
Programming Project: Basic Pipelining
CMSC411 Summer 2011

Due: 11:59:59 PM Friday, October 28, 2011 (plus 48 hour grace
period)

In this assignment, you will become familiar with how a basic 5-stage pipeline works. You will be given
a simulator that models an unpipelined processor that implements a small MIPS-like instruction set. Your
assignment is to create a cycle-accurate simulator of a pipelined version of this processor. Your simulator
will perform data forwarding, a simple branch prediction scheme, and the pipeline interlocks to stall the
pipeline when necessary. You will be using accounts on the grace cluster. If you don’t have one, go to
the course webpage and click on the link to get one. Project questions will be answered on the cs forum
(http://forum.cs.umd.edu).

1 Files

All the files you need, plus some extra data files can be found in the directory mips-pipe on my course
pages. This archive contains the starter files for this project. asm.c is an assembler for the reduced MIPS ISA
which your simulator will implement (more about the assembler and the ISA later). mips-small.c is the C
source file for a fully functional unpipelined simulator. mips-small-pipe.c is a C source code template that
has some data structures and routines you will need for your pipelined simulator. You can use this template
to get started on the assignment. mips-small-pipe.h is a header file included by mips-small-pipe.c, and
Makefile is a unix make file which will produce the binaries asm, sim, and sim-pipe from the source files,
asm.c, mips-small.c, and mips-small-pipe.c, respectively.

In the remaining files, we have provided two example assembly programs. simple.s performs an arithmetic
operation and mult.s multiplies two numbers. simple.output is the result of running simple.s through
our pipelined simulator, and can be used to verify your simulator’s output.

2 A Scaled-Down MIPS ISA

You will be simulating the MIPS ISA from Hennessy & Patterson, with some key differences. First,
instead of a 64-bit architecture, you will implement a 32-bit architecture. In other words, all registers and
data paths are 32 bits wide, and all instructions will operate on 32-bit operands. Second, to keep your
simulator simple, you will only be required to support a scaled-down version of the MIPS ISA consisting of
11 instructions. These instructions, along with their encoding, are given in Table 1. We will adhere to the
MIPS instruction formats presented in Figure B.27 of Hennessy & Patterson, with the exception that there
is no “shamt” field in the R-type format, and instead the “func” field is 11-bits wide. Finally, although all
immediate values in branch and jump instructions are left-shifted by 2, your BEQZ instruction SHOULD

NOT perform the left shift.
Notice that all the instructions in Table 1 except for one exist in the normal MIPS ISA. These instructions

behave exactly as described in the text (except they are 32-bit versions rather than 64-bit versions). The
instruction we’ve added is “HALT.” As its name implies, when your simulator executes a HALT instruction,
it should terminate the simulation. For more information about MIPS, consult the MIPs Language Section
of appendix B of Hennessy & Patterson.

1



Name Format Type Opcode Func

LW I-type 0x23

SW I-type 0x2B

BEQZ I-type 0x4

ADDI I-type 0x8

ADD R-type 0x0 0x20

SUB R-type 0x0 0x22

SLL R-type 0x0 0x4

SRL R-type 0x0 0x6

AND R-type 0x0 0x24

OR R-type 0x0 0x25

HALT J-type 0x3F

Table 1. Instruction encodings for a reduced MIPS ISA.

3 asm: An Assembler for the Reduced MIPS ISA

We have provided an assembler, asm.c, so that you can assemble programs for your simulator. The asm.c
file is fully functional, and you will not need to make any modifications to this file. Simply use the Makefile
to make the binary asm from the asm.c source file.

The format for assembly programs is very simple. A valid assembly program is an ASCII file in which
each line of the file represents a single instruction, or a data constant. The format for a line of assembly
code is:

label<tab>instruction<tab>field0<tab>field1<tab>field2<tab>comments

The leftmost field on a line is the label field which indicates a symbolic address. Valid labels contain a
maximum of 6 characters and can consist of letters and numbers. The label is optional (the tab following the
label field is not). After the optional label is a tab. Then follows the instruction field, where the instruction
can be any of the assembly-language mnemonics listed in Table 1. After another tab comes a series of fields.
All fields are given as decimal numbers. The number of fields depends on the instruction. The following
describes the instructions and how they are specified in assembly code:

lw rd rs1 imm Reg[rd] <- Mem[Reg[rs1] + imm]

sw rd rs1 imm Reg[rd] -> Mem[Reg[rs1] + imm]

beqz rd rs1 imm if (Reg[rs1] == 0) PC <- PC+4+imm

addi rd rs1 imm Reg[rd] <- Reg[rs1] + imm

add rd rs1 rs2 Reg[rd] <- Reg[rs1] + Reg[rs2]

sub rd rs1 rs2 Reg[rd] <- Reg[rs1] - Reg[rs2]

sll rd rs1 rs2 Reg[rd] <- Reg[rs1] << Reg[rs2]

srl rd rs1 rs2 Reg[rd] <- Reg[rs1] >> Reg[rs2]

and rd rs1 rs2 Reg[rd] <- Reg[rs1] & Reg[rs2]

or rd rs1 rs2 Reg[rd] <- Reg[rs1] | Reg[rs2]

halt stop simulation

Note that in the case of the beqz instruction, PC-relative addressing is used (and again, your simulator
should not perform the left-shift when computing the PC-relative branch target). For the lw, sw, and beqz

instructions, the imm field can either be a decimal value, or a label can be used. In the case of a label, the
assembler performs a different action depending on whether the instruction is a lw / sw instruction, or a
beqz instruction. For lw and sw instructions, the assembler inserts the absolute address corresponding to
the label. For beqz instructions, the assembler computes a PC-relative offset with respect to the label.

After the last field is another tab, then any comments. The comments end at the end of the line.

In addition to instructions, lines of assembly code can also include directives for the assembler. The
only directive we will use is .fill. The .fill directive tells the assembler to put a number into the place
where the instruction would normally be stored. The .fill directive uses one field, which can be either

2



a numeric value or a symbolic address. For example, “.fill 32” puts the value 32 where the instruction
would normally be stored. In the following example, “.fill start” will store the value 8, because the label
“start” refers to address 8 (remember that the MIPS architecture uses byte addresses).

addi 1 0 5 load reg1 with 5

addi 2 0 -1 load reg2 with -1

start add 1 1 2 decrement reg1

lw 3 0 var1 loads reg3 with value stored in var1

addi 3 3 -1 decrement reg3

sw 3 0 var1 put reg3 back (thus var1 is decremented)

beqz 0 1 done goto done when reg1==0

beqz 0 0 start back to start

add 0 0 0

done halt

.fill start will contain start address (8)

var1 .fill 32 Declare a variable, initialized to 32

Try taking the above example and running the assembler on it. Enter the above assembly code into a
file called “ex.s”. Then type “asm ex.s ex.out”. The assembler will generate a file “ex.out” which should
contain:

(address 0x0): 20010005

(address 0x4): 2002ffff

(address 0x8): 00220820

(address 0xc): 8c03002c

(address 0x10): 2063ffff

(address 0x14): ac03002c

(address 0x18): 10200008

(address 0x1c): 1000ffe8

(address 0x20): 00000020

(address 0x24): fc000000

(address 0x28): 00000008

(address 0x2c): 00000020

The assembler assumes that all programs will be loaded into memory beginning at address 0x0.

4 Simulator without Pipelining

As described above, we have provided you with a simulator that simulates the same ISA, but which
is not cycle accurate because it does not account for pipelining. The source code for this simulator is in
mips-small.c. You can use this simulator to develop assembly language programs prior to getting the
pipelined simulator working.

If you haven’t done so already, build the unpipelined simulator by typing “make sim” in the directory
where you’ve copied the files we have provided. This will produce an executable sim which you can run. Try
running this simulator on the program we have provided, mult.s. This program multiplies two numbers,
specified in memory at the labels mcand and mplier, and stores the result at the label answer. Be sure to
assemble the program before running the simulator. The sequence of commands you should give are:

make sim

asm mult.s mult.out

sim mult.out

When you run the simulator, a ton of messages will spew onto your terminal. The simulator we have
provided dumps the state of the machine (including the contents of registers and memory) at every simulated
cycle. You can examine this output to see what the simulator is doing. To put these messages in a file so

3



that you can actually read them, redirect the output of the simulator to a file by saying “sim mult.out >

sim.output”. Your pipelined simulator will spew similar messages, except it will also include the state of
pipeline registers. The output of your pipelined simulator will be compared to the correct output to grade
your project.

In addition to using the unpipelined simulator to develop assembly programs, you should also look at the
code in mips-small.c. The code is very simple, but you should make sure you understand it before moving
on to building the pipelined simulator.

5 Assignment

Your assignment is to build a cycle-accurate simulator that accounts for pipelining. We have provided some
code to get you started in mips-small-pipe.c and mips-small-pipe.h. This code serves two purposes:
it will make your life a bit easier since you won’t have to write the whole simulator from scratch, and it
is meant to enforce some coding disciplines that ensure you actually simulate the details of the processor
pipeline in a manner that we can grade.

The following sections describe the assignment in greater detail.

5.1 Simulate Pipelining

You will be simulating the basic MIPS pipeline depicted in Figure A.18 of Hennessy & Patterson. We
have provided pipeline register data structures specified in the file, mips-small-pipe.h. To enforce an
implementation of your simulator that simulates pipelining, you are required to use these structures in their
unmodified form. In other words, each cycle simulated by your simulator must produce the correct values
for all the fields in the pipeline register data structures.

typedef struct IFIDStruct {

int instr;

int pcPlus1;

} IFID_t;

typedef struct IDEXStruct {

int instr;

int pcPlus1;

int readRegA;

int readRegB;

int offset;

} IDEX_t;

typedef struct EXMEMStruct {

int instr;

int aluResult;

int readRegB;

} EXMEM_t;

typedef struct MEMWBStruct {

int instr;

int writeData;

} MEMWB_t;

typedef struct WBENDStruct {

int instr;

int writeData;

} WBEND_t;

4



typedef struct stateStruct {

int pc;

int instrMem[MAXMEMORY];

int dataMem[MAXMEMORY];

int reg[NUMREGS];

int numMemory;

IFID_t IFID;

IDEX_t IDEX;

EXMEM_t EXMEM;

MEMWB_t MEMWB;

WBEND_t WBEND;

int cycles; /* number of cycles run so far */

} state_t, *Pstate;

There are three small modifications in the above pipeline register data structures as compared with Figure
A.18 in Hennessy & Patterson. First, we don’t latch the “branch taken” signal in the EXMEM register.
Instead, when your simulator computes the direction of the branch in the execute stage, you can directly
modify the PC register from the execute stage. Second, the MUX in the WB stage has been moved to the
MEM stage. Therefore, the MEMWB pipeline registers only latch two values, instr and writeData, instead
of three values as indicated by Figure A.18 in the text. Finally, we have added an extra pipeline register
after the WB stage. Instead of communicating internally through the register file, your simulator will always
forward from the pipeline registers. For instance, in Figure A.7 of the text, there is a communication path
from the DADD instruction to the OR instruction internally through the register file (this is achieved by
writing the register file on the first half of the clock cycle, and reading the register file on the second half of
the clock cycle). In your simulator, this register communication will be replaced by forwarding between the
WBEND pipeline registers to the execute stage of the OR instruction in cycle CC6.

As mentioned above, your simulator must produce all the values for the pipeline register data structures
on a cycle-by-cycle basis. In addition, your simulator must also use the following simulator loop code (which
we have provided):

while (1) {

printState(state);

/* copy everything so all we have to do is make changes.

(this is primarily for the memory and reg arrays) */

memcpy(&new, state, sizeof(state_t));

new.cycles++;

/* --------------------- IF stage --------------------- */

/* --------------------- ID stage --------------------- */

/* --------------------- EX stage --------------------- */

/* --------------------- MEM stage --------------------- */

/* --------------------- WB stage --------------------- */

/* transfer new state into current state */

memcpy(state, &new, sizeof(state_t));

}

5



You will insert the necessary code between the comments that perform the functions at each pipeline
stage, but do NOT need to change any other part of this loop. Especially, be careful not to change the

output format of printState. Within each pipeline stage, the code will compute the new values of the
pipeline register data structures (stored in the “new” structure) as a function of the old values (stored in the
“state” structure). In other words, new should appear on the left-hand-side of your equations, and state

should appear on the right-hand-side. Then, after the code in all the stages have computed their values, the
“memcpy” at the end of the simulator loop copies the values from the new structure into the state structure.
This corresponds to the rising edge of the clock latching values into the pipeline registers for the next clock
cycle.

5.2 Dealing with Data Hazards

Your simulator should deal with data hazards by bypassing values from the pipeline register data struc-
tures. You can implement such data forwarding by checking for data dependences in the execute stage. For
every instruction that enters the execute stage, you will have to check against the results produced by the
previous 3 instructions (whose results can be found in the EXMEM, MEMWB, and WBEND pipeline regis-
ters). If there are no data dependences, then the execute stage should take its operands from the readRegA

and readRegB IDEX pipeline registers. If there are data dependences, then the execute stage should instead
copy the results from the pipeline register of the dependent instruction.

Most data hazards can be resolved using bypassing. However, there is one case that requires stalling the
pipeline. If an instruction uses a source register that is the destination register of an immediately preceeding
load instruction, then the pipeline must be stalled for a single cycle. This can be implemented by checking for
such a dependence in the decode stage and inserting a bubble (NOP instruction - see Section 5.4.2) instead of
allowing the instruction to proceed. One special case is when a load from a location is immediately followed
by a store. The depending store can be bypassed by forwarding from the MEM/WB latch (loaded value)
to the data memory write port of the memory stage (store instruction). However, for your implementation,
you will not need to implement this; simply stall the pipeline one clock cycle for ALL load instructions that
are followed by a depending instruction, even if the depending instruction is a store.

5.3 Dealing with Control Hazards

The pipeline you will be simulating will have a branch delay of 2 cycles since the branch direction is not
resolved until the end of the execute stage. Instead of stalling the pipeline for 2 cycles after every fetched
branch, your simulator should implement a “hybrid” static branch prediction scheme. In this scheme, you
should predict taken for backward branches, and predict not-taken for forward branches. To implement
this hybrid scheme, test the immediate value in the fetch stage on every fetched branch instruction. If
the immediate value is positive, then fetch the next consecutive instruction on the following cycle. If the
immediate value is negative, then fetch the branch target (computed as a PC-relative address using the
offset) on the following cycle.

Make sure that your simulator validates the branch direction computed in the execute stage against the
predicted direction. If the prediction was correct, no action should be taken. If the prediction was incorrect,
then the simulator must squash the two instructions in the branch delay, which at this point will be in the
IFID and IDEX pipeline registers. This squashing can be accomplished by replacing the incorrectly fetched
instructions with NOP instructions and clearing all the other state in the IFID and IDEX pipeline registers.

5.4 Miscellaneous

5.4.1 Memory

As indicated by the state t structure described in Section 5.1, there are two arrays that implement memory,
an instruction memory array instrMem and a data memory array dataMem. This simulates the separate
instruction and memory structures in the pipeline in Figure A.18 of the text. The code we have provided
initializes both of these arrays to the same values read in from the assembly code file. In your simulator,

6



you should read instructions from the instrMem array in the fetch stage, and write (read) values to (from)
the dataMem array in the memory stage.

In the simulator code we have provided for you, the amount of memory simulated is determined by the size
of the assembly program file that you read into the simulator. The numMemory field of the state t structure
is set to this size during initialization and is fixed for the duration of the simulation. This means that you
must allocate all the memory your program will need statically in the assembly code file. The maximum size
of the assembly program allowed is set by the MAXMEMORY constant declared in mips-small-pipe.h and is
currently 16K words (64K bytes).

5.4.2 NOP Instruction

The MIPS ISA does not include an explicit NOP (null operation) instruction, so neither does our reduced
MIPS ISA. However, the NOP instruction is needed to initialize all the instruction fields of the pipeline
register data structures, and to replace or “squash” those instructions in the pipeline following a branch
misprediction. In your simulator, you will use the “add 0 0 0” instruction as a NOP instruction (since this
instruction does not effect any state). We have already declared this as NOPINSTRUCTION and used it in the
initialization code.

5.4.3 Halting

When your simulator encounters the “HALT” instruction, it should end the simulation. Notice, however,
that it is incorrect to halt as soon as the HALT instruction is fetched since this code may be speculative
(dependent on a yet to be verified branch). If the branch was mispredicted, then you definitely do not want
to halt. Another issue is that any ’sw’ instructions which are farther along the pipeline than the halt must
be allowed to complete before the machine is stopped. To solve these problems, halt the machine when
the HALT instruction reaches the MEMWB pipeline register. This ensures that all previously executed
instructions have completed.

5.4.4 Implementation Dependencies

There are a few implementation dependencies you will need to be aware of to match the reference out-
put. First, if any instruction tries to write R0, instead of just ignoring the write, force the written value
(EXMEM.aluResult or MEMWB.writeData) to 0 and send it through the pipeline like any other instruc-
tion. Second, propagate the value of readRegB from IDEX to EXMEM, even if it is not needed. Do not
perform forwarding unless an instruction actually needs it. In other words, EXMEM.readRegB should be
set to IDEX.readRegB unless the EXecuting instruction needs forwarding. For branches, set aluResult to
the taken branch address whether or not the branch is actually taken. Lastly, for a HALT instruction, set
aluResult to 0.

5.5 Grading

We will grade your programming assignment based on correct functionality. In other words, for any
valid reduced MIPS ISA program, your simulator should accurately simulate the pipeline and produce the
correct values for all the pipeline registers at each cycle. We will be using the submit server to validate
your simulator, so make sure you test your simulator on several test cases (in other words, you should
write several assembly programs to test your simulator). You must use the simulator loop template and the
printState routine that we have given you in their unmodified form. Each time you call printState, it
should print in the format that we have provided, and you should only call printState once every iteration
of the simulator loop (you are free to use printState as much as you want when debugging, but take all the
extra printState calls out of your code before handing in your assignment). Finally, compare the output of
your simulator on the simple.s program to output given in simple.output. There should be no differences
(i.e., running diff simple.output <your output file> should yield no differences).

7



5.6 Academic Honesty

You may work in pairs on this assignment if you choose; both partners must submit the same code under
their own username. Pairs need to be registered with Darth Hugue, in email to darth.hugue@gmail.com

with “cmsc411 project partners” in the subject. Do not allow any student other than your partner to see
any of your code. You may however discuss the assignment in general terms with other students. If copying
or excessive collaboration is detected in your submissions, the matter will be referred to the Student Honor
Counsel.

6 Runtime Environment

You are free to code anywhere you like; Grace accounts have been provided for your convenience. We will
run and grade your code on the submit server (http://submit.cs.umd.edu/summer2011). It must work
correctly there to receive credit.

7 Submission

You will submit your mips-small-pipe.c and mips-small-pipe.h using the submit server. You may ei-
ther put these files in a zip or tar archive and upload it via the submit server’s web interface (http://submit.cs.umd.edu/).
Or, you can use new submit server feature to upload both of those files without archiving them. A .submit

file is included in the mips-pipe directory in case you are using Eclipse.
If you choose to work in pairs, and register your pair with Darth Hugue as described above, each partner

must submit an identical copy of the source to the submit server under their own username. In other words,
if you work with a partner, you are responsible for submitting the code for yourself. If you do not have a
submission on the submit server, you will get zero points for this project. Put the names and directory IDs
of both partners in a comment at the top of your mips-small-pipe.c. Failure to declare your partner may
result in your being flagged for academic dishonesty.

8


