criteria (d) or (e)), or

M itself is stalled (meeting criteria (g) or (h)).

22

2.3.1.3 Passing the blame

Since M depends on its children for service, M may be inactive because it is

waiting for one of its child modules for service. In push-oriented flows it may be

waiting for a child to consume a message it has provided, or in pull-oriented flows

for the child to produce a message for it to read.

If M can pass blame to one of its children, FlowDiagnoser marks M as

Blocked (criteria (d), (e)). Otherwise, M itself is responsible and FlowDiagnoser

marks M as Stalled (criteria (g), (h)). FlowDiagnoser makes this determination

by looking at the module’s wait_time counter if it is supported; otherwise it checks

the counters of M ’s children.

The wait_time counter. The total time the module has spent waiting in a

messaging-related operation is accumulated in the wait_time counter, which in-

crements as the module is blocked waiting to complete that operation. When the

module supports the wait_time counter, the diagnosis process is simple. If the

module has processed no messages (∆M
total_msgs = 0), but attempted to and was

blocked by its child (∆M
wait_time > 0), FlowDiagnoser marks it as Blocked (crite-

rion (d)).3. Otherwise, the module spent no time waiting (∆M
wait_time = 0), and has

not processed any messages because it is idle; FlowDiagnoser therefore marks it as

Stalled (criterion (g)).

3There is another case, in which ∆M
total_msgs > 0 and ∆M

wait_time > 0. FlowDiagnoser is concerned

with stalls, so it marks the module as Healthy; a more fine-grained analysis might determine

that the module’s performance was limited by a bottleneck.

23

The CanPassBlame() function. If M does not support the wait_time counter,

FlowDiagnoser can infer whether M is blocked by (one of) its children or is itself

stalled; this is the CanPassBlame() function. It returns true if any child of M

is inactive and has work to do. Since it is called only when M is either blocked

or stalled, the function does not need to call the full HasWork() function for each

child: it already knows that each child has a parent that is blocked (M). Therefore,

CanPassBlame() returns true if any child C is inactive and does not have an empty

work queue, that is, when ∆C
total_msgs = 0 and either queued_msgs is unsupported

or σCqueued_msgs > 0.

While the simple pass-the-blame rule described here works in many cases, a

monitored system may require a different set of criteria based on its communication

semantics. Section 3.3.2 describes a slightly modified, system-specific rule employed

when monitoring the network stack.

2.3.2 Diagnosis Algorithm

The diagnosis criteria described above assume that FlowDiagnoser can consult

both a module’s parents (and transitively, back to the roots of the dependency

graph) to determine whether a module has work to do, and also consult a module’s

children to determine if they are the source of the module’s performance problems.

This process is easy enough when the graph is acyclic and there is a topological

ordering that allows the diagnosis process to visit parents before their children, but

is not entirely straightforward when the graph includes cycles.

24

When a module is part of a cycle in the graph (e.g., A → B → C → A), check-

ing its parents’ states is problematic: is module C responsible for providing service

to A (via B), or is A responsible for providing service to C? If all three modules

are inactive, should they be marked as Blocked, Stalled, or DontCare? It is

possible that this cycle has created a deadlock, and no module is able to act until

its child has made progress.

In addition, the HasWork() function assumes that a module’s parents are

diagnosed before the module itself. This is necessary when a module is inactive

to determine if the module should be active, by checking whether its parents are

blocked, and recursively back to the roots of the graph. This implies a topological

ordering on the graph so that ancestors can be visited before their descendants,

which requires that the graph be acyclic.

Algorithm 1 FlowDiagnoser algorithm

Require: dgraph (original dependency graph), counters
1: wgraph ← BreakNonBlockedCycles(dgraph, counters)
2: dag ← MergeStronglyConnectedComponents(wgraph)
3: diagnosis ← DependencyAnalysis(dag, dgraph, counters)
4: return dag, diagnosis

The FlowDiagnoser diagnosis algorithm, shown in Algorithm 1, performs the

following steps:

Step 1: Traverse the graph in random order, breaking any cycles that include mod-

ules known to beHealthy orDontCare. This step is shown in Algorithm 2.

Step 2: After this first pass, all modules that are still part of a cycle are known to

be inactive. Since every strongly connected component in a directed graph

25

is either a single module or a cycle of modules, standard techniques (such

as Tarjan’s algorithm [50]) can be applied to merge these cycles of inactive

modules into super-modules that represent the cycle [17].

Step 3: Use the resulting Directed Acyclic Graph (DAG) to perform the dependency

analysis shown in Algorithm 3. The original dependency graph is needed only

to determine if a module is a root in the original graph.

Step 4: Return the resulting DAG and diagnosis results.

2.3.2.1 Step 1: Break Cycles

Algorithm 2 BreakNonBlockedCycles

Require: dgraph (original dependency graph), counters
1: wgraph ← dgraph
2: for all M ∈ wgraph do
3: if

(

∆M
total_msgs > 0

)

then
4: # Module is Healthy and does not propagate blame
5: remove outEdgesM from wgraph
6: else if (M supports queued_msgs) ∧

(

σMqueued_msgs = 0
)

then
7: # Module has no work and does not propagate blame
8: remove outEdgesM from wgraph
9: end if
10: end for
11: return wgraph

The first step of the diagnosis algorithm is to break any cycles that include

modules that do not propagate a waiting indication. The BreakNonBlockedCycles()

function shown in Algorithm 2 transforms the original dependency graph into an

intermediate working graph (wgraph). This function visits each module in random

order (Line 2) and removes all outbound edges frommodules that are active (Lines 3–

26

5) or have no work to do (Lines 6–8). Note that this function does not access

information from any module’s parents or children. The resulting graph has no

cycles that include modules that are known to be active or DontCare. Removing

these edges does not adversely affect the dependency analysis, since any parent that

is active or DontCare does not pass any blame to its children. The reasons for

this are rather subtle, and are discussed further in Section 2.3.2.4.

2.3.2.2 Step 2: Merge Inactive Cycles

The second step of the extended diagnosis algorithm is to merge the remaining

(inactive) cycles into super-modules [17]. Merging cycles of inactive modules is

preferable to diagnosing them separately for two reasons:

a. A cycle of inactive modules indicates a potential deadlock, and there is no

general way to determine which module in the cycle originally caused the

problem. Diagnosing deadlocked modules as a group gives a clear indication

that the whole group is mutually dependent.

b. All the modules in one cycle may be blocked by a separate module or cycle

downstream. Merging the cycles preserves this relationship.

To indicate this relationship, both the cycle-free DAG and diagnosis results are re-

turned from the diagnosis algorithm in Algorithm 1 (Line 4). The follow-on presen-

tation can apply each cycle’s diagnosis to the individual modules, and also indicate

that the module was part of a deadlocked cycle.

27

The counters used for the resulting super-modules are the maximum of the

component modules’ ∆total_msgs, ∆wait_time, and σqueued_msgs. Since any active mod-

ules are by definition not part of one of these cycles, the cycle itself is inactive
(

∆cycle
total_msgs = 0

)

. Any (∆wait_time > 0) or (σqueued_msgs > 0) will cause the super-

module’s counter to be greater than zero. This gives an appropriate waiting indica-

tion (if any) for the cycle as a whole.

2.3.2.3 Step 3: Dependency Analysis

The third step of the algorithm is to perform the dependency analysis shown

in Algorithm 3. Since all cycles in the dependency graph have been broken by

removing modules’ out-edges (step one) or merging cycles into super-modules (step

two), the resulting graph is a directed acyclic graph, and FlowDiagnoser can obtain

a topological ordering of the modules (Line 3). As stated in Table 2.2, an active

module is Healthy (Line 7, criterion (a)).

For all inactive modules, the analysis then checks if the module has work to

do (Line 9), and marks it as DontCare if not (Line 10, criterion (b)). Otherwise,

the module should have been active.

If the module supports wait_time, FlowDiagnoser marks it as Blocked if

it was waiting (Lines 13–14, criterion (d)) and Stalled if not (Lines 15–16, cri-

terion (g)). Otherwise, if the module can pass blame to its descendants in the

DAG, it is blocked (Lines 19–21, criterion (e)); if not it is Stalled (Lines 22–24,

criterion (h)).

28

Algorithm 3 DependencyAnalysis

Require: dag, dgraph (original dependency graph), counters
1: # Diagnose each module in the DAG.
2: # Cycles of blocked/stalled modules will be diagnosed as a group.
3: for all M ∈ TopologicalSort(dag) do
4: # TopologicalSort visits modules from ancestors to descendants.
5: # By this point, all of M’s parents have been diagnosed.
6: if

(

∆M
total_msgs > 0

)

then # Module is active.
7: diagnosis[M] ← Healthy

8: else # Module is inactive.
9: if ¬HasWork(M, dag, dgraph, diagnosis) then # No work to do.
10: diagnosis[M] ← DontCare

11: else # Module has work to do.
12: if (M supports wait_time) then
13: if

(

∆M
wait_time > 0

)

then # Module tried to read/write.
14: diagnosis[M] ← Blocked

15: else # Module was idle.
16: diagnosis[M] ← Stalled

17: end if
18: else # M does not support wait_time
19: if CanPassBlame(M, dag) then
20: # Pass the blame.
21: diagnosis[M] ← Blocked

22: else
23: # No child is blocked or stalled.
24: diagnosis[M] ← Stalled

25: end if
26: end if
27: end if
28: end if
29: end for
30: return diagnosis

29

Algorithm 4 HasWork

Require: module M, dag, dgraph (original dependency graph), parents’ diagnoses
1: # Return true iff module M has work to do.
2: if (M supports queued_msgs) then
3: if

(

σMqueued_msgs > 0
)

then
4: return true
5: else
6: return false
7: end if
8: else if (M is a root module in original dependency graph) then
9: # Assume root modules always have work.
10: return true
11: else if (∃P ∈ dag.getParents(M) s.t. (diagnosis[P] = Blocked)) then
12: # Assume there is work if a parent in the DAG is blocked.
13: return true
14: else
15: return false
16: end if

The HasWork() function The HasWork() function shown in Algorithm 4 takes

four parameters: a module M, the DAG, the original dependency graph, and the

diagnoses for M’s parents, which have already been completed since the DAG is

traversed in topological order. To determine if M has work to complete, it checks

queued_msgs if it is supported and returns the appropriate response (Lines 3–7).

Next, if the module is one of the root modules (furthest ancestors) in the original

dependency graph (Lines 8–10), FlowDiagnoser assumes it always has work to do.4.

If the test on Line 11 is reached, the module is a non-root module (Line 8 is

false) that does not support queued_msgs (Line 2 is false). The HasWork() function

then checks to see if any of M’s parents are Blocked (Lines 11–13); if they are, it

assumes that M has work to do. Otherwise, M’s inactivity did not affect its parents

4Note that this check is made only if the queued_msgs counter is not supported by the (root)

module

30

during this snapshot, so the module is assumed to have nothing to do (Line 15)

which results in it being marked DontCare in the dependency analysis.

If M is not a root in the original dependency graph, but has no parents in the

DAG, the condition in Line 11 of HasWork() is always false. This is appropriate,

since any in-edges that were removed in the call to BreakNonBlockedCycles() were

from parents that were either active or had no work to do, i.e., they are known not

to be Blocked.

Algorithm 5 CanPassBlame

Require: dag, blocked/stalled module M, counters
1: # Determine whether blame can be passed from M to some child.
2: for all child ∈ dag.getChildren(M) do
3: if

(

∆child
total_msgs = 0

)

then
4: # Child is inactive.
5: if (child supports queued_msgs) ∧

(

σchildqueued_msgs = 0
)

then
6: # Child has no work to do.
7: continue
8: else # Pass the blame to/through the inactive child.
9: return true
10: end if
11: end if
12: end for
13: # Did not find any child to pass blame to.
14: return false

The CanPassBlame() function The final piece of the dependency analysis is

the CanPassBlame() function shown in Algorithm 5. This function is called only

when the module M is inactive (Algorithm 3, Line 19), and FlowDiagnoser needs to

determine whether it can pass the blame to one of M’s children. Therefore, it returns

true if any of the children is potentially Blocked or Stalled. It is important to

31

note that this function does not need to determine exactly why the child is blocked,

i.e. if the child can pass its blame on to one of the grandchildren.

If a child is inactive (Lines 3–11), the function checks whether the child has an

empty work queue (Line 5), and if so, proceeds to the next child (Line 7). Otherwise,

the inactive child either does not support queued_msgs or has something in its

queue. In both cases, the parent can pass blame to the child since the child is

inactive (Line 9).

Finally, if no child is blocked or stalled, the function returns false (Line 14).

This occurs when there are no children to check (children = ∅), all of the children

are active (Line 3 is false), or all of the inactive children have nothing in their work

queue (Lines 5–7).

2.3.2.4 Discussion

To remove cycles from the original dependency graph, each module is first vis-

ited at random, and outgoing edges from certain modules are removed. This breaks

any cycles that involve active or DontCare modules. Removing these particular

edges that originally existed between the parent modules and their children is valid

for two reasons:

1. The original parent modules are either active (diagnosed in Line 7 of Algo-

rithm 3) or known to be DontCare (Line 10), and do not need to check their

children to pass blame. Therefore, the out-edges add nothing to the parents’

diagnosis.

32

2. The only time children need to check their parents’ state is in Lines 11–13 of

the HasWork() function (Algorithm 4). However, since none of the original

parents were Blocked (they are either Healthy or DontCare), the orig-

inal parents add nothing to the children’s diagnosis. The missing in-edges are

therefore unnecessary to the children.

Once the first pass is performed to break some cycles, any remaining cycles

of inactive modules are merged together into super-modules. This grouping may

indicate possible deadlock among the modules in the cycle. The remaining DAG

is traversed in topological order (ancestors first), and each module is diagnosed

before its descendants. By doing this, any information that needs to be propagated

from the roots of the dependency graph to the descendants (namely, whether or not

the module should be active) is available by the time each module is visited. The

topological sort also ensures that each module is visited at least once during the

DependencyAnalysis.

Overall, each module in the original dependency graph is visited at least twice,

and at least three times if it is not part of a cycle:

1. Once in BreakNonBlockedCycles(), with time complexity O(|modules|);

2. At least once in Tarjan’s algorithm to find and merge strongly connected

components, which has time complexity O(|modules|+ |wgraph edges|) [50];

3. Visiting each (DAG) module once in Line 3 of DependencyAnalysis(), with

complexity O(|modules|);

33

4. Potentially visiting each module’s parents in Line 11 of HasWork(), with worst

case complexity O(|edges|); and

5. Potentially visiting each module’s children in CanPassBlame(), with worst

case complexity O(|edges|).

Therefore, the overall worst-case time complexity of the FlowDiagnoser algorithm

is O(|modules| + |edges|). While the number of modules in the DAG may be less

than in the original dependency graph, such a reduction cannot be expected.

2.3.3 Correlating evidence

One beneficial feature of the FlowDiagnoser algorithm is that when determin-

ing whether an inactive module M is Blocked or Stalled, it takes into account

correlations among multiple flows. To see this, consider the example dependency

graphs in Figure 2.3. In both subfigures, A is able to pass messages along the path

from A → B → C → E, but module D is inactive (∆D
total_msgs = 0).

In Figure 2.3(a), FlowDiagnoser has a signal that D’s parent is partially

blocked: σDqueued_msgs > 0. Since D is not processing messages sent to it, but its

children are still active (∆E
total_msgs > 0), then D is at fault. In the network stack,

several TCP connections may be doing fine (and thus providing messages for the IP

module to forward) while one TCP connection is stalled due to congestion further

out in the network. In this case, there is enough information to correctly locate the

stall’s source.

34






















(a) Example dependency graph in which module D is Stalled and not forwarding traffic.
This is identical to Figure 2.2 with module F removed.



























(b) The dependency D → F indicates that D is in fact Blocked by its child F .

Figure 2.3: Example dependency graphs with performance stalls. Traffic is able to
flow along the edges from A → B → C → E, but is blocked from B → D. In subfigure
(a) (with module F removed), the activity at D’s child module E indicates that D is
at fault. In subfigure (b), D is blocked by its other child module, F .

Figure 2.3(b) has an additional dependency to consider, from D → F . If

module E or F stop processing altogether, their incoming work queues may fill

and block their parents from sending new messages; this phenomenon is known as

backpressure. In this case, D is Blocked by its child F . Therefore FlowDiagnoser

marks F as Stalled.

35

2.4 Diagnosis Results

This diagnosis process is performed on the entire graph for each snapshot taken

of the modules’ counters. This means that over time, FlowDiagnoser creates a series

of diagnoses that show the status of each module in the system. To summarize the

diagnosis results over the entire monitoring period, FlowDiagnoser provides several

visualization and reporting outputs:

• A per-module diagnosis summary which explains how often a module was

diagnosed asHealthy, Blocked, Stalled, orDontCare, and the average

and maximum duration of the periods it was Stalled, described in Chapter 5.

• A time series visualization that shows the diagnosis provided to each module

over time, as explained in Section 3.5.4.

• A time series visualization of the module counters, with a separate heatmap

provided for each counter, also explained in Section 3.5.4. This helps an ex-

pert user to see when a module was Healthy, Blocked, Stalled, or its

performance did not matter (DontCare).

2.5 Summary

The FlowDiagnoser approach to diagnosing performance stalls in distributed

systems consists of three parts: a dependency graph which describes the relation-

ships between the modules of the system, counters used to make an initial assess-

ment of module performance, and a dependency analysis performed to determine

36

each module’s health. Modules are diagnosed as Healthy and processing messages,

Blocked by another module, Stalled and preventing other modules from mak-

ing progress, or labeled as DontCare since their inactivity does not affect overall

system health.

The following two chapters describe the application of this approach in two

different environments. The first, discussed in Chapter 3, is a system called the

Network Stack Trace (NeST), which automatically diagnoses software and network-

related performance stalls by instrumenting an end host’s networking stack. The

second, StreamsDiagnoser, is a prototype diagnosis engine for detecting and locat-

ing performance stalls in a multi-host, multi-process distributed stream-processing

system; this is described in Chapter 4.

37

Chapter 3

Diagnosing Problems in the Network Stack

This chapter describes the Network Stack Trace (NeST), an instantiation of

the FlowDiagnoser approach to the task of detecting the source of stalls in networked

applications running on an end host.

In this setting, the modules are the layers of the network stack: the (whole)

application, its sockets, and the protocol endpoints (TCP, IP, and physical device)

that send/receive data over the network. Together they comprise the network stack

dependency graph (NS graph). The process used to acquire and maintain this graph

is described in Section 3.1.

NeST obtains module counters from the operating system and by specially

instrumenting applications’ read and write calls, as explained in Section 3.2. The

dependency analysis, described in Section 3.3, extends FlowDiagnoser by applying a

NeST-specific rule that distinguishes between network-wide and connection-specific

performance stalls.

The prototype data collection and diagnosis engine described in Section 3.4

is used in a series of controlled experiments to instrument real applications. These

results, presented in Section 3.5, show that NeST is 99% effective at detecting per-

formance stalls due to the application (whether from bugs or resource contention),

TCP retransmission timeouts, and excessive network congestion, with a false posi-

38

tive rate under 3%. Section 3.6 discusses potential extensions to the NeST model,

and Section 3.7 provides a summary of the results.

TheNeST diagnosis provides a succinct summary of the health of each module

in the host’s network stack, and if run online could enable applications and users to

mitigate performance problems in real time. For example, the user or software could

restart a TCP connection or select a different remote server to avoid connection-

specific performance problems, change their wireless channel or transmit rate to

achieve better performance, or restart their browser process if it has stalled.

3.1 The Network Stack Dependency Graph

Each element of the host’s network stack appears as a module in a network

stack dependency graph (NS graph). In particular, modules consist of (1) running

applications (one module per application); (2) each of an application’s sockets (one

module per socket); (3) the TCP state for each socket; (4) each IP source/destination

an application is communicating with; and (5) each physical device through which

communication is taking place.

Figure 3.1(a) shows an example NS graph. The three active applications (pid-

gin, webkit, and spotify) are connected via sockets with various file descriptors

(FDs) to their respective transport-layer (TCP) connections. Each TCP connection

is bound to the same local IPv4 address 10.0.1.43 and Ethernet interface eth0. If

an application in this scenario appeared stalled—e.g., webkit was playing a video

that has frozen—then NeST should diagnose the source of the problem as being lo-

39

IPv4, addr=10.0.1.43

Ethernet, eth0

TCPw TCPx TCPy TCPz TCPkTCPj

webkit

pid=12343

fd 7fd 5fd 2 fd 24fd 8

pidgin

pid=317

fd 6

spotify

pid=408

(a) Entire host network stack dependency graph.

total_msgs_out,

wait_time_out,

...

parent

child

webkit

IPv4

10.0.1.43

eth0

parent

child

parent

child

parent

child

fd 7fd 5fd 2 fd 24

TCPw TCPx TCPy TCPz

(b) Outbound dataflow graph for webkit.

total_msgs_in,

wait_time_in,

...

webkit

IPv4

10.0.1.43

eth0

fd 7fd 5fd 2 fd 24

TCPw TCPx TCPy TCPz

(c) Inbound dataflow graph for webkit.

Figure 3.1: Example NS dependency graph, showing the individual modules. Ap-
plication and socket modules are shown in light grey, TCP instances in dark grey, and
IPv4 and Ethernet in white. Application modules are made up of component socket
modules. Subfigures (b) and (c) show the dataflow graphs related to webkit only;
the dataflow graph for outbound flows (left) and inbound flows (right) have the same
shape, but the directed edges are reversed.

calized to one of the above modules, thus blaming the application, TCP’s behavior,

IP-level connectivity, or the physical network device.

In NeST, applications drive all traffic on the host: dataflow is push-oriented

for outbound traffic and pull-oriented for inbound traffic. Therefore, NeST uses

the same NS graph for both kinds of flows.

40

Figure 3.1(b) shows the dataflow graph for outbound (push-oriented) flows sent

from the local host. For outbound flows, the diagnosis rules assume that children—

the lower layers in the network stack—will attempt to process and emit all messages

that are produced unless they detect problems such as congestion. On the other

hand, for inbound (pull-oriented) flows received by local applications, shown in

Figure 3.1(c), the rules assume that no messages need to be produced unless the

sink (parent) is actively consuming them. The diagnosis implementation for both is

the same: the focus on parents’ and ancestors’ (lack of) requests for service.

As detailed in Section 3.4, NeST instruments an end host’s network stack

to track applications, sockets, connections, and interfaces and their dependencies as

they come and go. As applications and connections open and close, NeST tracks the

changes to the graph and updates it accordingly. At configurable intervals, NeST

snapshots the entire host’s network counters and uses them to make a diagnosis.

3.2 Network Stack Counters

The counters used by NeST are given in Table 3.1. Each module in the NS

graph has a counter for the number of outbound and inbound messages processed,

called total_msgs_out (abbreviated tmo in the figures) and total_msgs_in (tmi),

respectively. For the TCP, IP, and physical device modules, NeST populates these

counters using operating system-provided information. For applications and sockets,

it acquires the message counters using custom instrumentation.

41

Counter Abbr. Description

total_msgs_out tmo Total messages sent (required)

wait_time_out wto Total time spent blocked while writing to child

total_msgs_in tmi Total messages received (required)

wait_time_in wti Total time spent blocked while reading from child

Table 3.1: NeST module counters.

Since application socket modules are the sources in the NS graph, for them

NeST keeps two additional counters, wait_time_out (wto) and wait_time_in

(wti), to track time spent waiting to send outbound traffic, and to receive inbound

traffic, respectively.

NeST does not track the queuing behavior of modules, so the queued_msgs

counter from Table 2.1 is not used. Earlier implementations attempted to accurately

track the number of bytes waiting in a TCP connection’s queues, but this was

unreliable [27,28] or too slow for frequent snapshots in the versions of the operating

system used [29].

3.2.1 Application and socket modules

To track application behavior, NeST sums the counters of the application’s

sockets.

To track per-socket message counts, NeST increments the total_msgs_out

counter for each call to message-sending system calls (e.g., write, connect, and

send) using the socket, and the total_msgs_in counter for each call to message-

42

receiving calls (e.g., read and recv). It does this by intercepting calls using an

LD PRELOAD interceptor library, described in Section 3.4.

NeST implements wait_time_out and wait_time_in for sockets in the same

interceptor library: it accumulates the amount of time (in milliseconds) spent block-

ing in the underlying call. To support non-blocking calls, it also tracks the time spent

in poll(), select(), and their equivalents. Note that NeST does not increment

the message counter until after a blocking call completes. In the expected case, ev-

ery socket will accumulate a bit of waiting time during each snapshot, even when it

sends messages successfully. For example, a single-gigabyte write() call may take

most of a snapshot interval to complete, incrementing wait_time_out by 100s of

milliseconds and total_msgs_out by 1.

3.3 Stack Dependency Analysis

NeST follows the diagnosis algorithm given in Section 2.3 to declare each

module as either Healthy, Stalled, Blocked, or DontCare. NeST makes

one customization to this algorithm, described shortly. The following subsection

describes how the diagnosis results should be interpreted in NeST.

3.3.1 Interpreting the results

Since in practice each module in the NS graph is a piece of code, it seems

intuitive to interpret a diagnosis result of Stalled as indicating a bug of some

kind. However, with the exception of application or socket modules, it is unlikely

43

for stalls to be the result of bugs inside the operating system’s network stack, which

is generally well-tested.

When a particular socket is marked Stalled, this means that the application

has not attempted to read (or write, depending on flow direction) on this particular

socket. It is possible that the application keeps open long-lived sockets, but reads or

writes on them only when a user clicks on a link or types a message, so a Stalled

socket does not necessarily indicate a problem; it does mean that the underlying

network modules are not expected to provide any service. A Blocked socket

indicates that the application attempted to communicate over the socket, but either

the outbound write buffer was full or the inbound receive buffer was empty.

Since an application’s counters are the sum of its sockets’ counters, if any

socket is Healthy, then the application is said to beHealthy; a more conservative

option that marks the application as Healthy only when all its sockets are healthy

may be more useful in some situations, but this would require a change in how

NeST accounts for application counters. If the application is not Healthy, then

if any of its sockets are Blocked the application is Blocked. This means that

the application did attempt to communicate on at least one of its sockets and was

unable to. Finally, if an application does not attempt to communicate on any of

its sockets, then the application itself is said to be Stalled. As with sockets, the

usefulness of this result depends on the application semantics.

For transport-layer connections such as TCP, a diagnosis ofDontCaremeans

that its socket is idle and not attempting to read (or write, depending on flow

direction). A Stalled diagnosis means that an application attempted to use the

44

connection, but was blocked and unable to make progress; it may be that the remote

application did not read or write any data, or the path between the two hosts was

congested.1 A Blocked diagnosis means that desired progress was blocked by a

lower-level or network-wide congestion event.

Either diagnosis could be interpreted in terms of TCP’s estimate of the (vir-

tual) queue available to it in the network. A TCP sender will stop transmitting

when it thinks the network or receiver has a full buffer; its receive queue empties

when the network or remote sender is unable to provide enough messages for it

to process. When many connections detect congestion simultaneously, there is a

broader problem: all the (virtual) queues appear to be blocked.

For lower-layer network modules such as IP, and Ethernet or wireless interfaces,

when any transport-layer connection has attempted to write across the network (out-

bound) or has received any data (inbound), the IP endpoint and Ethernet interface

modules are also active and are marked Healthy. This is not particularly precise,

since any active connection automatically removes any blame from these low-level

modules, even if the connections were to hosts in the local subnet. On the other

hand, when no transport-layer connections are able to obtain service from an IP

address endpoint and the interface is silent, both low-level modules are diagnosed

as Stalled, regardless of how many connections were blocked. This assumes that

some application was active or blocked; if all the applications are idle (or there

1A protocol-specific analysis may be able to distinguish between these two (for example, by

looking at the TCP advertised window), but NeST does not.

45

are no applications running), these lower-layer modules are marked as DontCare.

Possible improvements are discussed in Section 3.6.1.

3.3.2 Distinguishing connection-specific and network-level faults

The dependency analysis NeST employs is essentially the same as that de-

scribed in Section 2.3: a module is considered Healthy whenever it is active

(∆total_msgs > 0), and NeST can directly diagnose application and socket modules

since they export the wait_time counter. The diagnosis process therefore needs to

consider only the cases where some other module is inactive.

An end host often has multiple network connections active at the same time:

users may be listening to a music stream while browsing the web, uploading photos,

or instant messaging. Each additional flow provides additional clues about the

source of stall. The following sections consider how multiple flows aid in diagnosis,

and the rule variant used to distinguish between connection-specific and network-

wide performance stalls.

When a single connection independently experiences performance problems,

as seen in Figure 3.2, NeST is able to easily locate the source of the problem using

the standard algorithm given in the previous chapter.

In this example, the webkit application has four open connections. As shown

in the inbound dataflow graph and counters for the webkit (Figure 3.2(a)), webkit

is reading from three of its sockets (fd 2, fd 5, and fd 7), and its fourth is idle

(fd 24, ∆tmi = 0 and ∆wti = 0). Note that two of the connections (TCPx and

46

(a) Webkit graph with (abbreviated)
inbound counters.

IPv4, addr=10.0.1.43

Ethernet, eth0

TCPx TCPy

webkit

pid=12343

fd 7fd 5fd 2

HEALTHY

HEALTHY

HEALTHY

HEALTHYSTALLED

STALLED

DONTCARE

BLOCKED

TCPzTCPw

fd 24

HEALTHY

(b) Inbound diagnosis results for webkit graph.

Figure 3.2: Example counters and diagnosis results for the webkit inbound dataflow
graph. In subfigure (a), the inbound counters are shown to the upper left of each mod-
ule. total_msgs_in is abbreviated as tmi and wait_time_in as wti. Subfigure (b)
shows the resulting diagnosis: Blocked modules are yellow, Healthy modules are
outlined with a solid green border, Stalled modules outlined with a red dash-dot
border, and DontCare modules outlined with a blue dotted border.

TCPy) are actively receiving data and their total_msgs_in counters are increasing

(∆tmi > 0), and their descendants 10.0.1.43 and eth0 are providing data to them.

However, webkit is unable to receive messages via fd 2 (∆fd 2
tmi = 0 and

∆fd 2
wti > 0), and TCPw is inactive (∆TCPw

tmi = 0). Since TCPw’s children are active

(∆10.0.1.43
tmi > 0), the fault lies with TCPw and NeST marks it as Stalled.2 The

resulting diagnosis output is shown in Figure 3.2(b).

When multiple connections experience problems simultaneously and no traffic

is being transmitted, the pass-the-blame rule described in Section 2.3.1.3 automat-

ically absolves the parent modules (marking them as Blocked), and passes the

blame to the lowest-level descendant that is inactive (marking it as Stalled). This

is a good general-purpose rule, but can lead to some unsatisfying results.

2This is due to criteria (f) and (h) in Table 2.2.

47

In the network stack, higher-layer modules will defer transmissions if they

find the lower layers to be unreliable (i.e., they detect that the lower layers are not

delivering their packets to the remote host). Hence, it seems reasonable to pass the

blame to an inactive child module. However, lower layers of the stack can only pass

on what has been provided to them by their parent, and blindly blaming the lower

layer module(s) may cause NeST to misplace the fault.

When any transport-layer (TCP) connection is active, the IP module will be

active as well, since IP is a best-effort forwarding service and performs no buffering.

So, when IP is not sending (receiving) datagrams, it must be because all of the

active connections are experiencing performance problems at the same time.3

In this case, NeST cannot tell with certainty whether the underlying IP net-

work is experiencing a major congestion event or outage, or whether each individual

TCP connection is experiencing its own unique, independent fault. However, it

seems reasonable to assume that many TCP connections should not experience in-

dependent faults simultaneously.

To see how NeST takes advantage of this observation, consider Figure 3.3(a).

This example is similar to the one in the previous figure, but in this case all of the

TCP connections are inactive (∆tmi = 0), and fd 2, fd 5, and fd 7 are all waiting

on service (∆tmi = 0 and ∆wti > 0). The question is: is it more appropriate to

blame the Ethernet module, IP module, TCP modules, or some combination? The

simple pass-the-blame rule would mark only the eth0 interface as Stalled, and

the rest as Blocked.
3Any connections with idle readers/writers are marked as DontCare and ignored.

48

(a) Stalled traffic dataflow graph
with counters.

IPv4, addr=10.0.1.43

Ethernet, eth0

TCPx TCPy

webkit

pid=12343

fd 7fd 5fd 2

STALLED

STALLED

DONTCARE

BLOCKED

TCPzTCPw

fd 24

STALLED

BLOCKED

BLOCKED

BLOCKED

BLOCKED

(b) Diagnosis results graph, using Θ = 2.

Figure 3.3: Sockets fd 2, fd 5, and fd 7 are waiting on service, and NeST needs to
determine whether the TCP connections or the lower-layer network is at fault. Note
that TCPz is also inactive, but fd 24 has not attempted to read from it. Since there
are at least Θ = 2 connections with ancestors waiting for service, and the lower layer
is inactive (∆total_msgs = 0), NeST assumes that a lower layer networking problem
is causing the TCP connections to block. Blocked modules are yellow, Stalled
modules outlined with a red dash-dot border, and DontCare modules outlined with
a blue dotted border.

A simple heuristic works well in practice. Select a threshold Θ number of con-

nections; if the number of connections experiencing simultaneous stalls is greater

than or equal to Θ, mark the TCP connections as Blocked, and the underlying

network module(s) as Stalled. For more complicated graphs, this process con-

tinues as the diagnosis proceeds down through the graph. Otherwise, there is not

enough evidence to blame only the network, so NeST marks both the TCP connec-

tions and the lower-layer modules as Stalled, since it is impossible to distinguish

between the two possibilities given the evidence available; a reasonable alternative

is to blame the higher-layer module(s) only. The resulting diagnosis is shown in

Figure 3.3(b).

49

Note that when the network is quiet, but there is only one TCP connection

waiting for service, NeST marks both the TCP connection module and the under-

lying modules (IP, Ethernet, et cetera) as Stalled.

Section 3.6.1 discusses possible improvements to the precision of the results.

3.4 Data Collection Prototype

The NeST Linux prototype for end-host performance monitoring consists of

three subsystems:

• a collector daemon that constructs the NS graph, takes periodic snapshots of

module counters, and stores them to a database for post-processing;

• an interceptor library that tracks application counters and provides them to

the collector; and

• the diagnosis engine which analyzes the snapshots.4

The prototype architecture is shown in Figure 3.4.

To monitor the various network protocols, simple adapters read the

implementation-specific counters and present them in the common counter format

shown in Table 2.1. For TCP connections, NeST uses the counters exported by the

Web100 kernel patch [39]. IPv4 counters are gathered by reading /proc/net/snmp,

4 While the diagnosis engine can be run in real-time as part of the collector, the implementation

has not been tuned to do this. All evaluation was performed using the diagnosis engine in offline

mode to post-process the collected data.

50

Ethernet interface counters via netlink sockets [41], and wireless interfaces via

device- and driver-specific interfaces.

To track application behavior, NeST intercepts socket-related calls to libc

using an LD PRELOAD interceptor library which records the number of calls

made and the time spent in them in a shared memory segment. The library also

notifies the collector of new and closing applications and sockets by sending one-way

messages to the collector’s Unix domain socket, which allows the collector to read

socket statistics from the shared memory (shm) area without interfering with the

application.5

The collector takes a snapshot every 50–100 ms. As discussed in Section 2.2.1,

this data collection architecture does not block the application when a snapshot is

being taken. Indeed, it is subject to race conditions, since the interceptor library

may be updating a counter in the shared memory area while the collector daemon

is reading it.

The main consistency requirement is that each module’s total_msgs and

wait_time counters be monotonically increasing. If they ever decrease (usually

due to a race condition while reading the 64-bit value), the delta is invalid and

NeST discards the second snapshot. If the third snapshot is also lower than the

first, NeST assumes that the first snapshot was a spurious increase, discards it, and

continues from there. In practice that these invalid snapshots are extremely rare,

5Applications could also be instrumented using a general-purpose tracing library such as LTTng

[51] or DTrace [12], or a kernel-level Linux Security Module (LSM) [55]. Earlier experiments with

PTrace [42] proved to be problematic, largely due to implementation complexity [16].

51

kernel

NETLINK /proc ioctl syscalls

collector

daemon

domain

socket libc.so
interceptor

application

shm

domain

socket libc.so

application

shm

domain

socket libc.so

application

shm

db

 userspace

interceptor

interceptor

diagnosis

engine

adapters

Figure 3.4: Network Stack Trace collection architecture

but the estimates may be optimistic since the transfer rates were low (less than 100

Mbps). Since NeST snapshots counters fairly frequently, a few discarded snapshots

have little impact.

3.5 Experimental Results

To evaluateNeST’s accuracy, we used it to diagnose faults injected into sample

programs and network flows in a controlled setting. Out of the thousands of runs

performed, this section presents results from a representative series of experiments.

These experiments cover all of the fault scenarios and also control groups run without

52

faults. In the test scenarios, NeST correctly diagnosed the faulty module more than

99% of the time, while incorrectly blaming modules only 3% of the time.

Section 3.5.1 describes the experimental setup, and Section 3.5.2 presents re-

sults from the accuracy evaluation. Section 3.5.3 assesses the prototype efficiency

and potential improvements, and Section 3.5.4 discusses results of some illustrative

diagnosis scenarios.

3.5.1 Experimental setup

All experiments were performed on Emulab [53] using the topology shown in

Figure 3.5, varying the types of applications running (download-only, upload-only,

or simultaneous upload/download) and the number of simultaneous connections.

In these experiments, NeST instruments the network stack on host site1n1, and

faults are injected on site1n1’s network connections and applications.

For download tests, we used wget version 1.12 to download a 100MB file twice

in succession from an Apache version 2.2.3 web server. For upload tests, we used

iperf version 2.0.5, which uses a separate thread for each connection to the remote

iperf server. Since wget downloads each request serially, we use multiple instances

of wget and iperf to generate background download traffic when testing the effect

of simultaneous connections.

Each series of tests included a control group running normally, plus experi-

ments with randomly injected faults targeting the network and applications. These

faults include:

53

x1

40 ms RTT

100 Mbps
x2

site2n1site1n1 site1n2

Figure 3.5: Emulab experiment topology. Two sites are connected by a single
100 Mbps bottleneck link between routers x1 and x2. We inject faults by pausing
applications, and dropping all packets on specific TCP connections and IP flows on
router x1.

1. Pausing the application to force it to stop reading and writing from sockets

2. Dropping packets on certain TCP connections

3. Dropping packets on certain IP-to-IP flows

To inject application faults, a Unix signal is sent to the application process,

which sets a global variable; the global variable is cleared when another signal

arrives to end the fault period. Before and after each read() or write() call, each

reader/writer thread checks this global variable in a loop; if it is set, the thread sleeps

for 10 ms and then checks again. While in this loop, its socket should be marked

Stalled. When all the threads stop reading/writing, the application should be

marked Stalled as well.

To inject faults on TCP connections, we insert a firewall rule on the local

gateway router x1 to drop all packets matching the connection’s five-tuple (source

address, destination address, protocol=TCP, source port, destination port). We

then remove the rule to let communication proceed normally.

54

To simulate network-wide faults, we insert a firewall rule on x1 to drop all

packets to or from site1n1’s local IP address. All of the host’s traffic is crossing

the bottleneck link in the experiments, so a single rule is sufficient.

Since we were unable to reliably inject layer-two faults using Emulab, the

IP endpoint and Ethernet modules are combined together, labeled ip+eth. This

combined module uses the counters from the Ethernet module, since only one IP

address is assigned to the experimental interface. Thus any faults injected at the IP

layer simulate a network-wide event.

3.5.2 Diagnosis accuracy

In the unloaded test network, a module should be marked Stalled (receive a

positive diagnosis) only when it is targeted for a fault; this is the expected/correct

positive result. Otherwise the correct diagnosis is negative (the null hypothesis).

Application sockets are an exception to this rule, since their diagnosis depends on

the type of traffic the application is performing. Since they send little or no out-

bound trafic, download sockets should always have a Stalled (positive) outbound

diagnosis; conversely upload sockets should have a Stalled (positive) inbound di-

agnosis.6 The same holds for the applications themselves.

The following section evaluates the ability of NeST to detect these injected

faults. According to the evaluation criteria, the correct result is positive (Stalled)

in two cases: (1) Upload-only or download-only applications and sockets are idle

6 This ignores the initial request traffic (e.g. HTTP GET), but the number of relevant periods

should be insignificant.

55

in the opposite direction of packet flow. (2) A module is unresponsive when it

is affected by an injected fault. In all other cases, the correct result is negative

(Healthy, Blocked, or DontCare); in general, each module should receive a

clean bill of health.

3.5.2.1 Reading the diagnosis table

Table 3.2 lists the abbreviations used in the diagnosis accuracy table, which

is shown in Table 3.3. In Table 3.3, NeST diagnosis results are grouped in rows by

flow direction (inbound, outbound, and combined total) and then listed by module

type: iperf application, wget application, sockets (broken down by application),

TCP and ip+eth. There are four groups of columns:

• Correct Answers. This lists the Total number of diagnosis periods for each

module type, along with the number of Actual Positive (AP) and Actual Neg-

ative (AN) periods expected according to the evaluation criteria. Note that

the evaluation criteria ignore wget’s outbound request traffic, and always ex-

pect wget and its sockets to be marked as Stalled in the outbound direction

(outbound AN column = 0).

• NeST Diagnosis Results. This lists the number of diagnoses thatNeST as-

signed to each module, broken down by how well they matched the evaluation

criteria (“Correct Answers”):

– True Positives (TP): NeST correctly marked the module as Stalled

(i.e., a NeST positive was an Actual Positive).

56

– True Negatives (TN): NeST correctly did not mark the module as

Stalled (i.e., a NeST negative was an Actual Negative).

– False Positives (FP):NeST incorrectly marked a module as Stalled,

but the correct answer was negative (i.e., a NeST positive was an Actual

Negative).

– False Negatives (FN): NeST erroneously marked a module as

Healthy, Blocked, or DontCare while a fault was injected: the

correct answer was positive, but NeST did not detect it properly (i.e., a

NeST negative was an Actual Positive).

• Positive Accuracy %: The percentage of the time that a NeST positive

diagnosis (Stalled) was correct:

– True Positive Rate (TPR): The percentage of the Actual Positive

periods NeST correctly detected as Stalled (TP/AP).

– False Positive Rate (FPR): The percentage of the Actual Negative

periods NeST incorrectly marked as Stalled (FP/AN).

– Positive Predictive Value (PPV): The percentage of NeST positive

diagnoses that were actually correct (TP/(TP + FP)).

• Negative Accuracy %: The percentage of the time that a negative NeST

diagnosis (Healthy, Blocked, or DontCare) was correct:

– True Negative Rate (TNR): The percentage of the Actual Negative

periods NeST correctly detected (TN/AN).

57

Abbr. Name Explanation

Total Total diagnoses possible Count of snapshot deltas with valid measurements

AP Actual Positive periods
(known positives)

Number of measurement periods
where a fault was active

AN Actual Negative periods
(known negatives)

Number of measurement periods
where a fault was not active

TP True Positive diagnoses Count of our positive diagnoses
that were also Actual Positives

TN True Negative diagnoses Count of our negative diagnoses
that were also Actual Negatives

FP False Positive diagnoses Count of our positive diagnoses
that were Actual Negatives

FN False Negative diagnoses Count of our negative diagnoses
that were Actual Positives

TPR True-Positive Rate
(Sensitivity)

% of Actual Positives (AP)
that were correctly diagnosed

FPR False-Positive Rate % of Actual Negatives (AN)
that were False Positives (FP)

PPV Positive Predictive Value
(Precision)

When the diagnosis is positive,
what % of the time is it correct?

TNR True-Negative Rate
(Specificity)

% of Actual Negatives (AN)
that were correctly diagnosed

FNR False-Negative Rate % of Actual Positives (AP)
that were False Negatives (FN)

NPV Negative Predictive Value When the diagnosis is negative,
what % of the time is it correct?

Table 3.2: Abbreviations for evaluation tables.

– False Negative Rate (FNR): The percentage of the Actual Positive

periods NeST incorrectly marked as not Stalled (FN/AP).

– Negative Predictive Value (PPV): The percentage of NeST negative

diagnoses that were actually correct (TN/(TN + FN)).

58

Correct Answers NeST Diagnosis Results Positive Accuracy % Negative Accuracy %
Module Total AP AN TP TN FP FN TPR FPR PPV TNR FNR NPV

In
b
o
u
n
d

iperf 6367 3454 2913 3433 2898 15 21 99.3 0.5 99.5 99.4 0.6 99.2
wget 19918 965 18953 965 18949 4 0 100.0 0.0 99.5 99.9 0.0 100.0
socket 51687 22885 28802 22866 28777 25 19 99.9 0.0 99.8 99.9 0.0 99.9
s:iperf 31769 21920 9849 21901 9828 21 19 99.9 0.2 99.9 99.7 0.0 99.8
s:wget 19918 965 18953 965 18949 4 0 100.0 0.0 99.5 99.9 0.0 100.0
TCP 65572 2017 63555 1807 61728 1827 210 89.5 2.8 49.7 97.1 10.4 99.6
ip+eth 15174 1446 13728 1446 12716 1012 0 100.0 7.3 58.8 92.6 0.0 100.0

158718 30767 127951 30517 125068 2883 250 99.1 2.2 91.3 97.7 0.8 99.8

O
u
tb

o
u
n
d

iperf 6367 138 6229 138 6229 0 0 100.0 0.0 100.0 100.0 0.0 100.0
wget 19918 19918 0 19879 0 0 39 99.8 100.0 0.2 0.0
socket 51687 31038 20649 30999 20649 0 39 99.8 0.0 100.0 100.0 0.1 99.8
s:iperf 31769 11120 20649 11120 20649 0 0 100.0 0.0 100.0 100.0 0.0 100.0
s:wget 19918 19918 0 19879 0 0 39 99.8 100.0 0.2 0.0
TCP 65572 1165 64407 1165 63357 1050 0 100.0 1.6 52.6 98.3 0.0 100.0
ip+eth 15174 879 14295 879 13774 521 0 100.0 3.6 62.7 96.3 0.0 100.0

158718 53138 105580 53060 104009 1571 78 99.8 1.4 97.1 98.5 0.1 99.9

T
o
ta

l

iperf 12734 3592 9142 3571 9127 15 21 99.4 0.1 99.5 99.8 0.5 99.7
wget 39836 20883 18953 20844 18949 4 39 99.8 0.0 99.9 99.9 0.1 99.7
socket 103374 53923 49451 53865 49426 25 58 99.8 0.0 99.9 99.9 0.1 99.8
s:iperf 63538 33040 30498 33021 30477 21 19 99.9 0.0 99.9 99.9 0.0 99.9
s:wget 39836 20883 18953 20844 18949 4 39 99.8 0.0 99.9 99.9 0.1 99.7
TCP 131144 3182 127962 2972 125085 2877 210 93.4 2.2 50.8 97.7 6.6 99.8
ip+eth 30348 2325 28023 2325 26490 1533 0 100.0 5.4 60.2 94.5 0.0 100.0

317436 83905 233531 83577 229077 4454 328 99.6 1.9 94.9 98.0 0.3 99.8

Table 3.3: Diagnosis accuracy from controlled NeST experiments; columns are defined in Table 3.2. Top section is for inbound
flows, middle section for outbound flows, and combined results at the bottom. Values in the two rightmost sections are percentages.
Statistical uncertainty is less than 0.3% for all measurements, except for outbound ip+eth (0.5%), inbound TCP (0.7%), and total
TCP (0.4%).

59

3.5.2.2 NeST evaluation results

The TPR and TNR columns for the application and socket rows in Table 3.3

show that NeST is able to accurately detect faults in applications or individual

sockets in well over 99% of the cases, with few False Positives. This is expected,

since the wait_time counter allows NeST to observe their state directly.

At first glance, the ip+eth module and TCP modules appear to have much

worse results: while the TPR column indicates thatNeST accurately detects almost

all of the Actual Positives, it has a significant False Positive Rate (FPR) for inbound

ip+eth traffic (7.3%) where it appears to blame ip+eth incorrectly. It also misses

10.4% of the inbound TCP faults, as seen in the False Negative Rate (FNR) column

for inbound TCP.

Likewise, while NeST detects 100% of outbound TCP connections’ problems

(TPR column), it has a significant number of False Positives (1050 in total, 1.6%

False Positive Rate). This leads to a low Positive Predictive Value (PPV) for out-

bound TCP connections: according to the evaluation criteria, when the diagnosis

blames an outbound TCP connection, it is correct only 62.7% of the time.

The main reason for this apparent lack of precision is the inherent ambiguity

that arises when the whole network stack is silent, as discussed in Section 3.3.2.

There are three main cases which appear in the experiments: when there is a sin-

gle active flow, when multiple flows unexpectedly experience congestion, and when

connection recovery is unexpectedly delayed.

60

3.5.2.3 One active flow

When only one TCP flow is active and the TCP or ip+eth modules are tar-

geted by an injected fault, it is hard (if not impossible) to distinguish between an

endemic IP-layer fault and a problem on the single TCP flow. As discussed in Sec-

tion 3.3.2, in such single-flow situations NeST blames both the TCP and ip+eth

modules. These are counted as ip+eth False Positives when a TCP-specific fault

has been injected, and TCP False Positives when an ip+eth fault has been injected.

3.5.2.4 Multiple active flows experience congestion

In spite of efforts to limit network congestion, there are times in the exper-

iments when multiple TCP flows experience congestion simultaneously. This can

lead to counted False Positives against the ip+eth module when all of the TCP

connections go silent simultaneously. When this occurs during a TCP fault injec-

tion period, it is counted as a TCP False Negative since TCP is absolved by its

peers (using Θ = 2). This is more indicative of a drawback in the evaluation criteria

than the diagnosis algorithm.

3.5.2.5 Delayed connection recovery

When a network-level fault is injected against the ip+eth module, some TCP

connections may take longer to recover than others. When other connections become

active again, the ip+eth module is also active, and any TCP connections that do

61

not recover are marked as Stalled. Although the diagnosis is probably correct in

these situations, these are counted as False Positives in the evaluation.

3.5.3 Prototype efficiency

While the goal is to create a data collection and diagnosis engine that is

efficient, the prototype data collector daemon and diagnosis and analysis engine

are written in Python, and not highly optimized. Nevertheless, they are efficient

enough to use for experimental purposes, even though they record each module’s

counters in a database for post-processing; an engineered implementation in a low-

level language would presumably perform much better.

During the controlled experiments described below, the data collection en-

gine uses on average approximately 50% of one CPU on a 2.4 GHz quad-core Xeon

machine. This is largely due to Python interpreter overhead, verbose logging for ex-

perimental purposes, and interaction with the backend database system that stores

the counters for post-processing.

Similar systems for application and TCP connection logging using Event Trac-

ing for Windows [33] found that application event tracing increased median CPU

utilization by 1.6% CPU, and disk utilization by 1.2%. Yu, et al measured the CPU

load required to read the full Windows TCP statistics table (similar to the Web100

counters NeST uses) every 50 ms to be 10% at 1000 connections and 30% at 5000

connections [60]. An engineered version of NeST should have similar overhead.

62

Creating the 158,718 total diagnoses in the 15-minute experiment runs de-

scribed below takes just over three minutes (183 seconds). Of this time, 31 seconds

is spent creating and initializing the diagnosis objects themselves, 27 seconds in fil-

tering out dead modules from the super-graph containing all modules that ever exist,

and 15-25 seconds due to inefficiencies in a custom enumerated type implementation.

Clearly this can be improved upon.

3.5.4 Diagnosis scenarios

To provide an intuition for how the diagnosis engine works, and to explain

some of the unexpected results, we now present three representative runs from the

Emulab fault-injection experiments.

3.5.4.1 Network-level fault injection

Figure 3.6 shows two time series plots for a wget process (labeled with module

#898) which downloads two 100 MB files in succession across the bottleneck link.

The top plot is a counter time series heatmap,7 and shows the counters for

all modules that are descendants of the wget process in question (i.e., the rele-

vant subgraph). The counters for each module are plotted on individual rows;

for example, wget #898 has four counters shown: 1. total_msgs_in (packets

in), 2. total_msgs_out (packets out), 3. wait_time_in (read wait ms), and 4.

wait_time_out (write wait ms).

7 Section 5.3.2 includes additional discussion.

63

Figure 3.6: Inbound wget counters and diagnosis results plot. In addition to the wget download connection, there were 7 active
background connections (not shown). The shaded blue areas in the bottom plot denote the periods when an IP fault was active.
From the white (no activity) areas for the ip+eth counters, it is apparent that the fault caused all of the connections to back off for
an extended period of time, even after the drop-all fault was removed (unshaded areas).

64

Each row of the heatmap shows the delta value of the counter during that

snapshot. The color green indicates good behavior, and yellow/orange/red denote

problems. A counter’s row is white when the delta value is zero (good or bad), and

black when it hits it maximum (delta) value.

For the total_msgs_in and total_msgs_out counters, where a higher value

is better, the color ranges from white (zero) to light green, dark green, and to black

(maximum snapshot delta for that counter). Thus, the darker the shade of green,

the more messaging activity the module had during the snapshot.

For the wait_time_in and wait_time_out counters, where a lower value is

better, the color varies from white (zero) through yellow (25% of max), orange

(50%), red (75%) to black (maximum snapshot delta for that counter). Thus, a

yellow section of the wait_time_in row indicates the module was waiting, and

black indicates that the module waited as long as it ever did during a snapshot

(generally black is the full snapshot duration). Note that the wait_time_in and

wait_time_out rows appear only for application and socket modules.

Ancestor modules are plotted toward the top of the heatmap, and descendants

toward the bottom. Although there are four counters possible for every application

and socket module, no row is displayed for any counter whose value never changes.

For example, the values of the total_msgs_out or wait_time_out counters never

change for socket#933, so those rows are missing.

The bottom plot shows a time series of the diagnosis results, in this case the

inbound diagnoses assigned to each module in the subgraph. The light blue shaded

65

sections in the bottom plot show the time periods when a fault was injected to drop

all IP packets at the host’s local gateway router.

In addition to the wget process shown, there were seven background connec-

tions which are not shown, since they were not strictly part of the wget dependency

graph. Their traffic, however, is also passed via the ip+eth module, so this explains

the green shaded areas in the ip+eth rows at the bottom of the heatmap, even while

wget is inactive (e.g., between t965 and t970).

As can be seen from the light-green dash-dotted line in the bottom plot (labeled

ipv4/bnx2), the ip+eth module is blamed whenever all of the connections are quiet.

Even after the faults are removed, however, the remote hosts’ TCP exponential

backoff timers prevent the connections from recovering in many cases, since they

have hit repeated retransmission timeouts (RTOs). This is evidenced by the lack of

any traffic at the ip+eth module between the fault periods, which are marked with

blue-shaded rectangles in the bottom plot.

However, there are many occasions when TCP#920 (orange line in the bot-

tom plot) does not recover after the fault is lifted, even though some of the other

background connections recover quickly, as evidenced by the increased traffic on the

ip+eth module (bottom two rows of the heatmap). As Section 3.5.2.5 discusses,

these unintended connection-specific problems due to delayed recovery are counted

as TCP False Positives in the accuracy results shown in Table 3.3; we manually

confirmed the diagnosis to be correct.

Additionally, once the IP faults are finished, around time t978.0, there are

occasional snapshots where wget is attempting to read, but it receives no data,

66

and is marked as Blocked (spikes on the right side of bottom plot). Since the

underlying TCP connection is still active, however, the connection is marked as

Healthy. This is not a bad result for NeST to apply; if the application had made

a single large read request, it may take several seconds (or minutes) for it to be

fulfilled, depending on the underlying speed of the network. So, the application

is blocked, but the TCP connection is still providing it with service by filling the

incoming buffer. Since no module is marked as Stalled in this case, and the

expected result is a negative diagnosis for both modules, this result has no effect on

the evaluation criteria.

3.5.4.2 Connection-specific fault injection

Figure 3.7 shows the counter heatmaps and diagnosis time series for an iperf

upload process (labeled with module #698) which attempts to send ten seconds’

worth of data on each of eight (8) simultaneous upload connections.

Faults are repeatedly injected on TCP#714, which is providing service to

socket#706, by inserting a firewall rule at the local gateway x1 in Figure 3.5 to

drop all packets on that TCP connection. The connection-specific faults are injected

during the green shaded portions of the bottom plot; TCP#714 is marked as Stalled

(red dashed line in the bottom plot) when it is not transmitting; two relevant periods

are highlighted with blue circles in both plots.

67

Figure 3.7: Outbound iperf counters and diagnosis results plot. The iperf process has 8 active outbound connections. One of
them, TCP#714 has faults injected (green shaded areas) and is marked as Stalled. Since the connection does not recover quickly,
it continues to be inactive even after the fault is removed. Several of the fault periods are highlighted with blue ovals.

68

It should be noted that TCP#714 occasionally recovers, and is marked as

Healthy; this results in the vertical movement for the red dashed line. (A better

visualization may be to incorporate the diagnosis results directly into the heatmap

in the top half of the figure.)

Looking closely at the “packets out” rows in the heatmap, it is apparent that

the iperf process is Blocked for much of the time; this is also indicated by the

movement between Healthy (−1) andBlocked (−0.5) in the diagnosis time series

at the bottom. When all of the sockets are Blocked, then the iperf application

is also Blocked, so the maroon dashed line varies as well. Note that since all

of the connections are active (with the exception of TCP#714), they remain marked

Healthy. Hence aBlocked socket with aHealthy connection indicates a serious

throughput bottleneck. This is a normal and expected result, and does not affect

the evaluation.

Finally, as iperf closes its connections, its ∆wait_time value decreases over time,

since the application counter is the sum of all the sockets’ wait_time counters. This

is shown by the change in coloration from dark red to orange to yellow at the end

of the heatmap plot.

3.5.4.3 Application fault injection

An example of a faulty application is shown in Figure 3.8, which shows the two

time series plots for an iperf process (labeled with module #122) which maintains

two upload connections and two download connections. The upload connections are

69

socket#124 with TCP#126, and socket#125 with TCP#127. The download connec-

tions are socket#128 with TCP#130, and socket#129 with TCP#131.

To inject application faults, a Unix signal is sent to the application process,

which sets a global variable; the global variable is cleared when another signal

arrives to end the fault period. Before and after each read() or write() call, each

reader/writer thread checks this global variable in a loop; if it is set, the thread

sleeps for 10 ms and then checks again. While in this loop, its socket is marked

as Stalled. When all the threads stop reading/writing, the application (maroon

dashed line) is marked as Stalled as well.

Sometimes, the reader or writer threads are already blocked in a system call,

and are delayed in seeing the global variable, as is seen by the staggered counters

and diagnosis results around time t289. If the threads are blocked the entire time

the variable is set, as the writer sockets #124 and #125 are around time t294, they

can miss the fault period entirely. Neither of these situations is counted as a False

Negative.

70

Figure 3.8: Outbound iperf counters and diagnosis results plot. The iperf process has 2 active outbound connections, and two
active inbound connections. Faults are injected by sending a signal to the application to stop reading and writing from the network.
As the iperf threads stop writing, the application and sockets are marked as Stalled in the outbound direction. Sometimes the
threads are already blocked and either see the stop-writing signal late, or miss it altogether.

71

3.6 Potential Extensions

There are two main extensions to NeST that would improve upon the current

results: extending the dependency graph to account for shared network dependen-

cies, and including application-level work queues in the analysis.

3.6.1 Accounting for shared dependencies

NeST’s ability to distinguish between connection-specific and network-level

events is not terribly precise. If any connection is active during a snapshot, then

the network-level ip+eth module is declared Healthy. Similarly, if all of the

connections are destined for a single remote host or subnet, a problem at the far

side that hurts all of the connections will cause NeST to blame the ip+eth module

as Stalled and mark the connections as Blocked, instead of indicating that the

path to the remote host is the culprit.

The standard NS graph shown in Figure 3.9(a) shows only the modules on the

local host which process network messages. In this figure, each connection is colored

based upon the remote IP subnet. The green connections (t1, t2, t6) are destined

for the same host (S1H1) on subnet1 (S1). The blue connections (t3, t4, t5) are

destined for two different hosts (S2H1, S2H2) on subnet2 (S2). The red connections

(t7, t8) are destined for the same host (S3H1) on subnet3 (S3).

In some sense, the diagnosis lacks precision because the heuristic described in

Section 3.3.2 uses a rather crude independence assumption: in the ambiguous case

72

s1 s2 s3 s4

t1
S1H1:tcp:80

t2
S1H1:tcp:80

t3
S2H2:tcp:443

t4
S2H1:tcp:443

ip1

t5
S2H2:tcp:80

s5 s6 s7

t6
S1H1:tcp:8080

t7
S3H1:tcp:21

s8

t8
S3H1:udp:23412

App1 App2 App3

eth1

(a) Standard NS graph. Connections destined for the same remote subnet are colored simi-
larly: green for subnet1 (S1), blue for subnet2 (S2), and red for subnet3 (S3).

s1 s2 s3 s4

t1
S1H1:tcp:80

t2
S1H1:tcp:80

t3
S2H2:tcp:443

t4
S2H1:tcp:443

path to
S1H1

tcp:80

path to
S2H2

tcp:443

t5
S2H2:tcp:80

path to
S2H1

s5 s6 s7

t6
S1H1:tcp:8080

t7
S3H1:tcp:21

s8

t8
S3H1:udp:23412

App1 App2 App3

tcp:8080

path to
S3H1

tcp:21 udp:23412

ip1

eth1

path to
subnet1

path to
subnet2

path to
subnet3

(b) Extending the NS graph to include shared dependencies

Figure 3.9: The standard network stack dataflow graph, shown in the top subfigure,
includes only the modules that actually process data on the local host. As seen in
the bottom subfigure, the dataflow graph could be extended to include the concept of
shared dependencies, in which modules are also dependent on particular paths (colored
dashed boxes labeled “path to X”) or firewall rules (black dashed boxes labeled with
protocol:port).

73

shown in Figure 3.3, if the number of waiting connections N exceeds the threshold

Θ, then a lower-level network-wide problem must have occurred.

However, this independence assumption does not account for the possibility of

external shared dependencies. For example, if all of the green connections to S1H1

(t1, t2, t6) experience problems, the problem is more likely to be particular to the

interaction with S1H1 or to a link along that path than a network-wide issue (as is

indicated when NeST marks the IP module as Stalled).

By ignoring these shared dependencies, the NeST diagnosis results are impre-

cise in two ways:

1. NeST marks more modules as Stalled than strictly necessary.

Ideally, a diagnosis output will be parsimonious and flag as few modules as

possible. For example, if a common problem blocked all of the connections

to S1H1, it is preferable to blame a single module that represents the “path

to S1H1” than to separately blame three TCP connections that hold a shared

dependency in common. This occurs when other connections not sharing the

same path are active while these other shared-dependency connections are

waiting.

2. NeST blames a broader-scoped module as Stalled than necessary.

In addition to marking as few modules as possible, the scope of blame should

be as narrow as possible. When NeST marks the ip+eth module as Stalled,

it is indicating that the entire network is experiencing problems, as far as it

74

can tell. If possible, NeST should narrow the scope of the diagnosis output

and lay blame upon a specific path (e.g. “path to S1H1”).

These shared dependencies could be introduced into the dataflow graph, as

shown in Figure 3.9(b). Instead of each transport-layer connection having an edge

directly to the IP module, a virtual module representing the “path to host H” is

inserted (colored boxes with dashed outlines), which aggregates all connections to

host H. In turn, these remote-host modules are connected to a virtual “path to subnet

S” module (e.g., grouping by the /24 IP prefix), which aggregates all connections

to subnet S.

In addition, NeST could attempt to detect problems due to firewall rules that

may block connections to remote protocol:port pairs such as TCP:8080, shown

in the dashed-line black boxes in Figure 3.9(b). Clearly these aggregation possi-

bilities could be arbitrarily numerous and complicated, for example grouping by

destination autonomous system (AS), remote host:protocol:port, or even the local

IP address:protocol:port. Such complicated diagnosis may be best performed by

post-processing the simple diagnosis results.

Rather than try to maintain counters for the aggregate (which is feasible but

requires bookkeeping), NeST could use the following algorithm to approximate the

aggregate’s counters:

1. The aggregate is active if any connection to it is active (Healthy).

2. If not, the aggregate is potentially blocked if any connection to it is potentially

blocked.

75

3. Otherwise, the aggregate is idle (DontCare).

This ordering of priorities on the counter approximation is similar to that for appli-

cations and sockets, and loosely tracks the order of priority for diagnosis in general:

any activity is an indication of success. It then looks for attempts to make progress

(via wait_time and queued_msgs), and then whether any connections were com-

pletely idle (DontCare).

With this extension to the dataflow graph and a slight change to the inactive-

module heuristic (Section 3.3.2), NeST may be able to solve both of the problems

mentioned above. Instead of initially blaming all the waiting modules, but absolving

connections when count(potentiallyBlocked) > Θ (another way of interpreting the

heuristic), when comparing sets of parents and children that are all potentially

blocked, NeST could use the following rule:















































































parents ← Blocked

children ← Stalled if |parents| ≥ Θ

parents ← Stalled

children ← DontCare if |parents| < Θ

The first part of the rule limits the number of modules marked as Stalled, by

blaming the aggregate if possible. The second part of the rule limits the scope

of the diagnosis to as narrow a set of shared dependencies as possible. Thus, if

connections to at least Θ different subnets fail at the same time, NeST marks the

76

broader ip+eth module as Stalled; otherwise it only marks the paths to those

subnets or the individual connections themselves.

Instead of modifying the dependency graph and dependency analysis, the

shared-dependency aggregation could be performed as part of a post-processing

step. Modules marked as Blocked or Stalled could be reviewed for common

dependencies (destination host, subnet, protocol:port, et cetera), and then checked

to determine if any module also in that aggregation was Healthy.

3.6.2 Specifying expected application behavior

The wget and iperf programs used in the evaluation in Section 3.5 were

chosen due to their simple performance specification. In the manner used in the

experiments, iperf should always write to sockets at remote port 5001, and receive

on sockets with local port 5001; wget should always read from its sockets, and is not

expected to write to them. This makes it simple and straightforward to determine

if the NeST diagnosis is correct.

However, other applications do not have such straightforward performance

characteristics. For example, when streaming one video from Hulu, webkit main-

tains up to 40 open connections. Most of the sockets are Blocked for the duration

of the video stream. Other sockets are Blocked in reads for several seconds at a

time, then transmit and receive some data, and are then idle (Stalled) and nei-

ther read nor write for over a second. Whether this is a software bug or desired

application behavior is completely dependent on the application.

77

To completely automate the diagnosis and evaluation of these more complex

applications, NeST needs to know what the application (or socket) itself should be

doing. The HasWork() function described in Chapter 2 assumes by default that any

root module (application or socket) has work to do. If NeST were able to instrument

the application or socket work queues, it could mark sockets as Stalled only when

there was some work for the socket itself to perform.

There are several ways for NeST to track per-socket work queues:

• Provide an API that allows the application to specify when a given socket

is expected to be (in)active for reads and/or writes. Using this mechanism,

NeST would know at any moment what a socket should be doing, but this

would require changes to application source code.

• Provide an API or application-specific adapter that reads an application’s

internal work queue and presents that counter to NeST.

• Allow a developer or systems administrator to provide a simple performance

specification for each program, similar to the one used in the accuracy eval-

uation. This specification could include statements such as “Always read on

connections to remote port 80,” but this significantly limits its usefulness for

applications that reuse connections.

• Create application-specific modules in the interceptor library that interpret

the data payloads of read() and write() calls, e.g. by looking for HTTP

GET, POST, or PUT requests. The maintenance and performance overhead

would likely make this not worth the effort.

78

• Write adapters to monitor an application’s log or standard output and de-

termine which sockets should be active and in which flow directions. This

assumes that the application has a useful per-socket logging capability.

3.7 Summary

Using the FlowDiagnoser approach described in Chapter 2, the Network Stack

Trace (NeST) automatically finds the source of network-related performance stalls.

NeST uses efficient performance counters that are local to an end host system,

and is accurate enough to diagnose over 99% of performance stalls with a low false

positive rate of around 3%.

79

Chapter 4

Diagnosing Problems in InfoSphere Streams

This chapter describes StreamsDiagnoser, a second instantiation of the Flow-

Diagnoser approach to the task of detecting performance stalls in InfoSphere Streams,

a stream-processing engine sold commercially by IBM [24].

This chapter begins by describing the elements of the InfoSphere Streams pro-

gramming model and some of the performance problems experienced by InfoSphere

Streams applications in Section 4.1. Section 4.2 describes the process to construct

the FlowDiagnoser dependency graph for streams applications. Section 4.3 discusses

the performance counters StreamsDiagnoser collects, and how it uses them for per-

formance diagnosis in Section 4.4.

Section 4.5 describes the prototype implementation, and Section 4.6 the results

from controlled experiments. These experiments show that StreamsDiagnoser is able

to detect 93% of injected faults, with a False Positive Rate of 2%; initial tests on

real applications also provided promising results.

Section 4.7 describes experiences instrumenting live applications, and the chap-

ter concludes in Section 4.8 with a brief summary of StreamsDiagnoser results.

80

4.1 Basic Streams Model

In its basic architecture, InfoSphere Streams is similar to research systems

such as Aurora [1, 7] and Borealis [4]. Application developers write and compose

operators which operate on sliding windows of data tuples;1 these tuples flow between

operators as data streams.

Streams applications are collections of operators composed into a processing

graph. Each node in the graph is single Unix process called a processing element

(PE); the discussion assumes that operators and PEs are equivalent, although this

need not be the case.

Each PE has input ports from which it reads and processes incoming tuples,

and output ports on which it submits tuples for downstream PEs to process. As

in the general model described in Chapter 2, PEs without input ports are called

sources, and PEs without output ports are called sinks. A stream connection is

the logical connection between one PE’s output port and another’s input port over

which tuples flow; these are the edges in the Streams processing graph.

The Streams processing framework is quite sophisticated, and provides for

code and process distribution over multiple hosts. That is, the PEs in an appli-

cation may reside on a single end host, or scattered across an entire cluster. A

1 In addition to data tuples, Streams operators can transfer non-data window punctuations

(puncts) across the stream connections to signal window or structure boundaries. While the

Streams runtime counts data and punctuation separately, the StreamsDiagnoser counters include

both. For conciseness, we refer to both data and punctuations as tuples.

81

Figure 4.1: Streams Application. Each node in the Streams processing graph repre-
sents a single Processing Element (PE), which are connected via stream connections
(black or green lines). PEs are grouped by their job (large colored rectangles). Stream
connections that are exported/imported between jobs are shown as green lines; con-
nections that have never transferred a tuple are shown as dashed lines. Note that
PEs can have multiple connections to the same input port (fan-in) or from the same
output port (fan out); this occurs in the middle of the light purple job to the right
side of the figure.

Streams processing graph from a real application (discussed in Section 4.7) is shown

in Figure 4.1; a simpler example is shown in Figure 4.2, discussed shortly.

4.1.1 Streams operators

InfoSphere Streams allows operators to be specified in many different languages

(including C++, Perl, Python, Java, and other languages that use the JVM) or in

the custom Streams Processing Language (SPL). SPL is a domain-specific language

(DSL) that makes it easy to specify the windowing characteristics (last-n tuples,

time-based, etc) and the operations to perform upon the arrival of each tuple on an

input port.

82

There are a wide range of standard Streams operators available, which can be

used to, for example: read from or write to files, directories, or network sockets; filter,

sort, join, aggregate, or transform data tuples; and throttle, delay, de-duplicate,

split, or pair up tuples as they traverse through the system [30].

While SPL provides a concise way of specifying operations on tuples and pass-

ing them between named streams, it does not have the extensive set of libraries

available in Java or C++. For more complex operations, developers often write

operators in a general-purpose language; these custom operators can block for any

number of reasons: disk I/O, DNS or database queries, or writing to a network

socket. SPL operators can also block due to disk I/O or complicated timing and

synchronization mechanisms.

4.1.2 Example processing graph

Figure 4.2 provides an example Streams processing graph used throughout this

discussion. Each node in the processing graph is a processing element (PE) labeled

with a letter (A–N, P, Q, R). Each PE has input ports labeled in[0-9] and output

ports labeled out[0-9]. Source PEs with no input ports are shown with dashed

lines, and sink PEs with no output ports with dotted lines. Stream connections

are labeled with numbers (1–18), referred to as sconn1–sconn18. Output ports may

have fan-out and transmit to multiple input ports, as seen on F : out0. Input ports

may have fan-in and receive from multiple output ports, as seen on N : in0.

83

A

out0 out1

in0

E

out0

1

in0 in1

F

out0

2

B

out0

3

C

out0

in0

G

out0 out1 out2

4

D

out0

in0 in1 in2

I

out0

5

H

out0

in0

N

13

in0

P

in0

R

in0

L

in0

M

6 7

in0

J

out0 out1

8

in0 in1

K

out0

9 11 1210

14 15 16

in0

Q

out0

17

18

Figure 4.2: Example Streams processing graph. See the text for details.

4.1.3 Streams counters

In the Streams framework, counters are tracked by PEs at their input and out-

put ports. Of the many counters available, two are required by StreamsDiagnoser:

• nSubmitted, which counts the total tuples submitted to an output port

• nProcessed, which counts the total tuples processed from an input port

In the example processing graph, PE F has three sets of counters:

• nProcessedF:in0, the total number of tuples processed on input port F : in0

• nProcessedF:in1, the number processed on input port F : in1

84

• nSubmittedF:out0, the number submitted on output port F : out0

Since Streams counters are tracked by port (e.g. N : in0), and not by connec-

tion (e.g. on the connection H : out0 → N : in0), the input port counter nProcessed

is the total number of tuples processed on all incoming connections. Similarly, the

output port counter nSubmitted is the total number of tuples transmitted across

all outgoing connections from this port.

4.1.4 Streams Performance Problems

When a Streams PE stops processing messages, its incoming queue can quickly

fill with tuples submitted to it by upstream PEs. This can have two effects:

1. Upstream PEs block when submitting tuples on their output port, and stop

processing new tuples from their input ports, thus propagating the problem

upstream. This behavior is known as backpressure, and naturally limits the

rate of tuples that can flow through the system.2

2. Downstream PEs may be starved of tuples to process, and become inactive.

For example, in Figure 4.3, if PE K stopped processing tuples on input port

K : in0, its input queue would eventually fill, causing F to block and stop processing

tuples from PEs A and B. This backpressure may in turn cause A and B to block.

Hence, the downstream PEs E, J, and P may have no tuples to process, and will

2Like other stream processing systems, InfoSphere Streams is designed to allow load shedding

by dropping incoming tuples when backpressure occurs. Many developers prefer not to enable this

feature, and to process all of the data at a delay instead.

85

A

out0 out1

in0

E

out0

1

in0 in1

F

out0

2

B

out0

3

C

out0

in0

G

out0 out1 out2

4

D

out0

in0 in1 in2

I

out0

5

H

out0

in0

N

13

in0

P

in0

R

in0

L

in0

M

6 7

in0

J

out0 out1

8

in0 in1

K

out0

9 11 1210

14 15 16

in0

Q

out0

17

18

Figure 4.3: Example Streams processing graph with backpressure in effect. Heavy
red lines indicate backpressure across stream connections. Dashed blue lines indicate
where traffic has ceased due to blocked PEs. StreamsDiagnoser should mark PE K as
causing the problem that effects the other PEs.

become inactive. If the sources D and H are also inactive, their downstream PEs I

and N may become inactive as well.

Hence, a problem in one part of the Streams graph may quickly propagate

to nodes that are seemingly unrelated. When this occurs, it is often difficult to

determine which PE(s) are causing the problem, and which are merely affected by

it. This is especially difficult when multiple PEs cause problems simultaneously.

The StreamsDiagnoser system is designed to pinpoint which PEs are causing these

problems.

86

4.2 The StreamsDiagnoser Dependency Graph

The first step in applying the FlowDiagnoser methodology to Streams is to

generate and maintain a dependency graph that corresponds to a processing graph.

The main challenge is that Streams counters are tracked by PE ports, but are at-

tached to modules in the graph in the theoretical model described in Chapter 2.

There are several options available to make this transformation.

4.2.1 Option 1: Each PE is a module

One reasonable approach would be to treat each PE in the Streams graph as

a FlowDiagnoser module by summing its input or output counters.

If Streams PEs behaved like modules in the network stack, StreamsDiagnoser

could simply look at a PE’s total output (summing the per-port nSubmitted coun-

ters), and track which PEs in the graph are submitting tuples. Then, it might

assume that if an upstream PE submitted tuples, all of its downstream processors

must also submit tuples. However, this assumption is invalid for several reasons, as

illustrated in Figure 4.4.

(a) Operators do not always forward (submit) tuples they receive. Some operators

such as filter will discard any tuples that do not meet the filter criteria;

blaming them in that case would be erroneous.

In Figure 4.4, PE E is processing tuples from A but is not submitting any on

its output port because none of them meet its filter criteria.

87

A

out0 out1

in0

E

out0

1

in0 in1

F

out0

2

B

out0

3

C

out0

in0

G

out0 out1 out2

4

D

out0

in0 in1 in2

I

out0

5

H

out0

in0

N

13

in0

P

in0

R

in0

L

in0

M

6 7

in0

J

out0 out1

8

in0 in1

K

out0

9 11 1210

14 15 16

in0

Q

out0

17

18

Figure 4.4: PE A has submitted tuples on sconn1 (heavy green line), but not on
sconn2 (dashed blue line). E is filtering tuples that do not meet its criteria, and does
not submit any to its downstream sconn6. F is inactive since it has not received any
tuples to process.

(b) Operators with multiple output ports may submit tuples to one port without

submitting them to the others. Thus, StreamsDiagnoser would blame down-

stream processors for not submitting tuples when they have never received any

to pass along.

In Figure 4.4, F has not received any tuples to process, since neither A nor B

have submitted any to it (dashed blue edges). If StreamsDiagnoser were to

sum A’s nSubmitted counters, it would lose this information and may provide

an incorrect diagnosis.

88

(c) Finally, when backpressure occurs, upstream modules are blocked from submit-

ting any more tuples, and the nSubmitted counters no longer increase. Since

StreamsDiagnoser does not have a direct signal of whether a PE is waiting as

NeST does for application sockets in the network stack (Chapter 3), Streams-

Diagnoser needs some other signal to determine whether a PE is blocked or

merely idle.

4.2.2 Option 2: Ports as modules

Rather than combining all of a PE’s ports into one module representing the

PE itself, StreamsDiagnoser could treat each port as a module in the StreamsDiag-

noser dependency graph, using nProcessed as the signal of activity on input ports,

and nSubmitted for output ports. However, this would have many of the same

problems as described for Option 1: StreamsDiagnoser cannot expect that a PE

receiving traffic on one input port will transmit traffic on all its output ports, and

StreamsDiagnoser would still lack a signal to indicate if a module is waiting.

4.2.3 Option 3: Stream connections as modules

The approach that StreamsDiagnoser uses to transform the PEs-with-ports

Streams processing graph into the modules-and-edges StreamsDiagnoser dependency

graph is to invert the streams processing graph, and turn each stream connection

(sconn1, sconn2, . . .) into a module in the dependency graph, connected by edges

which represent the PEs.

89

A

1
A:out0 -> E:in0

2
A:out1 -> F:in0

B

3
B:out0 -> F:in1

C

4
C:out0 -> G:in0

D

5
D:out0 -> I:in0

H

13
H:out0 -> N:in0

N P

R

L M

E

6
E:out0 -> I:in1

F

7
F:out0 -> I:in2

8
F:out0 -> J:in0

9
F:out0 -> K:in0

G

10
G:out0 -> K:in1

11
G:out1 -> L:in0

12
G:out2 -> M:in0

I

14
I:out0 -> N:in0

J

15
J:out0 -> N:in0

16
J:out0 -> P:in0

K

17
K:out0 -> Q:in0

Q

18
Q:out0 -> R:in0

(a) Step 1 of the graph transformation: creating a module for each (numbered) stream connec-
tion, and labeling it with the output and input ports that it connects (e.g. A : out0 → E : in0).
After this step, the PEs remain as dummy nodes with no ports.

1
A:out0 -> E:in0

6
E:out0 -> I:in1

E

2
A:out1 -> F:in0

7
F:out0 -> I:in2

F

8
F:out0 -> J:in0

F

9
F:out0 -> K:in0

F

3
B:out0 -> F:in1

F F F

4
C:out0 -> G:in0

10
G:out0 -> K:in1

G

11
G:out1 -> L:in0

G

12
G:out2 -> M:in0

G

5
D:out0 -> I:in0

14
I:out0 -> N:in0

I I I

15
J:out0 -> N:in0

J

16
J:out0 -> P:in0

J

17
K:out0 -> Q:in0

K K

13
H:out0 -> N:in0

18
Q:out0 -> R:in0

Q

(b) Step 2 of the graph transformation: removing the dummy nodes. Now all the modules
are stream connections, which are logically connected by PEs. Note that sconn13 from Source
H to Sink N is isolated by itself, since it has no upstream or downstream connections.

Figure 4.5: To transform a Streams processing graph to a StreamsDiagnoser depen-
dency graph, StreamsDiagnoser first converts each numbered streams connection into
its own module in the graph (top subfigure). It then removes the PEs from the graph
entirely (bottom subfigure). What remains is a graph of Stream Connections joined
by PEs (labeled edges).

90

This can be viewed as a two-step process, as illustrated in Figure 4.5. Streams-

Diagnoser first creates nodes for each numbered stream connection by pulling the

output and input ports into a new node, and placing them in the graph between

the PEs (Figure 4.5(a)). It then removes the PE nodes and labels the remaining

edges; what remains is a dependency graph of streams connections (modules) that

is used in the dependency analysis (Figure 4.5(b)). Note that when StreamsDiag-

noser does this, the source and sink PEs disappear from the dependency graph;

they exist only as the upstream side (for sources) or downstream side (for sinks) of

the modules. Note as well that connection #13 from source H to sink N (labeled

H : out0 → N : in0) is isolated from the other streams, since no other streams feed

into PE H or out of PE N.

Like the stream processing graph, the resulting dependency graph is push-

oriented : the direction of the edges in the dependency graph matches the flow of

data through the system. The following sections describe how StreamsDiagnoser

assigns the counters to the modules (stream connections) in the dependency graph.

4.3 Stream Connection Counters

Once StreamsDiagnoser has obtained the dependency graph, it must define

the counters for each module in that graph.

Recall that each output port has an nSubmitted counter that tracks the num-

ber of tuples emitted on that output port, and each input port has an nProcessed

counter that tracks all tuples processed from the input port. StreamsDiagnoser as-

91

Counter Description

total_msgs Total messages processed from the connection (nProcessed)

queued_msgs Total messages still in the connection [nSubmitted− nProcessed]

Table 4.1: StreamsDiagnoser module counters.

signs these to the module that represents each stream connection, and derives the

FlowDiagnoser counters shown in Table 4.1 as follows:

• total_msgs ⇐ nProcessed. This is the number of tuples processed out of

the stream (from the input port).

• queued_msgs ⇐ (nSubmitted−nProcessed). This is the number of tuples in

the downstream PE’s work queue.

By calculating queued_msgs from the output and input port counters, Streams-

Diagnoser has the required signal that indicates whether the upstream PE is waiting

on the downstream to complete its work, as described in Section 2.3. While deriving

the queued_msgs counter is simple in theory, in practice it is a bit more complicated.

4.3.1 Recovering per-connection counters

As described in Section 4.1.3, the per-port counters account for the total num-

ber of tuples submitted or processed across all the connections from/to that port.

For example, in the processing graph in Figure 4.2, PE F’s output port out0 con-

nects to input ports of three downstream PEs. This port’s nSubmitted counter will

92

increment by three when F sends one message via that port, since the port connects

to three destination input ports.

Since the dependency graph is based on individual stream connections

(F : out0 → I : in2), StreamsDiagnoser needs counters that track the number of

tuples submitted into the connection, and the number of tuples processed out of the

connection. In other words, for the example, StreamsDiagnoser would prefer that

out0’s message counter be one, rather than three. As such, it needs to normalize

the counters from each input and output port. This is easily achieved by dividing the

per-port counter’s increase among the current connections
(

∆sconn
nSubmitted =

∆port
nSubmitted

nConnections

)

.

Unfortunately, doing so is problematic when the number of connections changes

during the snapshot period. Additional work is necessary to obtain the required

counters without the normalization and bookkeeping procedures, which are de-

scribed in Appendix A.

4.3.2 Invariant violations

In addition to the counter normalization, another complication arises when

monitoring Streams applications. As discussed in Section 2.2.1, the FlowDiagnoser

approach does not require a stop-the-world snapshot of all of the counters. Even if

StreamsDiagnoser could obtain such a consistent snapshot, it would be too expensive

and unreliable in a multi-process, multi-host distributed system such as InfoSphere

Streams.

93

One common occurrence in data from live systems is a violation of the one

invariant that StreamsDiagnoser counters must hold:

• An input port can never process more tuples than have been submitted to it.

This violation is due to the time-delayed nature of the StreamsDiagnoser snapshots.

During a single snapshot, StreamsDiagnoser can read nSubmitted on the output

port, and later read nProcessed on an input port. When this happens,

(σnSubmitted < σnProcessed) ⇒ (σqueued_msgs < 0)

which implies that there is a negative queue between the output port and input

port, an obvious impossibility.

When StreamsDiagnoser detects a negative-length queue, it assumes that some

of the tuples processed have been pre-counted ; that is, the downstream counter in-

cludes some processing that really belongs in the next snapshot. So, to avoid false

positives (in which StreamsDiagnoser blames the downstream for not processing any-

thing at all in the next snapshot), instead of ignoring the negative queue StreamsDi-

agnoser adds abs(σqueued_msgs) from this snapshot to ∆total_msgs in the next snapshot.

This means for any snapshot where StreamsDiagnoser calculates a negative queue,

the downstream will always appear active (Healthy) in the next measurement

period.

4.4 Streams Dependency Analysis

Once StreamsDiagnoser has the counters for each stream connection (module

in the dependency graph), it can apply the dependency analysis as described in

94

Section 2.3. With the available counters, the dependency analysis reduces to the

following:

diagnosis =























































Healthy if ∆total_msgs > 0

. . . else ∆total_msgs = 0 :

DontCare if σqueued_msgs ≤ 0

Blocked or
Stalled

if σqueued_msgs > 0

A change in the number of tuples processed (∆total_msgs) indicates whether or

not the downstream PE (with the input port) was active; if so, the connection is

Healthy. If it was inactive, StreamsDiagnoser checks queued_msgs to determine

whether or not the downstream PE had work to do; if σqueued_msgs ≤ 0, the stream

connection was empty and is diagnosed as DontCare to indicate that it had com-

pleted all its work. Otherwise, the downstream PE did not process any tuples, but

there were some stuck in the queue (σqueued_msgs > 0), and StreamsDiagnoser needs

to determine why.

4.4.1 Detecting backpressure and inactive streams

As mentioned in Section 4.1.4, Streams applications can experience two major

types of performance limitations:

1. An upstream PE may not produce (submit) enough tuples for its downstream

PEs to consume (process), which leaves the downstream PEs idle.

95

2. Backpressure that occurs when a downstream PE does not consume (process)

tuples as fast as its upstreams produce (submit) them.

The first performance limitation is easily detected by the StreamsDiagnoser:

a diagnosis of DontCare indicates that an upstream PE has not produced enough

modules for the downstream PE to process.

In the second case, performance problems caused by descendant modules prop-

agate upstream through the dependency graph. Thus, the blame-passing diagnosis

rule described in Section 2.3.1.3 and Table 2.2 (criteria (e) and (h)) helps to locate

the module that is causing the problem.

Recall that using the blame-passing rule, when an inactive module M has

tuples in its work queue, StreamsDiagnoser marks it as Stalled and blames it

for blocking progress unless one or more of its children are also inactive with work

to do. If its children are also inactive, StreamsDiagnoser marks M as Blocked

and blames its children instead. This propagates the blame away from the sources

(ancestors) and toward the sinks (descendants), and continues until it reaches a

descendant that is either active (Healthy) or has nothing to do (DontCare).

4.4.2 Interpreting the results

Diagnosis results are attached to the stream connection (modules) between

processing elements (PEs). The upstream PE submits tuples into the connection,

and the downstream PE processes them. Since the dependency analysis looks at the

96

number of tuples submitted but still stuck in the queue, StreamsDiagnoser detects

stalls caused by the downstream PE.

That is, for every stream connection module A : outx → B : iny, the following

interpretation applies:

• Healthy: PE B was actively processing tuples on input port y.

• DontCare: PE B did not have any tuples to process on port y because PE

A did not supply them.

• Blocked: PE B was unable to process tuples available on port y due to

backpressure from one or more of its downstream PEs.

• Stalled: PE B was inactive and did not process tuples available on port y,

and none of its downstream PEs were Blocked or Stalled.

Hence when StreamsDiagnoser blames a module, it is really blaming its downstream

PE for not reading from its input port. Note that because a StreamsDiagnoser

module is a stream connection, its parents and children are themselves other con-

nections. Thus, StreamsDiagnoser passes the blame to other connections (and their

downstream PEs) only if they also have tuples stuck in their work queue.

4.5 Data collection prototype

This section describes the prototype StreamsDiagnoser implementation and

experimental results.

97

As a commercial product, InfoSphere Streams provides several interfaces for

monitoring running applications, including: a web service and graphical user in-

terface, an Eclipse plugin that allows a user to monitor and visualize the Streams

processing graph in real time, and a command-line tool that can report the pro-

cessing graph topology and PE (and operator) metrics via Streams-specific XML

files.

When using the command-line tool, a snapshot request can take several sec-

onds to complete from tool invocation to result. This is largely because upon each

invocation, the command-line tool must first learn the topology and distribution of

the PEs and then request the metrics from each PE. It also generates a large (up

to 2 MB) XML file for the metrics output. This is how our colleagues collected the

data for the live applications described in Section 4.7; the snapshot intervals varied

between 13–15 seconds.

The controlled experiments use the same internal API provided to the Eclipse

plugin. In this case, the monitoring and data collection runs as a separate Streams

job, which receives a notification whenever the topology changes. It is also able to

gather the metrics as frequently as once per second.

In both cases, for each snapshot the data collection prototype exports the

Streams processing graph in GraphML format [11], attaching the per-port coun-

ters to the edges within the graph. Once an experiment run has completed, the

GraphML files are loaded into the diagnosis engine, which converts the processing

graph into the internal StreamsDiagnoser dependency graph and stores the accu-

98

mulated snapshots for each module (stream connection). The diagnosis algorithm

is performed for each snapshot, and the results output and stored.

4.6 Experimental Results

To validate the data collection infrastructure and diagnosis algorithm, we per-

formed controlled experiments on several basic Streams topologies. As with the

NeST Emulab experiments, we inject several different kinds of performance anoma-

lies at various places in the sample topologies, and evaluate StreamsDiagnoser’s

ability to correctly locate the source of the performance fault. The results show

that StreamsDiagnoser is able to detect 93% of injected faults in controlled experi-

ments, with a False Positive Rate of 2%; initial tests on real applications also provide

promising results.

4.6.1 Basic topologies

The six basic topologies used in the experiments are depicted in Figure 4.6.

These six include most of the basic forms that Streams applications are composed

of [24]. The Tree forms include fan-out (multiple outgoing connections from one

output port) and fan-in (multiple incoming connections to one input port). The

TreeMux forms are similar to the Tree topologies, but each stream connection is

attached to unique output and input ports (and thus counter normalization becomes

unnecessary).

Considering each topology in detail:

99

(a) ComplexTree. Nineteen PEs with several levels of output port fan-out.

(b) ComplexTreeMux. Twenty-two PEs with several levels of fan-out at the

PE level, but each outgoing connection is attached to a unique output port.

(c) MergeTree. Eight PEs with both 3:1 fan-out and 1:3 input port fan-in.

(d) MergeTreeMux. Nine PEs with fan-in and fan-out at the PE level, but

each connection is attached to a unique output port and input port.

(e) MergeTreeBarrier. Like the MergeTree, but replacing the fan-in PE with

a 3-port Barrier (labeled with a B), which reads one tuple from each of its

inputs before submitting one tuple downstream. If any incoming port has no

tuples, it blocks the remaining ports.

(f) MergeTreeBarrierMux. Like the MergeTreeBarrier (labeled with a

B), but the fan-out PE has one output port for each stream connection.

These last two topologies should cause problems for StreamsDiagnoser, since

the Barrier PE will stop processing tuples when one of its upstreams has stopped

providing tuples to it. While this is a performance stall according to the diagnosis

algorithm, it is correct behavior and is not counted as an Actual Positive (AP) in

the evaluation.

The source operator in each topology is a DynamicBeacon that emits tuples

at a fixed rate. For the controlled experiments, it emits tuples containing a single

integer at rates of 100 tuples/sec and 1000 tuples/sec; a second batch of experiments

runs the source at full rate to simulate system overload. All other operators (aside

100

Figure 4.6: Basic Streams processing graphs used in the accuracy experiments.
DynamicThrottle PEs are circled in red, and DynamicDropper (filter) PEs in blue;
Barrier PEs are labeled with a B. Each processing graph is converted into a Streams-
Diagnoser dependency graph according to the procedure outlined in Section 4.2.3.

101

from the circled ones, described below) perform joins (read from many inputs, send

one output tuple), aggregations (read many input tuples then emit their sum), and

simple pass-through.

To perform a true controlled experiment, and to isolate the experiments from

each other while limiting experiment run time, each experiment is run on its own

host. We have also conducted extensive experiments using multi-host deployment

strategies.

4.6.2 Injected faults

We inject faults in the example topologies using two types of operators (not

developed by us), which are circled in Figure 4.6: the DynamicDropper (blue) and

DynamicThrottle (red):

• DynamicDropper. This operator emulates an on/off filter that reads (pro-

cesses) and drops all tuples when instructed; otherwise it simply forwards

them downstream as quickly as it can read them. It can also buffer tuples for

a period of time, then submit them to its downstream port all at once. As

Section 4.2.1 discusses, this could be considered normal behavior and should

not be considered a performance stall.

• DynamicThrottle. This operator is used to control themaximum rate of tuples

flowing through the system. The throttle varies between 0, 1, 100, and 1000

tuples/sec in the experiments, returning to full-rate after each throttle-test

period. When the throttle is at 0 tuples/sec, it does not read from its input

102

port and causes backpressure. This is the main fault StreamsDiagnoser is

trying to diagnose.

These dynamic operators are located at strategic points throughout the test topolo-

gies. Specifically, they are located:

• At the sinks, to test StreamsDiagnoser’s ability to detect problems at the edges

of the graph.

• At, before, and after fan-out (branch) points, to test the ability to find prob-

lems on either side of a branch.

• At, before, and after fan-in (merge) points, to test the ability to find problems

on either side of a merge.

• Immediately upstream from the Barrier PE, to evaluate how StreamsDiagnoser

handles a Barrier which is not provided with enough data on one of its ports.

These injected faults simulate common performance anomalies in running

Streams applications: PEs which do not produce data and starve their downstream

PEs of data to process (DynamicDropper), PEs which cannot process data at fast

enough rates (low DynamicThrottle rate), and PEs which occasionally stop process-

ing altogether (DynamicThrottle rate = 0) [43].

4.6.3 Diagnosis accuracy

Since StreamsDiagnoser is looking for performance stalls, the only time the

“correct” diagnosis is positive (Stalled) is when the DynamicThrottle is set to 0,

103

that is, when a PE does not process any tuples on its input port. Since diagnoses

are assigned to the stream connection (modules), all connections leading to the

DynamicThrottle’s input port should be marked as Stalled when the throttle is

set to 0.

When the DynamicDropper is engaged, it processes tuples on its input port,

but does not submit (forward) them to its downstream output port. This behavior

simulates a filter module with tuples that do match the filter criteria; this should

not necessarily be considered a problem, as explained in Section 4.2.1.

For all other modules, the evaluation always expects a negative diagnosis:

Healthy, Blocked, or DontCare. Any diagnosis of Stalled that is not as-

signed to a DynamicThrottle PE when throttleRate = 0 is a False Positive.

In the controlled experiments, the topologies run on a single host, varying

the source rates between 100 and 1000 tuples/sec. Snapshots are taken every five

(5) seconds. Running on one host and limiting the source rate ensures that the

experiment does not overload the monitored system, so only the injected faults

should be present. Each change to the DynamicThrottle or DynamicDropper lasts

for 5, 10, or 20 seconds to ensure that it covers an entire snapshot.

Table 4.3 presents the accuracy results for each topology. The abbreviations

table is repeated here in Table 4.2. Please refer to Section 3.5.2.1 for an explanation

of the accuracy evaluation table.

In the fixed-rate source experiments, shown in the first grouping, StreamsDi-

agnoser did very well on the ComplexTree, ComplexTreeMux, MergeTree,

104

Abbr. Name Explanation

Total Total diagnoses possible Count of snapshot deltas with valid measurements

AP Actual Positive periods
(known positives)

Number of measurement periods
where a fault was active

AN Actual Negative periods
(known negatives)

Number of measurement periods
where a fault was not active

TP True Positive diagnoses Count of our positive diagnoses
that were also Actual Positives

TN True Negative diagnoses Count of our negative diagnoses
that were also Actual Negatives

FP False Positive diagnoses Count of our positive diagnoses
that were Actual Negatives

FN False Negative diagnoses Count of our negative diagnoses
that were Actual Positives

TPR True-Positive Rate
(Sensitivity)

% of Actual Positives (AP)
that were correctly diagnosed

FPR False-Positive Rate % of Actual Negatives (AN)
that were False Positives (FP)

PPV Positive Predictive Value
(Precision)

When the diagnosis is positive,
what % of the time is it correct?

TNR True-Negative Rate
(Specificity)

% of Actual Negatives (AN)
that were correctly diagnosed

FNR False-Negative Rate % of Actual Positives (AP)
that were False Negatives (FN)

NPV Negative Predictive Value When the diagnosis is negative,
what % of the time is it correct?

Table 4.2: Abbreviations for evaluation tables.

and MergeTreeMux experiments, finding almost all of the Actual Positive (AP)

periods with only two False Positives (FP) and zero False Negatives (FN).

4.6.3.1 Barrier results

However, StreamsDiagnoser did not do as well on the MergeTreeBar-

rier and MergeTreeBarrierMux experiments, with a 7.7% False Positive Rate

(FPR) and 17.9% False Negative Rate (FNR). In fact, when StreamsDiagnoser

105

Correct Answers Diagnosis Results Positive Accuracy % Negative Accuracy %
Module Total AP AN TP TN FP FN TPR FPR PPV TNR FNR NPV

ComplexTree 6138 114 6024 114 6024 0 0 100.0 0.0 100.0 100.0 0.0 100.0
ComplexTreeMux 7182 126 7056 126 7054 2 0 100.0 0.0 98.4 100.0 0.0 100.0
MergeTree 1035 35 1000 35 1000 0 0 100.0 0.0 100.0 100.0 0.0 100.0
MergeTreeMux 1150 28 1122 28 1121 1 0 100.0 0.1 96.6 99.9 0.0 100.0
MergeTreeBarrier 2736 123 2613 101 2413 200 22 82.1 7.7 33.6 92.3 17.9 99.1
MergeTreeBarrierMux 3078 123 2955 105 2745 210 18 85.4 7.1 33.3 92.9 14.6 99.3

Totals 21319 549 20770 509 20357 413 40 92.7 2.0 55.2 98.0 7.3 99.8

Table 4.3: Diagnosis accuracy from controlled StreamsDiagnoser experiments with a fixed-rate source; columns are defined in
Table 4.2 and discussed in Section 3.5.2.1. Statistical uncertainty is less than 0.6% for all measurements, except for MergeTree-

Barrier (3.5%) and MergeTreeBarrierMux (3.2%).

106

blamed a module in the MergeTreeBarrierMux experiment, it was correct

only 33% of the time (PPV). This led to a very low 55.2% overall Positive Predic-

tive Value (PPV, Total) in the fixed-rate experiments.

This is actually the result that should be expected: two of the DynamicThrot-

tle PEs (circled in red in Figure 4.6(e) and (f)) are directly upstream from the

Barrier PE (2nd PE from the right in both graphs).

When Throttle1 is set to throttleRate = 0, the Barrier cannot proceed since

one of its inputs is empty. So, the Barrier stops reading on its other input ports, and

those stream connections are marked as Stalled. They are, in fact, stalled accord-

ing to the StreamsDiagnoser diagnosis criteria, but those criteria do not account for

a Barrier’s intended behavior.

When Throttle2 is also set to throttleRate = 0, since the Barrier has already

stopped reading the tuples on the connection from Throttle2 → Barrier, instead of

blaming the stream coming into Throttle2 (as the evaluation expects), StreamsDi-

agnoser again blames the Barrier. This causes the False Negative (FN) results.

Chapter 7 describes a potential approach that incorporates additional per-

module information (introspection) to allow StreamsDiagnoser to diagnose these

situations more appropriately.

4.6.3.2 Full-rate results

In addition to the rate-limited experiments, we ran a batch of full-rate tests on

a single machine. Since there were more PEs than processor cores, this simulates an

107

overloaded system. Both batches included the same set of fault injections described

in Section 4.6.2.

In the full-rate experiments, StreamsDiagnoser often marks modules other

than the DynamicThrottle as Stalled. The calculated False Positive Rate (FPR)

is as high as 7.5% for the full-rate ComplexTree, unexpectedly blaming modules

in 5,410 of 72,503 of the Actual Negative (AN) periods. A manual analysis using

the visualizations indicates that StreamsDiagnoser is actually correct in the vast

majority of these situations, as the system appears to move tuples through the

graph in batches. The resulting backpressure causes the blame to oscillate between

various modules, depending on which ones are active at a given time. We are working

with the third-party developers to determine the root cause of this behavior.

4.7 Live application results

In addition to the controlled experiments performed on the six basic topolo-

gies, we evaluated StreamsDiagnoser on several real applications from a national

laboratory and IBM research:

• App1: A highly tuned application designed for real-time data processing, with

many operators combined into a few (thirteen) PEs. We analyzed 7748 snap-

shots taken over a two hour time period.

• App2: A complex and dynamic application, which varies the number of PEs

and their connections over time based on demand and other factors. A snap-

shot of the processing graph is shown in Figure 4.1. We processed several runs

108

from this application, including over 20,000 snapshots from 963 modules in

one run, and over 40,000 snapshots from 493 modules in another run.

The developers of App1 have done significant work optimizing their system

for high throughput, including the use of a source-to-source translator that inserts

code to wrap each tuple with pre- and post-processing timestamps. As a result, the

experimental data provided for analysis did not show any significant performance

issues. App1 did provide a useful baseline for the StreamsDiagnoser data collection,

transformation, and diagnosis engine. Working with the data from this application

helped to identify and fix several data collection and transformation bugs, and un-

derscored the importance of the normalization steps described in Section 4.3 and

Appendix A.

One of the runs for App2 included a crashed PE, which was marked as failed

by the Streams runtime system. Because it had not processed all of the tuples in

its queue when it failed, but remained in the graph, StreamsDiagnoser was able to

correctly identify the crashed PE as the cause of backpressure-related performance

stalls reaching up to 13 PEs upstream in a chain.

Overall, the experience with App2 was mixed due to the variability in the

number of connections to each PE. This identified two undesirable aspects of the

current StreamsDiagnoser prototype: the potential accumulation of errors from one

snapshot to the next, and the possibility of an errant assignment of blame due to

errors.

109

In practice the StreamsDiagnoser prototype has a much stricter correctness

requirement on the counter values than NeST. The NeST prototype has two de-

sirable and related features. First, counters are required only to be monotonically

increasing and do not have to be absolutely correct over time. Second, the results

from each snapshot are largely memory-free, i.e., any errors in earlier snapshot val-

ues are quickly discarded, since the diagnosis at each snapshot depends on a binary

test on the change since the last snapshot: Is the current delta greater than zero?

Since StreamsDiagnoser calculates the σqueued_msgs value at each snapshot as

(σnSubmitted − σnProcessed), any error in obtaining or calculating the nSubmitted or

nProcessed counters accumulates over time. That is, an off-by-one (or off-by-many)

error in either counter can make the difference in whether a module is marked as

Blocked, Stalled, or DontCare.

These potential errors may be compounded by the blame-passing rule de-

scribed in Chapter 2, which transfers blame from an inactive parent to its inactive

children if they both have work to do. If the child’s queue erroneously appears

to have tuples left in it (σnSubmitted > σnProcessed), then blame may be incorrectly

passed from the parent to child, resulting in a false positive diagnosis for the child,

and a false negative for the parent. On the other hand, if the child’s queue incor-

rectly appears to be empty (σnSubmitted ≤ σnProcessed), blame may not be passed to

the child when it should, resulting in a false negative diagnosis for the child, and a

false positive for the parent.

These problems occur only if the values provided by the monitored system

are an unreliable representation of the actual number of messages sent on a given

110

connection. Since the number of connections changed frequently during each run of

App2, it was difficult to determine in some cases if StreamsDiagnoser was flagging

actual problems in the application, or merely interpreting bad data. Additional work

is necessary to obtain the true per-connection submitted and processed counters.

The most plausible solution is to ignore any transition snapshots where the number

of connections to a PE port changed, and assume that the overall number of tuples

stuck in the queue did not change during the transition snapshot. Another option

would be to obtain per-connection counters directly from the underlying InfoSphere

Streams framework, but this would require changes to the underlying system that

may be non-trivial to implement.

Both development groups confirmed that capturing the processing graphs and

snapshots had no measurable impact on their application performance, and have

requested further collaboration to apply StreamsDiagnoser in their environments.

4.8 Summary

This chapter presents StreamsDiagnoser, an application of the FlowDiagnoser

approach to finding performance stalls in InfoSphere Streams. Experimental eval-

uation shows that StreamsDiagnoser is accurate enough to detect 93% of injected

faults, with a False Positive Rate of 2%, and efficient enough to run on real Streams

applications.

111

Chapter 5

From Diagnosis to Fix

FlowDiagnoser analyzes each module’s performance for each snapshot taken

of the modules’ counters, thus creating a series of per-module diagnoses over time.

The expert user or administrator uses this information to understand the causes of

observed performance problems so they can be fixed.

This chapter describes the discovery process one can follow, using the FlowDi-

agnoser output, to investigate the causes of performance stalls, and determine which

areas of their system need further investigation. It also describes the summariza-

tion and visualization features made possible by the FlowDiagnoser approach; these

features represent a sketch of what is possible, not finished products. After briefly

describing the discovery process and summarization features, the chapter presents

a case study of one of the StreamsDiagnoser experiments from Chapter 4.

5.1 The Discovery Process

To investigate the performance problems diagnosed by FlowDiagnoser, a user

follows three basic steps:

1. Get an overview of the system

2. See a summary of the results

112

3. Perform an in-depth analysis of the modules’ performance

Before determining what parts of the system need attention, the user needs a

broad overview of the system. While an expert user may already know the basic

components of the system, unless the system is static, it is unlikely the user knows

what it looked like at any given point in time. That is, while she may know generally

which modules should be included in the dependency graph, she may not know

which ones actually existed at a given point in time, or when they started and

stopped. To aid in this process, FlowDiagnoser is able to automatically create

two overview visualizations: a timeline showing each module’s lifespan, and a time-

agnostic version of the dependency graph that includes all modules that ever existed.

Of course, given a recorded monitoring trace, FlowDiagnoser is also able to recreate

the dependency graph as it existed at any point in time.

Once the user has a broad overview, she will likely want to focus her attention

on the modules that were blocked or stalled most frequently. To do this, FlowDiag-

noser can output a summary table that lists the modules with the most Stalled

diagnoses. It can also group the list of stalled modules by important features, e.g.,

all TCP connections to a certain remote IP:port, or all PEs that implement a certain

operator.

Once the user has the list of Stalled modules, she can perform the analysis

required to determine which modules had the greatest impact on the system. Flow-

Diagnoser provides two time series visualizations that allow the user to see each

module’s diagnosis and counters in relation to other modules in the graph. In com-

113

Output Purpose Description

Timeline overview Displays modules’ arrival and departure over time

All-modules
graph

overview,
summary

The dependency graph of all modules that existed dur-
ing the monitored session, colored by overall diagnosis
results. Includes diagnosis counts, Stalled timespan
summary, and optionally the min/max value of each
counter.

Stalled
modules list

summary List of all modules that were ever diagnosed as Stalled,
ordered by number of Stalled diagnoses

Counters
heatmap

analysis Displays the change in each module’s counters over time,
in context with the rest of the dependency graph

Diagnosis
timeseries

analysis Displays each module’s diagnosis results over time

Table 5.1: FlowDiagnoser Summaries.

bination with the dependency graph summary, the user can determine how often

each module blocked its parents or was itself blocked by its own children.

5.2 Summarization and Visualization Outputs

Table 5.1 lists the overview, summary, and analysis outputs automatically

created by FlowDiagnoser.

Although not presented in detail here, Visty, an early prototype visualization

for the network stack, provides several overview features that should factor into any

FlowDiagnoser visualization interface [54]. Most important are the timeline feature

that shows the active modules over time, and a visualization of the dependency graph

that fits the user’s intuition. The timeline enables the user to see which modules

were alive at any point in time, and to narrow their analysis to time periods (and

114

modules) of interest. Figure 5.1 shows an example NeST timeline, and displays

which instrumented applications were running at each point in time.

The second overview visualization is a representation of the FlowDiagnoser

dependency graph itself. Figure 5.2 shows an early visualization of the network stack

(which lacks the diagnosis summarization described in Section 5.1). The following

case study includes an example of the all-modules graph from the StreamsDiagnoser

prototype, and explains how the summarization aids in the discovery process. The

case study also includes detailed examples of the next three outputs.

The stalled modules list is a simple summary of all the modules that Flow-

Diagnoser marked as stalled, ranked in descending order of number of Stalled

diagnoses.1 This provides the user with a prioritized list of modules to investigate

during the analysis phase.

Finally, for in-depth analysis, FlowDiagnoser provides two visualization time

series: the counters heatmap and diagnosis timeline plot. Section 3.5.4 provides a

walkthrough of several counter heatmaps and diagnosis plots from the NeST exper-

iments. The counter heatmap shows the counters for each module in the dependency

graph (or subgraph); viewing the counters for dependent modules together makes

it possible for the user to see how the modules interact. When used in conjunction

with the diagnosis plot, which shows each module’s diagnosis result over each snap-

shot, this can direct the user’s attention to significant time periods, and the counter

heatmaps aid in understanding what triggered the diagnosis.

1A similar list of Blocked modules can be implemented easily.

115

Figure 5.1: Network Stack Trace module timeline. The top pane shows the lifespans
for the various monitored processes. The bottom pane shows an expanded timeline
for the wget module. It includes the number of times wget was started and stopped
(light pink bars), and the underlying socket and TCP connections (darker red bars
underneath).

Figure 5.2: Network Stack Trace visualization prototype. It consists of an overview
timeline in the top pane, and a depiction of the network stack in the bottom left pane.
In the right pane, the user can select particular metrics for coloring nodes according
to number of messages sent or received, or show/hide particular modules.

116

5.3 Case Study: MergeTreeBarrier

The case study concerns the MergeTreeBarrier experiment presented in

Section 4.6, which includes a Barrier operator that reads one tuple from each input

port before submitting any tuples on its output port. If any input port does not

have tuples to process, then the barrier blocks the other ports (i.e. stops processing

on other ports) until a tuple arrives on the empty queue.

In this case study, the developer has been monitoring the MergeTreeBar-

rier job, and notices that the output rate is very low at times, and sometimes stops

completely. Her goal is to identify which modules are causing the performance stalls,

determine how they affect the rest of the system, and work toward a fix. Since the

system is being monitored by StreamsDiagnoser, she consults the diagnosis output

it provides.

5.3.1 Steps 1 and 2: Overview and Summary

The developer’s first step is to gain an overview of the system itself. Fig-

ure 5.3(a) shows the original Streams processing graph for the MergeTreeBar-

rier topology (from Figure 4.6(e)). Connected to the BarrierAll operator are two

DynamicThrottle operators, N10 and N12, and a simple pass-through (N11) which

connect to the operator.

117

 Source out0 in0 Dropper out0

in0 N10.Throttle out0

in0 N11 out0

in0 N12.Throttle out0

in0

in1

in2

BarrierAll out0 in0 Sink.NullOut

(a) MergeTreeBarrier processing graph. Nodes in this graph are PEs/operators.

Dropper:out:0->N11:in:0
S=0, D=3, B=0, H=339

N11:out:0->BarrierAll:in:1
S=100, D=0, B=0, H=242

Stalled snaps=(0 trans, 4 max consec)
timespans=(15.60 avg, 20.01 max)

Dropper:out:0->N12.Throttle:in:0
S=41, D=0, B=25, H=276

Stalled snaps=(1 trans, 4 max consec)
timespans=(16.67 avg, 20.01 max)

N12.Throttle:out:0->BarrierAll:in:2
S=60, D=40, B=0, H=242

Stalled snaps=(0 trans, 4 max consec)
timespans=(14.95 avg, 20.01 max)

Dropper:out:0->N10.Throttle:in:0
S=60, D=0, B=0, H=282

Stalled snaps=(0 trans, 4 max consec)
timespans=(14.95 avg, 20.01 max)

N10.Throttle:out:0->BarrierAll:in:0
S=40, D=60, B=0, H=242

Stalled snaps=(0 trans, 4 max consec)
timespans=(16.67 avg, 20.01 max)

BarrierAll:out:0->Sink.NullOut:in:0
S=0, D=100, B=0, H=242

Source:out:0->Dropper:in:0
S=0, D=0, B=3, H=339

(b) MergeTreeBarrier dependency graph. Nodes in this graph are the connections be-
tween PEs/operators. Dashed lines indicate DontCare (module was starved of data at some
point). Red lines indicate some Stalled. Orange lines indicate some Stalled and Blocked.
Blue lines indicate Healthy and DontCare only. Dark green lines indicate Healthy and
Blocked only.

Figure 5.3: MergeTreeBarrier processing and connection dependency graphs.

Stream Connection Diagnosis Counts queued_msgs

Upstream Op. Downstream Op. Stall DCare Block Healthy min max

N11:out:0 BarrierAll:in:1 100 0 0 242 -7 8300
N12.Throttle:out:0 BarrierAll:in:2 60 40 0 242 -6 7677
Dropper:out:0 N10.Throttle:in:0 60 0 0 282 0 8148
Dropper:out:0 N12.Throttle:in:0 41 0 25 276 0 8304
N10.Throttle:out:0 BarrierAll:in:0 40 60 0 242 -5 8297

Table 5.2: MergeTreeBarrier stalled connections, ordered by total number of
Stalled periods. The rightmost section lists the minimum and maximum values
calculated for the queued_msgs counter.

118

5.3.1.1 All-modules graph

Figure 5.3(b) shows the resulting all-modules graph. This graph provides

an overview of the system, in the form of the basic StreamsDiagnoser dependency

graph, and a partial summary of the performance results, in the form of labels and

colors added to this graph. Any modules that were ever marked asDontCare have

dashed outlines. Modules that were Stalled are red if they were never Blocked,

otherwise they are orange. The source module is dark green since was Healthy

overall, although it was Blocked during three snapshots.

Looking at Figure 5.3(b), the user sees that the connections to both the Sink

and to N11 show dashed blue lines, indicating that they have been mostly Healthy,

but have been starved of data at times (DontCare). She also knows that the

Barrier’s three inputs have each been Stalled, as well as the N10.Throttle and

N12.Throttle. The N12.Throttle is orange, so she is aware that it was occasionally

Blocked.

The first line of each module is the stream connection name, followed by a

count of the diagnoses assigned to each module on the second line (S=Stalled,

D=DontCare, B=Blocked, H=Healthy).

For any modules that were Stalled, the summary displays two additional

lines of text. The first is a summary of the number of Stalled results that were

transient (“trans”), followed by the maximum number of consecutive Stalled snap-

shots. The final line gives the average and maximum amount of time that the mod-

119

ule was consecutively Stalled, excluding the transient stalls, which are roughly 5

seconds each (the snapshot interval).

Looking more closely, the user sees that the orange-colored module

Dropper:out:0 → N12.Throttle:in:0 was stalled 41 times (S=41), with only one tran-

sient stall (1 trans). Of the remaining 40 stalled snapshots, the average timespan

was 16.67 seconds, and maximum 20.01 seconds.

She also sees that the Source operator on the left has been Healthy over-

all (H=339), but was blocked 3 times. The Sink on the right was Healthy for

242 snapshots (H=242), but had nothing to do (DontCare) for 100 snapshots

(D=100).

5.3.1.2 Stalled modules list

With this overview of system health, the user knows that five of the modules

have been Stalled at some point. She then reviews Table 5.2. This table con-

tains a ranked list of all modules that were Stalled during MergeTreeBarrier

experiment, ordered by total number of Stalled periods. Since the StreamsDiag-

noser analysis focuses on which input ports are not processing the data provided to

them, the focus is on the second column which lists the downstream operator (PE)

and port.2

2Since one Streams operator can be used multiple times in a single application, assigned to

different PEs, StreamsDiagnoser provides two views: one that looks simply at the PE-to-PE con-

nections, and another grouped by the downstream operator name. The PE list shows which

processes were Stalled, and the operator list which source code operators were Stalled.

120

The BarrierAll operator has been Stalled on all three of its input ports,

most often on input:1. This indicates that BarrierAll often stopped reading on

input:1, causing a maximum queued_msgs of 8300.3 For a normal SPL operator,

the user might focus her attention on how the code processes tuples from input:1.

However, she knows that BarrierAll treats its inputs specially: it intentionally stops

reading from inputs with tuples in them if any other input is empty. So, the user

knows that N11:output:0 is providing data that sometimes does not get processed

immediately, because the barrier is waiting for data on its other inputs.

Because of BarrierAll’s design, the user focuses her attention on its other ports.

She wants to see how often they are marked as DontCare, indicating that the up-

stream did not provide enough data to process. She notices that

N12.Throttle:out:0 → BarrierAll:in:2 was diagnosed as DontCare 40 times, and

N10.Throttle:out:0 → BarrierAll:in:0 60 times. Looking further, she sees that

Dropper:out:0 → N10.Throttle:in:0 has 60 Stalled diagnoses: apparently the stalls

by the throttle operator are blocking flow to the barrier. Once the connection queue

fills, this can cause upstream operators such as N11 to be blocked from sending data

on their outputs.

5.3.2 Step 3: Analysis

The summary information helps the user understand where more detailed in-

vestigation is needed. To support such investigation, FlowDiagnoser provides two

3Section 4.3.2 explains why the minimum queue size is sometimes less than zero: timing varia-

tions between when the upstream and downstream counters are recorded.

121

timeline visualizations. Figure 5.4 includes the timeline plots for the MergeTree-

Barrier experiment.

The top plot is a counter heatmap, which shows the rate of change for each

module’s counters over time, and in relation to each other.4 Each module has three

rows assigned to it:

• Number of tuples nSubmitted into the connection during the snapshot

• Total queued_msgs sitting in the connection at the end of the snapshot

• Number of tuples nProcessed out of the connection during the snapshot

(total_msgs)

The abbreviation S, Q, or P in each row label identifies the counter shown. The label

also includes the minimum and maximum delta (∆) for each counter in parentheses.

Ancestor modules are listed toward the top of the heatmap plot, and descendants

toward the bottom.5

To direct the user’s attention, the diagnosis timeline at the bottom shows which

modules were Stalled (y = +1.0), DontCare (y = 0.0), Blocked (y = −0.5),

and Healthy (y = −1.0).

The following pattern for reading the heatmap and diagnosis timeline is useful:

4 Section 3.5.4 includes additional discussion.
5The user must be careful to determine which groups contribute to each path through the

graph; further research in this area is needed.

122

Figure 5.4: MergeTreeBarrier diagnosis timeline. The top figure shows the counters heatmap, and the bottom figure the
StreamsDiagnoser results.

123

1. Green is good, and is a sign of messaging activity. In the total_msgs rows,

black is also good, and marks the maximum number of messages processed in

any period.

2. White denotes inactivity in all rows: total_msgs is 0, queued_msgs is empty,

wait_time is 0.

3. Yellow, orange, red, and black are bad, and denote increased waiting or queue

size.

4. Look to the diagnosis timeline for relevant events, especially transitions from

Healthy to Stalled, or from Healthy to Blocked.

5. When a module is Stalled or Blocked, it is inactive, so its total_msgs

counter heatmap will be white. The user then looks to that area of the

heatmap.

6. When a module is Stalled, either the wait_time or queued_msgs is usually

increasing, so the user looks for warning signals (yellow, orange, red, black)

in those counter rows. For StreamsDiagnoser, the user looks to the streams-

connection module itself, and then its parents if they are Blocked. For

NeST, the user looks to the application and sockets.

7. Some modules may be active (green counter rows) while waiting or queueing

(warning colors). This may be due to normal buffer fluctuations, but an

increasingly darker shade of red indicates a processing bottleneck.

124

Figure 5.4 highlights two representative Stalled periods, with the salient

features circled in blue (near time 500 on the x-axis), and in green (near time 580

on the x-axis).

5.3.2.1 N12.Throttle starves the barrier

In the first highlighted period, with blue circles, the connection labeled as

Dropper→N12.Throttle:input:0 is Stalled since the N12.Throttle operator stopped

reading from input:0 (top blue circle). The Dropper PE continues to submit tuples

into the connection, as seen in the continued green section in the top row circled,

but none are being processed (white section in the bottom row circled). Since more

tuples are being submitted than processed, the queue begins to build (yellow-orange-

red-black progression in the middle row).

Since N12.Throttle has stopped processing tuples, it has none to submit down-

stream. This starves its downstream (child) connection

N12.Throttle→BarrierAll:input:2 of data, and no tuples are submitted onto it (2nd

blue circle). Thus all three rows in the 2nd circle are white, and the module is

marked as DontCare (4th blue circle).

Since no data is coming into BarrierAll:input:2, the barrier stops reading on

BarrierAll:input:0 and BarrierAll:input:1. Therefore, three connections are marked

as Stalled (3rd blue circle, some lines occluded):6

• Dropper→N12.Throttle:input:0

6The evaluation in Section 4.6.3 counts the second two faults as False Positives.

125

• N10.Throttle→BarrierAll:input:0

• N11→BarrierAll:input:1

By cross-referencing the dependency graph from Figure 5.3 and the timeline plot,

the user now knows that the Barrier has stopped reading from the N10.Throttle and

N11 operators because the N12.Throttle stopped processing from its input:0.

5.3.2.2 N10.Throttle starves the barrier

In the second highlighted period, with green circles, both the N10.Throttle

and N12.Throttle stop processing (reading) from their input ports. In this case,

the N10.Throttle PE stopped processing first, so its queue began to build (top

green circle). This starves N10.Throttle→BarrierAll:input:0 of data, so BarrierAll

immediately stops reading from input:1 and input:2.

The 3rd green circle shows that StreamsDiagnoser marks the following con-

nections as Stalled:

• Dropper→N10.Throttle:input:0

• N11→BarrierAll:input:1

• N12.Throttle→BarrierAll:input:2

The 2nd green circle highlights the tuples stuck in the connection

N12.Throttle→BarrierAll:input:2, since BarrierAll has stopped reading from that

input. Notice that the Dropper→N12.Throttle:input:0 connection also has a queue

building (yellow-orange-red-black progression above the 1st green circle), since the

126

N10.Throttle and N12.Throttle have stopped processing almost simultaneously. How-

ever, since StreamsDiagnoser has already marked the N12.Throttle’s child (down-

stream) connection as Stalled, the dependency analysis assumes that N12.Throttle

cannot submit any more tuples to its connection, and marks the connection

Dropper→N12.Throttle:input:0 as Blocked (4th green circle).

Again, by viewing the diagnosis timeline alongside the dependency graph, the

user has identified that the BarrierAll operator stops processing from its inputs

(potentially affecting N11 and N12.Throttle), because the N10.Throttle stopped

processing from input:0.

The developer’s original goal was to determine why the Sink.NullOut operator

was not sending any data to the Sink. She now knows that processing stalls on

N10.Throttle and N12.Throttle are causing the performance problems, and looks to

the source code and system configuration to fix it.

5.4 Conclusion

By tracking the messaging performance of a system over time, FlowDiagnoser

provides an expert user with the tools necessary to determine the cause of messaging

performance stalls. In addition to the time series of diagnosis results, FlowDiagnoser

provides three main types of system analysis tools: an overview of system communi-

cation, summaries of the automatic diagnosis results, and visualizations for in-depth

analysis.

127

Chapter 6

Related Work

FlowDiagnoser describes a general approach to diagnosing the source of perfor-

mance stalls in dataflow-oriented systems. It requires no protocol-specific knowledge

other than a basic understanding of the forwarding semantics of the underlying sys-

tem. It also requires little information: one counter per module, plus some waiting

signal, in contrast to other approaches which require extensive instrumentation or

message and event traces. FlowDiagnoser is also able to reliably diagnose the source

of network performance stalls using only the information available at the local host.

Many systems have been proposed for diagnosing some aspect of network or

software performance [2, 6, 15, 26, 37, 39, 45, 60]. Some of them are geared toward

software analysis [26, 45] or specific network protocols [13, 15, 37, 39, 60], and have

often relied on intimate familiarity with protocol design and implementation details.

Few of these systems are useful if employed independently on a single host; its limited

perspective makes diagnosis difficult [13]. Cooperative diagnosis, however, is of

little use to a host that cannot reliably establish or complete network connections:

diagnosis fails at the time it is needed most.

128

6.1 Protocol-Specific Analysis

Many systems perform protocol-specific analysis to detect performance prob-

lems exhibited by specific network or application technologies [2,15,32,35,60]. These

analyses can identify very complicated protocol- and domain-specific performance

problems, but applying their insights to new problem domains is not straightforward.

NeST is perhaps most inspired by the Web100 project [39], which thoroughly

instrumented the Linux TCP stack to provide insight into network and TCP imple-

mentation behaviors. By monitoring the sender-side behavior of TCP’s flow control

and congestion avoidance mechanisms, Web100 can reliably distinguish between

sender-, receiver-, and congestion-limited periods for transmissions from the local

host.

Pathdiag is an active measurement tool built on Web100 that injects traffic

into the network, and uses the Web100 instrumentation to detect common network

performance problems along a path [37]. The mechanisms built in to Web100 and

Pathdiag are limited to diagnosing behavior from the TCP sender side, since they

use signals such as an increasing round trip time (RTT) and particular loss patterns

to detect host misconfigurations, large router queue sizes, and excessive loss. NeST

applies a more general approach but gives less-specific feedback: for example, Path-

diag might warn about a poorly sized router queue, while NeST simply blames the

TCP connection itself when it stalls. NeST, however, is able diagnose performance

stalls from both the sender’s and receiver’s point of view.

129

The TCP Rate Analysis (T-RAT) tool [61] uses packet captures to determine

performance limitations of TCP/IP flows across a network backbone. T-RAT clas-

sifies each flow according to seven separate application, network, and TCP-specific

performance limitations. It does so by grouping series of packets in each flow into

flights of consecutive packets, and comparing the performance of successive flights

of packets to determine the limitation of each flight. To do this, it makes use of

several TCP-specific performance heuristics.

A follow-on approach described by Siekkinen, et al, [48] improves upon T-

RAT’s flight-based approach, which they show to be unreliable in practice, to clas-

sify each 500 millisecond window of packets as application-, TCP-endpoint-, or

congestion-limited. To do this, they also employ several TCP-specific heuristics

that require parameter tuning, such as the ratio of packets marked with the PUSH

flag, and number of time periods the flow was above and below this threshold.

Both of these tools provide interesting insights into the performance of TCP

flows, but their use of packet captures requires them to use some rather unreliable

inference techniques, while NeST is able to detect many of these performance lim-

itations directly. The FlowDiagnoser approach is also applicable to other network

protocols and messaging systems, and not strictly limited to TCP analysis.

The Scalable Network-Application Profiler (SNAP) [60] uses application event

logs and Web100-like TCP instrumentation [38] to identify the causes of network-

related performance problems in datacenter applications. SNAP employs a sender-

side, TCP-specific protocol analysis, and correlates connection-specific problems

across the data center and applications.

130

The SNAP paper describes fifteen significant performance bugs that were

found as a result of their analysis. The SNAP approach is very similar to NeST

in both its high-level goals and basic structure: continuous monitoring of protocol

counters and application events. The FlowDiagnoser approach, however, is more

general and not tied to the nuances of the TCP protocol stack, although with less

specific results. For example, three of the bugs found by using SNAP related to

the interaction between delayed ACKs and the TCP buffer sizes requested by the

application. NeST would correctly identify the TCP connections and applications

that were stalled as a result, but because of the TCP-specific delayed ACK rule used

in SNAP, it is able to identify the specific TCP feature causing the stall.

By implementing the SNAP techniques as a module-specific diagnosis inside

of NeST (Section 7.2), NeST may be able to increase the level of detail provided

in its diagnosis results. FlowDiagnoser is also applicable to higher-level application

components, as demonstrated in this thesis’s applications of it to the network stack

and streams.

NetPrints [2] is a system that performs automated network diagnostics to de-

tect and correct home network device misconfigurations that prevent specific appli-

cations from functioning. It does so by employing a decision-tree algorithm to com-

pare a user’s faulty configuration against configurations supplied by other users. It

also looks for certain features in the network behavior—including specific SYN/RST

patterns in TCP connection attempts, one-way traffic without responses, and lack

of any inbound/outbound traffic—that may indicate certain types of network faults

that prevent communication. These network features and configurations are com-

131

bined to detect and potentially repair misconfigurations on the end host, firewall,

or router.

While both NeST and NetPrints perform automated network diagnostics,

their goals are orthogonal: NeST diagnoses performance stalls that occur during

normal operation, and NetPrints detects misconfigurations that prevent throughput

altogether. For example, when a user signals a problem with their application,

NetPrints can determine that the application is attempting to connect remotely

to their FTP server at home, and recommend enabling forwarding for port 21 on

the home gateway. NetPrints relies on a centralized diagnostic server to collect

and analyze information provided by many end hosts; this reliance on a centralized

service is problematic during periods of extremely poor network performance.

TcpEval [10] is a tool designed to determine where delays in HTTP responses

are introduced. It analyzes packet traces to construct a packet dependence graph

to determine which TCP SYNs, data, and ACKs must happen before each other.

By evaluating the timing over this happens-before graph [34], TcpEval is able to

distinguish client delays, server delays, and various network behaviors. TcpEval’s

analysis is specific to the type of TCP congestion algorithm used, and does not

readily generalize to other protocol types. Since it works over packet traces, it is

also less efficient to implement than NeST’s counter analysis.

Some software packages include application-specific monitoring and diagnosis

frameworks. The Firebug [22] and YSlow [57] web browser add-ons and the Network

Panel in Google Chrome [56] each provide a timeline view of the various elements

(HTML, Javascript, CSS, images, embedded videos, etc.) loaded by a web browser

132

when displaying a web page. By analyzing the sequence of objects and the amount of

time each takes, a web developer can determine which page elements cause slow page

load and rendering times, which are a significant cause of website user dissatisfaction

(Chapter 1). YSlow works with Firebug to rank each web page according to a

series of performance rules that encode current best practices [58,59], such as “Gzip

Components” and “Make Fewer HTTP Requests” [49].

WebProphet [35] is an automated tool for predicting web page load times,

related in spirit to Firebug and YSlow, but quite different in approach. WebProphet

creates a dependency graph of all of the objects (HTML, CSS, Javascript, images,

etc) on a given web page by delaying the loading of particular objects; dependent

objects are delayed by the same amount. By including TCP and DNS round-trip

times, WebProphet is able to estimate the impact of changing various parameters

(for example, the use of longer DNS or object cache times, or lowering the RTT by

using a CDN).

Each of these web-specific tools provides useful feedback for web developers and

site administrators to evaluate their web pages and sites according to current best

practices. However, when an element takes an inordinate amount of time to load,

these tools do not provide any insight into what was occurring in the application or

network at the time, only the duration of the request. NeST provides an additional

level of detail about the network performance of the application, and could make it

clear that the object was delayed due to network issues, a stalled TCP connection,

or a browser issue. Integrating the NeST diagnosis results with the application-

133

specific knowledge available in Firebug or the Chrome Network Panel would help to

overcome the limitations described in Section 3.6.2.

6.2 Required Information

FlowDiagnoser requires very little information to make an accurate diagnosis,

while other systems require much more. While these systems model performance-

relevant behavior at a much finer level of detail, their extensive overhead makes it

difficult to justify running them continuously, or analyzing all of the data.

6.2.1 Extensive instrumentation

NetLogger [26] and Pip [45] are examples of application-based instrumentation

systems, which involve inserting specially tagged logging messages before and after

function calls at critical places in application code. By carrying along unique request

identifiers throughout the code and messaging flow, it is possible to identify where

delays are caused across an entire distributed system.

Both systems provide insight into application and connection delays down

to the function level, which is very useful for pinpointing the source of problems.

The volume of collected data can be expensive to process, and while instrument-

ing fewer functions could reduce this volume, it would also reduce the utility of

the approach. Although NeST does instrument an application’s read and write

calls through a libc interceptor library, it does not track individual messages; both

NeST and StreamsDiagnoser require only per-module counters, which greatly re-

134

duces the required information. For both NetLogger and Pip, the requirement to

add instrumentation to application source code is a high barrier to entry, especially

for third-party applications where the source code is not available.

6.2.2 Packet or event traces

Some diagnosis systems use expensive traces of network packets [6, 14, 15] or

system-level messages [3,18,25,26,45] to build the communication dependency graph,

diagnose performance anomalies, and detect violations of system invariants.

Sherlock [6] is designed for large enterprise use, and employs end-host packet

captures to assemble dependencies between network services (IP 3-tuples) at the

host level. They then combine this service dependency graph with an externally-

generated network topology to create an inference graph, which models physical

components (machines, routers, links) and services (IP + port) as “root cause”

nodes, clients as “observation nodes” which can collect response-time metrics, and

“meta-nodes” to connect clients with the root causes. The observed service response

times are used to place nodes in up, down, or troubled states; Sherlock then identifies

the source of performance problems by searching for the highest-probability set of

up to k causes that might explain the observed troubled/down states.

Orion [14] improves upon Sherlock’s service discovery mechanisms by tracking

delay distributions across the various services, learned from packet traces captured

within the network: spikes in delay are likely to be correlated among services that

depend on each other. Orion’s associations are more fine-grained than Sherlock’s,

135

able to track multi-process and multi-host applications, and permit far fewer false-

positive edges in the dependency graph. Orion does not directly deal with perfor-

mance and fault diagnosis, but provides more reliable dependency graphs to use for

diagnosis.

Both Sherlock and Orion have a different goal than FlowDiagnoser: discov-

ery of inter-system dependencies across an enterprise network, and in the case of

Sherlock diagnosis of service and network delay spikes and failures. Due to its in-

strumentation approach, FlowDiagnoser does not need to infer the dependencies

between processes and services (even across the network); it can learn and report

them directly. Of course, this comes at the cost of some flexibility: both Sherlock

and Orion can build their dependency graphs from packet traces. Their reliance on

packet traces also provides them with less information about what the application

is actually trying to do: it can be difficult to tell whether an application is blocked

or stalled just from a packet trace, since in both cases no traffic is available.

Aguilera et al. [3] describe an approach for diagnosing high-latency paths in

distributed systems of black boxes which communicate via request-response RPC or

generic message passing. Nodes in their model may be hosts, multi-process applica-

tions, processes, or particular subsystems. By calculating send/receive timestamps

on every message, they infer the dataflow graph of messages through the system,

and the causal relationships between messages [34]. They then ascribe messaging

delays to nodes in the system. While their approach requires no direct interaction

with the monitored system (like that used in StreamsDiagnoser to provide the pro-

cessing graph and counters), the messaging graph is inherently less reliable since it

136

is inferred rather than determined directly. Tracing each message is also expensive

to collect and post-process.

A visual debugger for analyzing and debugging Streams applications is de-

scribed by de Pauw et al. [18]. This tool relies on tracing individual tuples through

the Streams processing graph. To limit overhead, this tracing is activated for limited

periods of time on particular subpaths through the processing graph. Their visual-

ization uses per-tuple timelines to show how long each tuple took to move between

operators in the processing graph. This timeline visualization of the flow between

operators and the ability to examine the fields of individual tuples makes this tech-

nique effective for finding subtle timing and correctness bugs. For example, it can

help a developer to identify a join operator that is not provided with the right join

criteria, or the wrong incoming data. However, it is too expensive to run continually

and provides no automated diagnosis, so the systems are largely complementary.

6.3 System-wide Instrumentation

CONMan [8, 9] is similar in spirit to NeST, making use of a generic network

module abstraction and tracking dependencies between modules. The main goal

of CONMan is to simplify configuration and management of computer networks

by using this generic module abstraction, but it also enables diagnosis of some

network faults in which connectivity between devices is severed. CONMan uses a

centralized Configuration Manager to track modules throughout the network, and

137

tracks counters across all the modules in the network to determine which modules

have stopped forwarding completely [9].

NeST is able to reliably diagnose temporary network performance degradation

from a single end host, a much more difficult goal. Specifically, NeST diagnoses

transient (as opposed to permanent) performance problems without instrumenting

the entire network. In contrast to the centralized, cooperative scheme described in

CONMan, NeST is host-based and operates in a completely autonomous and decen-

tralized manner: any end system can implement and use NeST to diagnose network

performance problems independently. If the modules of the operating system (or

distributed system) implemented the CONMan abstraction, a combination of the

CONMan and FlowDiagnoser diagnosis rules could potentially provide more pre-

cise and accurate results, without CONMan’s requirement to instrument the entire

network.

NetMedic [32] models processes, configurations, devices, and machines in its

dependency graph and uses the past history of their interactions to determine which

component is the cause of misbehavior. NetMedic goes farther than FlowDiagnoser

in its use of counters and metrics, applying CPU, disk IO, and application-specific

counters to the diagnosis. Like CONMan and Sherlock, NetMedic requires cen-

tralized analysis of all the analyzed counters, but treats the counters as a black

box; no semantics are required. NetMedic diagnoses problems by tracing abnormal

counter states in one node to abnormal states in other nodes, using the weighted

dependencies determined from the provided history of counters.

138

The Network-wide Information Correlation and Exploration (NICE) system

[36] uses data collected from throughout a service provider network to find cor-

relations between performance problems and potential root causes. Symptoms of

performance problems include router CPU spikes and measured end-to-end packet

loss, which may be attributed to invocation of particular router commands or link

failure events. NICE transforms router syslogs, CPU and packet loss readings, active

measurements, and other data sources into event vectors. Symptoms and potential

causes that are strongly correlated over time are presented as a ranked list of pos-

sible causes (e.g., end-to-end packet loss was caused by a router CPU spike and a

router configuration command). Such a system is useful for detecting and debugging

chronic, long-term issues and the causes that have a strong statistical co-occurrence,

but does not provide information about what is happening at a particular point in

time as NeST does.

In all of these systems, the diagnosis process depends upon system-wide data

for useful diagnosis, whereas NeST can diagnose performance problems from the

point of view of a single host. With StreamsDiagnoser, the need for system-wide

data is limited: it requires only a few counters from each communicating process. Of

course, the StreamsDiagnoser output is limited to identifying which PE (operator) is

not behaving correctly, and is unable to assign faults to underlying network elements

(which are not modeled).

139

6.4 Summary

In comparison with other performance diagnosis systems that perform sophis-

ticated analysis on extensive amounts of data, FlowDiagnoser occupies one end of

the research spectrum: it uses a very small amount of information to identify mod-

ules that are the cause of messaging-related performance stalls. These diagnosis

results could be used to triage which modules need further investigation, and per-

form more in-depth protocol- or system-specific analysis. FlowDiagnoser uses two

signals—one to indicate node activity, and another to indicate waiting—to auto-

matically diagnose performance problems in an approach that is accurate, efficient,

and general.

140

Chapter 7

Conclusion

This dissertation presents the FlowDiagnoser approach to automatically di-

agnosing performance stalls in networked and distributed systems. Motivated by

real-world experience, academic research, and examples from industry, these per-

formance stalls have a significant affect on system performance, and affect users’

attitudes about the usability of a system. The FlowDiagnoser approach is applied

in two different problem domains: NeST, which finds the source of network-related

stalls in a host’s network stack, and StreamsDiagnoser which diagnoses processing

stalls in the InfoSphere Streams stream processing system. In comparison with

other approaches, FlowDiagnoser is simple and applies across problem domains.

This chapter concludes the dissertation with directions for future work.

7.1 Bottleneck detection

In discussing the StreamsDiagnoser approach with Streams researchers and

users, one repeated request is to find the source of backpressure-related bottlenecks,

in which a module is still processing messages, but limiting its parents’ output rate.

FlowDiagnoser can probably be extended to detect slow modules in both Streams

and the network stack by looking at module’s queued_msgs or wait_time counter

when a module is active (i.e., not only when total_msgs = 0). This may indicate

141

that child module is not processing as quickly as it should be. However, to do this

reliably, the current binary diagnosis criteria (> 0 or = 0) may need to be relaxed,

since relative processing rates often fluctuate during normal operation. The most

promising approaches may be to require some minimum threshold number for the

number of messages in the queue before FlowDiagnoser signals that a module is a

bottleneck (since a few messages may always be in the buffer), or require a number

of consecutive snapshots with a stable or growing queue before it marks the module

as a bottleneck.

7.2 Module-specific diagnosis

One option that has garnered interest among Streams researchers is the pos-

sibility of adding introspection to the Streams runtime, and providing StreamsDi-

agnoser with more fine-grained information about what a module should be doing.

For example, while a filter operator should not be expected to pass every message,

a pass-through or message-modifying operator is misbehaving if it does not submit

a message for every one processed. In addition, StreamsDiagnoser could treat a

Barrier specially, to account for the issues described in Chapter 4.

This same approach would work for modules in the network stack; instead

of treating each module generically, NeST could allow each module to specify its

own implementation-specific diagnosis. For example, a specially instrumented ap-

plication could specify which sockets should be expected to read or write at any

given time; NeST would then verify whether its actual behavior meets expecta-

142

tion. NeST could also incorporate TCP-specific or interface-specific diagnosis cri-

teria [15,37,39,60]. The general-purpose dependency analysis described in Chapter 3

would still be used for modules that have no implementation-specific criteria, or to

handle conflicting results.

7.3 Online diagnosis

Streams researchers and developers have expressed interest in using Streams-

Diagnoser online to detect performance stalls and kick off a reconfiguration of the

Streams processing graph, either to share load or restart stalled PEs. NeST could

also monitor an end user’s system in real time, and either provide feedback and

recommendations, or automatically take action to improve the user’s experience.

7.4 Additional systems

Finally, FlowDiagnoser is designed to work at many levels of abstraction.

While this dissertation evaluates process-to-process communication in StreamsDi-

agnoser, it should work equally well (but with higher processing overhead) when

looking at each operator inside a Streams PE. It may be possible to apply the

same diagnosis approach and implementation to tracking performance flows be-

tween Streams jobs (which are themselves comprised of many PEs), and even to

track messaging problems in systems-of-systems processing graphs. However, this

will likely require additional data processing and improvement, since even the loose

143

counter semantics employed by FlowDiagnoser may be too stringent when collecting

data across many systems.

7.5 Conclusion

The thesis of this dissertation is that the source of performance stalls in a

distributed system can be automatically diagnosed with very limited information:

the dependency graph of data flows through the system, and a few counters common

to almost all data processing systems.

The FlowDiagnoser automated fault detection system requires as little as two

bits of information per module: one to indicate whether the module is actively pro-

cessing data, and one to indicate whether the module is waiting on its dependents.

Prototype implementations and controlled experiments in two distinct

environments—an individual host’s networking stack, and a distributed streams

processing system—support this thesis, and show that the automatic FlowDiagnoser

approach is general, efficient, and accurate.

144

Appendix A

Normalization Procedure for Streams Counters

As discussed in Section 4.3.1 and Section 4.3, in InfoSphere Streams, counters

are assigned to PEs’ and operators’ input and output ports. These per-port counters

track the total number of tuples submitted or processed across all the connections

from/to that port. This is similar to accounting for a busy network server’s traffic

by aggregating on the IP:port the server is bound to. The InfoSphere Streams

runtime does not track the number of tuples submitted or processed on each stream

connection.

Since the current model transformation is based on individual stream con-

nections (F : out0 → I : in2), StreamsDiagnoser expects counters that track the

number of tuples submitted into the connection, and the number of tuples pro-

cessed out of the connection. Therefore, it needs to normalize the counters from

each input and output port.

A.1 Connection-counter normalization cases

Using the PEs and connections from Figure 4.2 as examples, there are four

cases of concern, listed in Table A.1.

145

Case Summary Normalization Step

1 → 1
One input port,
one output port

None needed.

1 → N

Multiple
downstream
subscribers

σ
PE:OUT:i
nSubmittedNORM + =

∆PE:OUT:i
nSubmitted

nConnsPE:OUT:i

N → 1
Multiple
upstream
publishers

σPE:OUT:inSubmittedNORM+ =
∑

PEx:OUT :p ∈ upstream ports

∆PEx:OUT:p
nSubmittedNORM

M → N

Both directions
multiple-
subscription

Apply the normalized submitted values ∆PE:OUT:i
nSubmittedNORM

before summing across upstream PEs.

Table A.1

A.1.1 [Case 1] 1 → 1 connections

This is the trivial case, and the counter needs no normalization.

A.1.2 [Case 2] 1 → N fan-out connections

Whenever an output port’s tuples are subscribed to by multiple downstream

consumers, there is a 1 → N fan-out, as seen at F : out0 → {I : in2, J : in0, K : in0}

in Figure 4.2.

For every call to F : out0.submit(), the σF:out0nSubmitted counter increases by the

number of open connections (three), but as each downstream processes the sub-

mitted tuple, the downstream’s nProcessed counter (e.g. σI:in2nProcessed) increases by

one.

146

Without normalization, this can lead to False Positives, where StreamsDiag-

noser blames I : in2 even though it has processed all the tuples submitted to it,

since nSubmitted increases at three times the rate of nProcessed.

The normalization step at each snapshot is to divide the increase in the output

port’s nSubmitted counter by nConnsPE:OUT:i, the number of connections currently

attached to output port i. This results in the normalized total value

σPE:OUT:inSubmittedNORM + =
∆PE:OUT:i

nSubmitted

nConnsPE:OUT:i

which is the number of tuples submitted to each connection on the port.

A.1.3 [Case 3] N → 1 fan-in connections

This is the inverse of Case 2, where an input port subscribes to streams that

originate from multiple output ports. PE N’s input port 0 is an example of this:

{H : out0, I : out0, J : out0} → N : in0 is an N → 1 fan-in.

The value of σN:in0nProcessed accounts for all of the tuples processed on that input

port, regardless of the sender. That is, N : in0’s nProcessed counter is the sum of all

the tuples processed from H : out0, I : out0, and J : out0. It would be convenient to

normalize the nProcessed counter in the same way that nSubmitted is normalized,

but this cannot be done reliably. It is impossible to determine how many tuples have

been processed from each individual incoming stream; StreamsDiagnoser knows only

how many were processed in total.

Without normalization, it will usually appear that the downstream input port

has processed all of the tuples from each connection. This may cause False Negatives

147

on N : in0, since the total number of tuples submitted on one incoming connection

will almost always be less than the total number of tuples processed from all the

incoming connections.

To account for the N → 1 normalization, StreamsDiagnoser keeps a shadow

counter nSubmittedToInputPort. After individually normalizing all of the output

port counters as described in Case 2, StreamsDiagnoser sums ∆PEx:OUT:p
nSubmittedNORM

across

all of the output ports connected to this input port. This sum is the total number

of tuples submitted to the input port in the last snapshot period. StreamsDiagnoser

then increases nSubmittedToInputPort by this sum.

A.1.4 [Case 4] M → N multi-way connections

If an output port with multiple outgoing connections is connected to an input

port that has multiple incoming connections, Once StreamsDiagnoser has correctly

normalized the counters on the output ports (Case 2), it can apply the summation

procedure from Case 3, and the counters work as expected.

A.2 Counter normalization algorithm

The algorithm to recover these per-connection counters is:

1. Keep track of the original counter values from the first snapshot, and use

this as a baseline. This is necessary since StreamsDiagnoser does not know

the number of connections that arrived and departed before it obtained the

148

first snapshot. Subtract out this initial baseline value from each subsequent

snapshot.

2. Re-baseline at every topology change where the number of connections changed,

since StreamsDiagnoser does not know the number of tuples were submitted

on the first N connections, and how many were submitted on all N ± 1 con-

nections during the snapshot period.

3. At each snapshot, divide any increase by the current number of connections

for each port.

In practice, StreamsDiagnoser creates two shadow counters:

• nTuplesSubmittedToConnectionX, which is the value of σPE:OUT:inSubmittedNORM from

Case 2.

• nSubmittedToInputPort, which counts messages submitted into an input port

by all of its incoming connections in Case 3.

The information required for this normalization includes:

1. The first-count baseline (to factor out changes StreamsDiagnoser never saw),

2. The last-connection-change baseline (to ignore earlier changes in nConnections),

3. The current number of connections (to assign the current increase in the

counter to each connection), and

4. The total number of tuples submitted on an output port, and the total number

of tuples processed on an input port, as provided by the Streams runtime.

149

Bibliography

[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.
Aurora: a new model and architecture for data stream management. The VLDB
Journal, 12(2):120–139, Aug. 2003.

[2] Bhavish Aggarwal, Ranjita Bhagwan, Tathagata Das, Siddharth Eswaran,
Venkata N. Padmanabhan, and Geoffrey M. Voelker. NetPrints: Diagnosing
home network misconfigurations using shared knowledge. In NSDI. USENIX,
Apr 2009.

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of
black boxes. In SOSP, pages 74–89, New York, NY, USA, 2003. ACM.

[4] Yanif Ahmad, Bradley Berg, Uǧur Cetintemel, Mark Humphrey, Jeong-Hyon
Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander
Rasin, Nesime Tatbul, Wenjuan Xing, Ying Xing, and Stan Zdonik. Distributed
operation in the borealis stream processing engine. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data, SIGMOD
’05, pages 882–884, New York, NY, USA, 2005. ACM.

[5] Dave Artz. The secret weapons of the AOL optimization team. http://
velocityconf.com/velocity2009/public/schedule/detail/7579, 2009.

[6] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula,
David A. Maltz, and Ming Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In SIGCOMM, pages 13–24,
New York, NY, USA, 2007. ACM.

[7] Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur Çetintemel,
Mitch Cherniack, Christian Convey, Eduardo F. Galvez, Jon Salz, Michael
Stonebraker, Nesime Tatbul, Richard Tibbetts, and Stanley B. Zdonik. Retro-
spective on aurora. VLDB J., 13(4):370–383, 2004.

[8] Hitesh Ballani and Paul Francis. CONMan: a step towards network manage-
ability. In SIGCOMM, pages 205–216, New York, NY, USA, 2007. ACM.

[9] Hitesh Ballani and Paul Francis. Fault management using the CONMan ab-
straction. In INFOCOM, 2009.

[10] Paul Barford and Mark Crovella. Critical path analysis of TCP transactions.
IEEE/ACM Transactions on Networking, 9:238–248, June 2001.

150

http://velocityconf.com/velocity2009/public/schedule/detail/7579
http://velocityconf.com/velocity2009/public/schedule/detail/7579

[11] Brandes, M Eiglsperger, I Herman, M Himsolt, and MS Marshall. GraphML
progress report: Structural layer proposal. In P Mutzel, M Junger, and
S Leipert, editors, Graph Drawing - 9th International Symposium, GD 2001
Vienna Austria,, pages 501–512, Heidelberg, 2001. Springer Verlag.

[12] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
instrumentation of production systems. In USENIX ATC, ATEC ’04, pages
2–2, Berkeley, CA, USA, 2004. USENIX Association.

[13] Ranveer Chandra, Venkata N. Padmanabhan, and Ming Zhang. WiFiProfiler:
cooperative diagnosis in wireless LANs. In MobiSys, pages 205–219, New York,
NY, USA, 2006. ACM.

[14] Xu Chen, Ming Zhang, Zhuoqing Morley Mao, and Paramvir Bahl. Automating
network application dependency discovery: Experiences, limitations, and new
solutions. In OSDI, pages 117–130. USENIX Association, 2008.

[15] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer
Chiang, Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker. Automating
cross-layer diagnosis of enterprise wireless networks. In SIGCOMM, pages 25–
36, 2007.

[16] Jonathan Corbet. Replacing ptrace(). http://lwn.net/Articles/371501,
Jan 2010.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 3 edition, 2009.

[18] Wim De Pauw, Mihai Leţia, Buğra Gedik, Henrique Andrade, Andy Frenkiel,
Michael Pfeifer, and Daby Sow. Visual debugging for stream processing ap-
plications. In Proceedings of the First international conference on Runtime
verification, RV’10, pages 18–35, Berlin, Heidelberg, 2010. Springer-Verlag.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In SOSP, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[20] Philip Dixon. Shopzilla’s site redo: You get what you measure. http://
velocityconf.com/velocity2009/public/schedule/detail/7709, 2009.

[21] Nandita Dukkipati, Matt Mathis, Yuchung Cheng, and Monia Ghobadi. Pro-
portional rate reduction for TCP. In IMC, IMC ’11, pages 155–170, New York,
NY, USA, 2011. ACM.

[22] Firebug. http://getfirebug.com.

[23] Dennis F. Galletta, Raymond M. Henry, Scott McCoy, and Peter Polak. Web
site delays: How tolerant are users? J. AIS, 5(1):0–, 2004.

151

http://lwn.net/Articles/371501
http://velocityconf.com/velocity2009/public/schedule/detail/7709
http://velocityconf.com/velocity2009/public/schedule/detail/7709
http://getfirebug.com

[24] Buğra Gedik and Henrique Andrade. A model-based framework for building
extensible, high performance stream processing middleware and programming
language for IBM infosphere streams. Softw: Pract. Exper., 2011.

[25] Buğra Gedik, Henrique Andrade, Andy Frenkiel, Wim De Pauw, Michael
Pfeifer, Paul Allen, Norman Cohen, and Kun-Lung Wu. Tools and strategies
for debugging distributed stream processing applications. Softw. Pract. Exper.,
39(16):1347–1376, Nov. 2009.

[26] Dan Gunter, Brian Tierney, Brian Crowley, Mason Holding, and Jason Lee.
Netlogger: A toolkit for distributed system performance analysis. In IEEE
MASCOTS, page 267, Washington, DC, USA, 2000. IEEE Computer Society.

[27] John Heffner. CurAppWQueue non-zero at end of connection. Post to web100-
discussion mailing list, March 2011.

[28] John Heffner. Rcvbuf/sndbuf vs. queue sizes. Post to web100-discussion mailing
list, February 2011.

[29] Tom Herbert. [patch] tcp: Fix slowness in read /proc/net/tcp. Post to linux-
netdev mailing list, June 2010.

[30] IBM streams processing language (SPL) online documentation. http://
publib.boulder.ibm.com/infocenter/streams/v2r0/index.jsp, March
2012.

[31] Steve Jobs. Thoughts on Flash. http://www.apple.com/hotnews/
thoughts-on-flash, April 2010.

[32] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra
Padhye, and Paramvir Bahl. Detailed diagnosis in enterprise networks. In
SIGCOMM, pages 243–254, New York, NY, USA, 2009. ACM.

[33] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and
Ronnie Chaiken. The nature of data center traffic: measurements & analysis.
In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement
conference, IMC ’09, pages 202–208, New York, NY, USA, 2009. ACM.

[34] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21:558–565, July 1978.

[35] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Albert Greenberg, and Yi-
Min Wang. WebProphet: automating performance prediction for web services.
In NSDI, pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

[36] Ajay Mahimkar, Jennifer Yates, Yin Zhang, Aman Shaikh, Jia Wang, Zihui Ge,
and Cheng Tien Ee. Troubleshooting chronic conditions in large IP networks.
In CoNEXT, CoNEXT ’08, pages 2:1–2:12, New York, NY, USA, 2008. ACM.

152

http://publib.boulder.ibm.com/infocenter/streams/v2r0/index.jsp
http://publib.boulder.ibm.com/infocenter/streams/v2r0/index.jsp
http://www.apple.com/hotnews/thoughts-on-flash
http://www.apple.com/hotnews/thoughts-on-flash

[37] Matt Mathis, John Heffner, Peter O’Neil, and Pete Siemsen. Pathdiag: Auto-
mated TCP diagnosis. In PAM, Apr 2008.

[38] Matt Mathis, John Heffner, and Rajiv Raghunarayan. TCP Extended Statistics
MIB. RFC 4898, Internet Engineering Task Force, May 2007.

[39] Matt Mathis, John Heffner, and Raghu Reddy. Web100: Extended TCP instru-
mentation for research, education and diagnosis. In SIGCOMM, pages 69–79,
New York, NY, USA, 2003. ACM Press.

[40] Marissa Mayer. In search of... a better, faster, stronger web. http://
velocityconf.com/velocity2009/public/schedule/detail/8913, 2009.

[41] Pablo Neira Ayuso, Rafael M. Gasca, Laurent Lefèvre. Communicating between
the kernel and user-space in Linux using Netlink sockets. Software: Practice
and Experience, 40(9), Aug. 2010.

[42] ptrace - process trace. http://www.kernel.org/doc/man-pages/online/
pages/man2/ptrace.2.html.

[43] Roshan Punnoose, Andrew Skene, Octavian Udrea, and Brian Williams. per-
sonal correspondence, 2011.

[44] Charles Reis and Steven D. Gribble. Isolating web programs in modern browser
architectures. In Proceedings of the 4th ACM European conference on Computer
systems, EuroSys ’09, pages 219–232, New York, NY, USA, 2009. ACM.

[45] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, and Amin Vahdat. Pip: Detecting the unexpected in distributed systems.
In NSDI, pages 115–128. USENIX, 2006.

[46] Yaoping Ruan and Vivek Pai. Understanding and addressing blocking-induced
network server latency. In USENIX ATC, ATEC ’06, pages 14–14, Berkeley,
CA, USA, 2006. USENIX Association.

[47] E. Schurman and J. Brutlag. The user and business impact of server delays,
additional bytes, and HTTP chunking in web search. http://velocityconf.
com/velocity2009/public/schedule/detail/8523, 2009.

[48] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and T. En-Najjary. Root cause
analysis for long-lived TCP connections. In CoNEXT, pages 200–210, New
York, NY, USA, 2005. ACM Press.

[49] Steve Souders. High-performance web sites. Communications of the ACM,
51(12):36–41, Dec. 2008.

[50] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Comput., 1(2):146–160, 1972.

153

http://velocityconf.com/velocity2009/public/schedule/detail/8913
http://velocityconf.com/velocity2009/public/schedule/detail/8913
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://velocityconf.com/velocity2009/public/schedule/detail/8523
http://velocityconf.com/velocity2009/public/schedule/detail/8523

[51] Dominique Toupin. Using tracing to diagnose or monitor systems. IEEE Softw.,
28(1):87–91, Jan. 2011.

[52] Matt Welsh and David Culler. Adaptive overload control for busy internet
servers. In USITS, USITS’03, pages 4–4, Berkeley, CA, USA, 2003. USENIX
Association.

[53] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In OSDI,
pages 255–270, Boston, MA, Dec. 2002. USENIX ATC.

[54] Krist Wongsuphasawat, Pornpat Artornsombudh, Bao Nguyen, and Justin Mc-
Cann. Network stack diagnosis and visualization tool. In Proceedings of the
Symposium on Computer Human Interaction for the Management of Informa-
tion Technology, CHiMiT ’09, pages 4:29–4:37, New York, NY, USA, 2009.
ACM.

[55] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. Linux security modules: General security support for the Linux
kernel. Foundations of Intrusion Tolerant Systems, 0:213, 2003.

[56] Chrome Developer Tools: Network Panel. https://developers.google.com/
chrome-developer-tools/docs/network.

[57] YSlow. http://yslow.org.

[58] Best practices for speeding up your web site. http://developer.yahoo.com/
performance/rules.html.

[59] YSlow ruleset matrix. https://github.com/marcelduran/yslow/wiki/
Ruleset-Matrix.

[60] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan,
Srikanth Kandula, and Changhoon Kim. Profiling network performance for
multi-tier data center applications. In NSDI, NSDI’11, pages 5–5, Berkeley,
CA, USA, 2011. USENIX Association.

[61] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the characteristics
and origins of internet flow rates. In SIGCOMM, pages 309–322, New York,
NY, USA, 2002. ACM Press.

154

https://developers.google.com/chrome-developer-tools/docs/network
https://developers.google.com/chrome-developer-tools/docs/network
http://yslow.org
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
https://github.com/marcelduran/yslow/wiki/Ruleset-Matrix
https://github.com/marcelduran/yslow/wiki/Ruleset-Matrix

	List of Tables
	List of Figures
	Introduction
	Sources of performance stalls
	Latency's impact on the bottom line
	Stalls are hard to diagnose
	Thesis
	Goals
	Overview
	Contributions

	The FlowDiagnoser Approach
	The Dataflow and Dependency Graphs
	Module Counters
	Snapshots

	Dependency Analysis
	Diagnosis Criteria
	Diagnosis Algorithm
	Correlating evidence

	Diagnosis Results
	Summary

	Diagnosing Problems in the Network Stack
	The Network Stack Dependency Graph
	Network Stack Counters
	Application and socket modules

	Stack Dependency Analysis
	Interpreting the results
	Distinguishing connection-specific and network-level faults

	Data Collection Prototype
	Experimental Results
	Experimental setup
	Diagnosis accuracy
	Prototype efficiency
	Diagnosis scenarios

	Potential Extensions
	Accounting for shared dependencies
	Specifying expected application behavior

	Summary

	Diagnosing Problems in InfoSphere Streams
	Basic Streams Model
	Streams operators
	Example processing graph
	Streams counters
	Streams Performance Problems

	The StreamsDiagnoser Dependency Graph
	Option 1: Each PE is a module
	Option 2: Ports as modules
	Option 3: Stream connections as modules

	Stream Connection Counters
	Recovering per-connection counters
	Invariant violations

	Streams Dependency Analysis
	Detecting backpressure and inactive streams
	Interpreting the results

	Data collection prototype
	Experimental Results
	Basic topologies
	Injected faults
	Diagnosis accuracy

	Live application results
	Summary

	From Diagnosis to Fix
	The Discovery Process
	Summarization and Visualization Outputs
	Case Study: MergeTreeBarrier
	Steps 1 and 2: Overview and Summary
	Step 3: Analysis

	Conclusion

	Related Work
	Protocol-Specific Analysis
	Required Information
	Extensive instrumentation
	Packet or event traces

	System-wide Instrumentation
	Summary

	Conclusion
	Bottleneck detection
	Module-specific diagnosis
	Online diagnosis
	Additional systems
	Conclusion

	Normalization Procedure for Streams Counters
	Connection-counter normalization cases
	[Case 1] 1 1 connections
	[Case 2] 1 N fan-out connections
	[Case 3] N 1 fan-in connections
	[Case 4] M N multi-way connections

	Counter normalization algorithm

	Bibliography

