
Lecture Notes CMSC 251

high school algebra. Ifc is a constant (does not depend on the summation indexi) then

n∑
i=1

cai = c

n∑
i=1

ai and
n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi.

There are some particularly important summations, which you should probably commit to memory (or
at least remember their asymptotic growth rates). If you want some practice with induction, the first
two are easy to prove by induction.

Arithmetic Series: Forn ≥ 0,

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2
= Θ(n2).

Geometric Series: Let x 6= 1 be any constant (independent ofi), then forn ≥ 0,

n∑
i=0

xi = 1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

If 0 < x < 1 then this isΘ(1), and ifx > 1, then this isΘ(xn).

Harmonic Series: This arises often in probabilistic analyses of algorithms. Forn ≥ 0,

Hn =
n∑

i=1

1
i

= 1 +
1
2

+
1
3

+ · · ·+ 1
n
≈ lnn = Θ(lnn).

Lecture 3: Summations and Analyzing Programs with Loops

(Tuesday, Feb 3, 1998)
Read: Chapt. 3 in CLR.

Recap: Last time we presented an algorithm for the 2-dimensional maxima problem. Recall that the algo-
rithm consisted of two nested loops. It looked something like this:

Brute Force Maxima

Maxima(int n, Point P[1..n]) {
for i = 1 to n {

...
for j = 1 to n {

...
...

}
}

We were interested in measuring the worst-case running time of this algorithm as a function of the
input size,n. The stuff in the “. . . ” hasbeen omitted because it is unimportant for the analysis.

Last time we counted the number of times that the algorithm accessed a coordinate of any point. (This
was only one of many things that we could have chosen to count.) We showed that as a function ofn
in the worst case this quantity was

T (n) = 4n2 + 2n.

7



Lecture Notes CMSC 251

We were most interested in the growth rate for large values ofn (since almost all algorithms run fast
for small values ofn), so we were most interested in the4n2 term, which determines how the function
grows asymptotically for largen. Also, we do not care about constant factors (because we wanted
simplicity and machine independence, and figured that the constant factors were better measured by
implementing the algorithm). So we can ignored the factor 4 and simply say that the algorithm’s
worst-case running time grows asymptotically asn2, which we wrote asΘ(n2).

In this and the next lecture we will consider the questions of (1) how is it that one goes about analyzing
the running time of an algorithm as function such asT (n) above, and (2) how does one arrive at a
simple asymptotic expression for that running time.

A Harder Example: Let’s consider another example. Again, we will ignore stuff that takes constant time
(expressed as “. . . ” in thecode below).

A Not-So-Simple Example:

for i = 1 to n { // assume that n is input size
...
for j = 1 to 2*i {

...
k = j;
while (k >= 0) {

...
k = k - 1;

}
}

}

How do we analyze the running time of an algorithm that has many complex nested loops? The
answer is that we write out the loops as summations, and then try to solve the summations. LetI(),
M(), T () be the running times for (one full execution of) the inner loop, middle loop, and the entire
program. To convert the loops into summations, we work from the inside-out. Let’s consider one pass
through the innermost loop. The number of passes through the loop depends onj. It is executed for
k = j, j−1, j−2, . . . , 0, and the time spent inside the loop is a constant, so the total time is justj +1.
We could attempt to arrive at this more formally by expressing this as a summation:

I(j) =
j∑

k=0

1 = j + 1

Why the “1”? Because the stuff inside this loop takes constant time to execute. Why did we count
up from 0 toj (and not down as the loop does?) The reason is that the mathematical notation for
summations always goes from low index to high, and since addition is commutative it does not matter
in which order we do the addition.

Now let us consider one pass through the middle loop. It’s running time is determined byi. Using
the summation we derived above for the innermost loop, and the fact that this loop is executed forj
running from 1 to2i, it follows that the execution time is

M(i) =
2i∑

j=1

I(j) =
2i∑

j=1

(j + 1).

Last time we gave the formula for the arithmetic series:

n∑
i=1

i =
n(n + 1)

2
.

8



Lecture Notes CMSC 251

Our sum is not quite of the right form, but we can split it into two sums:

M(i) =
2i∑

j=1

j +
2i∑

j=1

1.

The latter sum is clearly just2i. The former is an arithmetic series, and so we find can plug in2i for n,
andj for i in the formula above to yield the value:

M(i) =
2i(2i + 1)

2
+ 2i =

4i2 + 2i + 4i

2
= 2i2 + 3i.

Now, for the outermost sum and the running time of the entire algorithm we have

T (n) =
n∑

i=1

(2i2 + 3i).

Splitting this up (by the linearity of addition) we have

T (n) = 2
n∑

i=1

i2 + 3
n∑

i=1

i.

The latter sum is another arithmetic series, which we can solve by the formula above asn(n + 1)/2.
The former summation

∑n
i=1 i2 is not one that we have seen before. Later, we’ll show the following.

Quadratic Series: Forn ≥ 0.

n∑
i=1

i2 = 1 + 4 + 9 + · · ·+ n2 =
2n3 + 3n2 + n

6
.

Assuming this fact for now, we conclude that the total running time is:

T (n) = 2
2n3 + 3n2 + n

6
+ 3

n(n + 1)
2

,

which after some algebraic manipulations gives

T (n) =
4n3 + 15n2 + 11n

6
.

As before, we ignore all but the fastest growing term4n3/6, and ignore constant factors, so the total
running time isΘ(n3).

Solving Summations: In the example above, we saw an unfamiliar summation,
∑n

i=1 i2, which we claimed
could be solved in closed form as:

n∑
i=1

i2 =
2n3 + 3n2 + n

6
.

Solving a summation inclosed-formmeans that you can write an exact formula for the summation
without any embedded summations or asymptotic terms. In general, when you are presented with an
unfamiliar summation, how do you approach solving it, or if not solving it in closed form, at least
getting an asymptotic approximation. Here are a few ideas.

9



Lecture Notes CMSC 251

Use crude bounds:One of the simples approaches, that usually works for arriving at asymptotic
bounds is to replace every term in the summation with a simple upper bound. For example,
in
∑n

i=1 i2 we could replace every term of the summation by the largest term. This would give

n∑
i=1

i2 ≤
n∑

i=1

n2 = n3.

Notice that this is asymptotically equal to the formula, since both areΘ(n3).
This technique works pretty well with relatively slow growing functions (e.g., anything growing
more slowly than than a polynomial, that is,ic for some constantc). It does not give good bounds
with faster growing functions, such as an exponential function like2i.

Approximate using integrals: Integration and summation are closely related. (Integration is in some
sense a continuous form of summation.) Here is a handy formula. Letf(x) be anymonotonically
increasing function(the function increases asx increases).∫ n

0

f(x)dx ≤
n∑

i=1

f(i) ≤
∫ n+1

1

f(x)dx.

210 3 ... n

f(x)f(2)

x
210 3 ... n n+1

f(2)

x

f(x)

Figure 2: Approximating sums by integrals.

Most running times are increasing functions of input size, so this formula is useful in analyzing
algorithm running times.
Using this formula, we can approximate the above quadratic sum. In this case,f(x) = x2.

n∑
i=1

i2 ≤
∫ n+1

1

x2dx =
x3

3

∣∣∣∣
n+1

x=1

=
(n + 1)3

3
− 1

3
=

n3 + 3n2 + 3n

3
.

Note that the constant factor on the leading term ofn3/3 is equal to the exact formula.
You might say, why is it easier to work with integrals than summations? The main reason is
that most people have more experience in calculus than in discrete math, and there are many
mathematics handbooks with lots of solved integrals.

Use constructive induction: This is a fairly good method to apply whenever you can guess the general
form of the summation, but perhaps you are not sure of the various constant factors. In this case,
the integration formula suggests a solution of the form:

n∑
i=1

i2 = an3 + bn2 + cn + d,

but we do not know whata, b, c, andd are. However, we believe that they are constants (i.e., they
are independent ofn).

10



Lecture Notes CMSC 251

Let’s try to prove this formula by induction onn, and as the proof proceeds, we should gather
information about what the values ofa, b, c, andd are.
Since this is the first induction proof we have done, let us recall how induction works. Basically
induction proofs are just the mathematical equivalents of loops in programming. Letn be the
integer variable on which we are performing the induction. The theorem or formula to be proved,
called theinduction hypothesisis a function ofn, denoteIH(n). There is some smallest value
n0 for whichIH(n0) is suppose to hold. We proveIH(n0), and then we work up to successively
larger value ofn, each time we may make use of the induction hypothesis, as long as we apply it
to strictly smaller values ofn.

Prove IH(n0);
for n = n0+1 to infinity do

Prove IH(n), assuming that IH(n’) holds for all n’ < n;

This is sometimes calledstrong induction, because we assume that the hypothesis holds for all
n′ < n. Usually we only need to assume the induction hypothesis for the next smaller value ofn,
namelyn− 1.

Basis Case:(n = 0) Recall that an empty summation is equal to the additive identity, 0. In this
case we want to prove that0 = a · 03 + b · 02 + c · 0 + d. For this to be true, we must have
d = 0.

Induction Step: Let us assume thatn > 0, and that the formula holds for all valuesn′ < n, and
from this we will show that the formula holds for the valuen itself.
The structure of proving summations by induction is almost always the same. First, write the
summation fori running up ton, then strip off the last term, apply the induction hypothesis
on the summation running up ton− 1, and then combine everything algebraically. Here we
go.

n∑
i=1

i2 =

(
n−1∑
i=1

i2

)
+ n2

= a(n− 1)3 + b(n− 1)2 + c(n− 1) + d + n2

= (an3 − 3an2 + 3an− a) + (bn2 − 2bn + b) + (cn− c) + d + n2

= an3 + (−3a + b + 1)n2 + (3a− 2b + c)n + (−a + b− c + d).

To complete the proof, we want this is equal toan3 + bn2 + cn+d. Since this should be true
for all n, this means that each power ofn must match identically. This gives us the following
constraints

a = a, b = −3a + b + 1, c = 3a− 2b + c, d = −a + b− c + d.

We already know thatd = 0 from the basis case. From the second constraint above we can
cancelb from both sides, implying thata = 1/3. Combining this with the third constraint
we haveb = 1/2. Finally from the last constraint we havec = −a + b = 1/6.
This gives the final formula

n∑
i=1

i2 =
n3

3
+

n2

2
+

n

6
=

2n3 + 3n2 + n

6
.

As desired, all of the valuesa throughd are constants, independent ofn. If we had chosen
the wrong general form, then either we would find that some of these “constants” depended
onn, or we might get a set of constraints that could not be satisfied.
Notice that constructive induction gave us the exact formula for the summation. The only
tricky part is that we had to “guess” the general structure of the solution.

11



Lecture Notes CMSC 251

In summary, there is no one way to solve a summation. However, there are many tricks that can be
applied to either find asymptotic approximations or to get the exact solution. The ultimate goal is to
come up with a close-form solution. This is not always easy or even possible, but for our purposes
asymptotic bounds will usually be good enough.

Lecture 4: 2-d Maxima Revisited and Asymptotics

(Thursday, Feb 5, 1998)
Read: Chapts. 2 and 3 in CLR.

2-dimensional Maxima Revisited: Recall the max-dominance problem from the previous lectures. A point
p is said todominated bypoint q if p.x ≤ q.x and p.y ≤ q.y. Given a set ofn points, P =
{p1, p2, . . . , pn} in 2-space a point is said to bemaximal if it is not dominated by any other point
in P . The problem is to output all the maximal points ofP .

So far we have introduced a simple brute-force algorithm that ran inΘ(n2) time, which operated by
comparing all pairs of points. The question we consider today is whether there is an approach that is
significantly better?

The problem with the brute-force algorithm is that uses no intelligence in pruning out decisions. For
example, once we know that a pointpi is dominated by another pointpj , then we we do not need to use
pi for eliminating other points. Any point thatpi dominates will also be dominated bypj . (This follows
from the fact that the domination relation istransitive, which can easily be verified.) This observation
by itself, does not lead to a significantly faster algorithm though. For example, if all the points are
maximal, which can certainly happen, then this optimization saves us nothing.

Plane-sweep Algorithm: The question is whether we can make an significant improvement in the running
time? Here is an idea for how we might do it. We will sweep a vertical line across the plane from left
to right. As we sweep this line, we will build a structure holding the maximal points lying to the left of
the sweep line. When the sweep line reaches the rightmost point ofP , then we will have constructed
the complete set of maxima. This approach of solving geometric problems by sweeping a line across
the plane is calledplane sweep.

Although we would like to think of this as a continuous process, we need some way to perform the
plane sweep in discrete steps. To do this, we will begin by sorting the points in increasing order of
theirx-coordinates. For simplicity, let us assume that no two points have the samey-coordinate. (This
limiting assumption is actually easy to overcome, but it is good to work with the simpler version, and
save the messy details for the actual implementation.) Then we will advance the sweep-line from point
to point inn discrete steps. As we encounter each new point, we will update the current list of maximal
points.

First off, how do we sort the points? We will leave this problem for later in the semester. But the
bottom line is that there exist any number of good sorting algorithms whose running time to sortn
values isΘ(n log n). We will just assume that they exist for now.

So the only remaining problem is, how do we store the existing maximal points, and how do we update
them when a new point is processed? We claim that as each new point is added, it must be maximal for
the current set. (Why? Beacuse itsx-coordinate is larger than all thex-coordinates of all the existing
points, and so it cannot be dominated by any of the existing points.) However, this new point may
dominate some of the existing maximal points, and so we may need to delete them from the list of
maxima. (Notice that once a point is deleted as being nonmaximal, it will never need to be added back
again.) Consider the figure below.

Let pi denote the current point being considered. Notice that since thepi has greaterx-coordinate
than all the existing points, it dominates an existing point if and only if itsy-coordinate is also larger

12


