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Questions from last time

• HW1? 
• Midterm? Tentative plan is Oct 31. Will be 

finalized next week 
• Sometimes you’re writing stuff that’s off the 

camera… tell me when this happens!
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why do neural networks work better?

• multiple layer and nonlinearities allow feature 
combinations that a linear model can’t get 

• e.g., XOR function 

• the learned representations of words and 
contexts are tuned to the prediction problem 

• unlike one-hot vectors
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are blue and red points linearly separable?
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after transforming with tanh(Wx+b)…



this class: focus on the input layer of neural 
language models:  
word embeddings
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• we’ll talk about what properties a good word 
representation should encode 

• and we’ll discuss some algorithms for 
learning good word representations 

• next class: we’ll plug this concept of 
representing vectors with words into our 
language modeling framework
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What do words mean?

First thought: look in a dictionary

http://www.oed.com/
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Words, Lemmas, Senses, Definitions

Pronunciation:

 

 

 

 

pepper, n.
  Brit.  /ˈpɛpə/ , U.S.  /ˈpɛpər/

Forms:  OE peopor (rare), OE pipcer (transmission error), OE pipor, OE pipur (rare ...

Frequency (in current use):  
Etymology:  A borrowing from Latin. Etymon: Latin piper.
< classical Latin piper, a loanword < Indo-Aryan (as is ancient Greek πέπερι ); compare Sanskrit ...

 I. The spice or the plant.
 1.
 a. A hot pungent spice derived from the prepared fruits (peppercorns) of
the pepper plant, Piper nigrum (see sense 2a), used from early times to
season food, either whole or ground to powder (often in association with
salt). Also (locally, chiefly with distinguishing word): a similar spice
derived from the fruits of certain other species of the genus Piper; the
fruits themselves.

The ground spice from Piper nigrum comes in two forms, the more pungent black pepper, produced
from black peppercorns, and the milder white pepper, produced from white peppercorns: see BLACK

adj. and n. Special uses 5a, PEPPERCORN n. 1a, and WHITE adj. and n.  Special uses 7b(a).
 
cubeb, mignonette pepper, etc.: see the first element.

 b. With distinguishing word: any of certain other pungent spices derived
from plants of other families, esp. ones used as seasonings.

Cayenne, Jamaica pepper, etc.: see the first element.

 2.
 a. The plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to South Asia and also cultivated elsewhere in the tropics,
which has alternate stalked entire leaves, with pendulous spikes of small
green flowers opposite the leaves, succeeded by small berries turning red
when ripe. Also more widely: any plant of the genus Piper or the family
Piperaceae.

 b. Usu. with distinguishing word: any of numerous plants of other
families having hot pungent fruits or leaves which resemble pepper ( 1a)
in taste and in some cases are used as a substitute for it.

1
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betel-, malagueta, wall pepper, etc.: see the first element. See also WATER PEPPER n. 1.

 c. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

 3. Any of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguishing word): any variety of the
C. annuum Longum group, with elongated fruits having a hot, pungent
taste, the source of cayenne, chilli powder, paprika, etc., or of the
perennial C. frutescens, the source of Tabasco sauce. Now frequently
(more fully sweet pepper): any variety of the C. annuum Grossum
group, with large, bell-shaped or apple-shaped, mild-flavoured fruits,
usually ripening to red, orange, or yellow and eaten raw in salads or
cooked as a vegetable. Also: the fruit of any of these capsicums.

Sweet peppers are often used in their green immature state (more fully green pepper), but some
new varieties remain green when ripe.
 
bell-, bird-, cherry-, pod-, red pepper, etc.: see the first element. See also CHILLI n. 1, PIMENTO n. 2, etc.

 II. Extended uses.
 4.
 a. Phrases. to have pepper in the nose: to behave superciliously or
contemptuously. to take pepper in the nose, to snuff pepper: to
take offence, become angry. Now arch.

 b. In other allusive and proverbial contexts, chiefly with reference to the
biting, pungent, inflaming, or stimulating qualities of pepper.

†c. slang. Rough treatment; a severe beating, esp. one inflicted during a
boxing match. Cf. Pepper Alley n. at Compounds 2, PEPPER v. 3. Obs.

 5. Short for PEPPERPOT n. 1a.

 6. colloq. A rapid rate of turning the rope in a game of skipping. Also:
skipping at such a rate.
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senselemma definition



 Relation: Synonymity

 Synonyms have the same meaning in some
 or all contexts.
 ◦ couch / sofa
 ◦ big / large
 ◦ automobile / car
 ◦ vomit / throw up
 ◦ Water / H20



  Relation: Antonymy

 Senses that are opposites with respect to one feature of
 meaning
 Otherwise, they are very similar!

 dark/light short/long fast/slow  rise/fall
 hot/cold up/down in/out



 Relation: Similarity
 Words with similar meanings. Not
 synonyms, but sharing some element of
 meaning

 car,  bicycle

 cow,  horse



 Ask humans how similar two
 words are on scale of 1-10

 word1 word2 similarity

 vanish disappear 
 behave obey 
 belief impression 
 muscle bone 
 modest flexible 
 hole agreement 

 SimLex- 999 dataset (Hill et al., 2015)

• 9.8 
• 7.3 
• 5.95 
• 3.65 
• 0.98 
• 0.3



in NLP, we commonly 
represent word types 

with vectors!
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why use vectors to encode meaning?

• computing the similarity between two words 
(or phrases, or documents) is extremely 
useful for many NLP tasks 

• Q: how tall is Mount Everest? 
A: The official height of Mount Everest is 
29029 ft
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Word	similarity	for	plagiarism	detec7on
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Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data

visualizing semantic word change over time 
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Distribu7onal	models	of	meaning
=	vector-space	models	of	meaning	
=	vector	seman7cs

Intui0ons:		Zellig	Harris	(1954):
• “oculist	and	eye-doctor	…	occur	in	almost	the	same	
environments”

• “If	A	and	B	have	almost	iden7cal	environments	we	say	that	
they	are	synonyms.”

5

Firth	(1957):	
• “You	shall	know	a	word	by	the	company	it	keeps!”
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Intui7on	of	distribu7onal	word	similarity

• Nida	example:
A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

• From context words humans can guess tesgüino means...

• an	alcoholic	beverage	like	beer
• Intui7on	for	algorithm:	

• Two	words	are	similar	if	they	have	similar	word	contexts.
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one-hot vectors
• we’ve already seen these before in bag-of-

words models (e.g., naive Bayes)! 
• represent each word as a vector of zeros with 

a single 1 identifying the index of the word
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues 
of representing a 
word this way?



all words are equally (dis)similar!
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

how can we compute a vector representation such 
that the dot product correlates with word similarity?

dot product is zero! 
these vectors are orthogonal



 We'll introduce 2 kinds of
 embeddings
 Tf- idf
 ◦ A common baseline model
 ◦ Sparse vectors
 ◦ Words are represented by a simple function of the counts
  of nearby words

 Word2vec
 ◦ Dense vectors
 ◦ Representation is created by training a classifier to
  distinguish nearby and far-away words
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More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors 
are similar

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

10 CHAPTER 6 • VECTOR SEMANTICS

tle, [1,1,8,15]; and soldier [2,2,12,36]. Each entry in the vector thus represents the
counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-term-term

matrix
word-word

matrix context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 6.5 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 6.5 Co-occurrence vectors for four words, computed from the Brown corpus, show-
ing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the
word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Note in Fig. 6.5 that the two words apricot and pineapple are more similar to
each other (both pinch and sugar tend to occur in their window) than they are to
other words like digital; conversely, digital and information are more similar to each
other than, say, to apricot. Fig. 6.6 shows a spatial visualization.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

Word-word co-occurence matrix
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1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4
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Cosine for computing similarity

vi is the count for word v in context i
wi is the count for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

cosine similarity of two vectors
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Cosine as a similarity metric

-1: vectors point in opposite directions 

+1:  vectors point in same directions

0: vectors are orthogonal

Frequency is non-negative, so  cosine range 0-1

51
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large data computer
apricot 1 0 0
digital 0 1 2
information 1 6 1

52

Which pair of words is more similar?
cosine(apricot,information) = 

cosine(digital,information) =

cosine(apricot,digital) =

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4

     1+ 0+ 0    

     0+ 6+ 2    

     0+ 0+ 0    

=
1
38

= .16

=
8
38 5

= .58

= 0
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But raw frequency is a bad 
representation
Frequency is clearly useful; if sugar appears a lot 
near apricot, that's useful information.

But overly frequent words like the, it, or they are 
not very informative about the context
Need a function that resolves this frequency 
paradox!
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tf-idf: combine two factors
tf: term frequency. frequency count (usually log-transformed):

Idf: inverse document frequency: tf-

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of the cosine measure of similarity, showing vectors
for three words (apricot, digital, and information) in the two dimensional space defined by
counts of the words data and large in the neighborhood. Note that the angle between digital
and information is smaller than the angle between apricot and information. When two vectors
are more similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1)
when the angle between two vectors is smallest (0�); the cosine of all other angles is less than
1.

once or twice. Yet words that are too frequent—ubiquitous, like the— are unimpor-
tant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): simply the frequency of theterm frequency

word in the document, although we may also use functions of this frequency
like the log frequency.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The inverse
document frequency or IDF term weight (Sparck Jones, 1972) is one way of

inverse
document
frequency

IDF assigning higher weights to these more discriminative words. IDF is defined
using the fraction N/dfi, where N is the total number of documents in the
collection, and dfi is the number of documents in which term i occurs. The
fewer documents in which a term occurs, the higher this weight. The lowest
weight of 1 is assigned to terms that occur in all the documents. Because of
the large number of documents in many collections, this measure is usually
squashed with a log function.

It’s usually clear what counts as a document: when processing a collection
of encyclopedia articles like Wikipedia, the document is a Wikipedia page; in
processing newspaper articles, the document is a single article. Occasionally
your corpus might not have appropriate document divisions and you might
need to break up the corpus into documents yourself.

The resulting definition for inverse document frequency (IDF) is thus

idfi = log
✓

N
dfi

◆
(6.12)

The tf-idf weighting of the value for word i in document j, wi j thus combinestf-idf

Total # of  docs in collection

# of  docs that have word i

14 CHAPTER 6 • VECTOR SEMANTICS

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

tf-idf value for word t in document d:

Words like "the" or "good" have very low idf
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Figure 6.7 A graphical demonstration of cosine similarity, showing vectors for three words
(apricot, digital, and information) in the two dimensional space defined by counts of the
words data and large in the neighborhood. Note that the angle between digital and informa-
tion is smaller than the angle between apricot and information. When two vectors are more
similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the
angle between two vectors is smallest (0�); the cosine of all other angles is less than 1.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
once or twice. Yet words that are too frequent—ubiquitous, like the or good— are
unimportant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): the frequency of the word in theterm frequency

document. Normally we want to downweight the raw frequency a bit, since
a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. So we generally
use the log10 of the frequency, resulting in the following definition for the term
frequency weight:

tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Thus terms which occur 10 times in a document would have a tf=2, 100 times
in a document tf=3, 1000 times tf=4, and so on.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The document
frequency dft of a term t is simply the number of documents it occurs in. Bydocument

frequency
contrast, the collection frequency of a term is the total number of times the
word appears in the whole collection in any document. Consider in the col-
lection Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies of 113 (they both occur 113 times in all
the plays) but very different document frequencies, since Romeo only occurs
in a single play. If our goal is find documents about the romantic tribulations
of Romeo, the word Romeo should be highly weighted:

count(t, d) =  
# of occurrences 
of word t in doc d

dfi =  
# of documents 
containing word i



dense word vectors

• model the meaning of a word as an 
embedding in a vector space 

• this vector space is commonly low dimensional 
(e.g., 100-500d).  

• what is the dimensionality of a one-hot word 
representation? 

• embeddings are real-valued vectors (not 
binary or counts)

 31



how can we learn embeddings?

 32

Four	kinds	of	vector	models

Sparse	vector	representa7ons
1. Mutual-informa7on	weighted	word	co-occurrence	matrices

Dense	vector	representa7ons:
2. Singular	value	decomposi7on	(and	Latent	Seman7c	Analysis)
3. Neural-network-inspired	models	(skip-grams,	CBOW)
4. Brown	clusters

9
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Word2vec

Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count 

(Mikolov et al., 2013)



 34

Word2vec

◦Instead of counting how often each 
word w occurs near "apricot"

◦Train a classifier on a binary 
prediction task:
◦ Is w likely to show up near "apricot"?

◦We don’t actually care about this task
◦But we'll take the learned classifier weights 
as the word embeddings
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Brilliant insight: Use running text as 
implicitly supervised training data!

• A word s near apricot 
• Acts as gold ‘correct answer’ to the 

question 
• “Is word w likely to show up near apricot?” 
• No need for hand-labeled supervision
• The idea comes from neural language 

modeling 
• Bengio et al. (2003)
• Collobert et al. (2011) 
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Setup
Let's represent words as vectors of some length (say 
300), randomly initialized. 
So we start with 300 * V random parameters
Over the entire training set, we’d like to adjust those 
word vectors such that we
◦ Maximize the similarity of the target word, context 

word pairs (t,c) drawn from the positive data
◦ Minimize the similarity of the (t,c) pairs drawn from 

the negative data. 

9/7/18

21
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word dim0 dim1 dim2 dim3

today 0.35 -1.3 2.2 0.003

cat -3.1 -1.7 1.1 -0.56

sleep 0.55 3.0 2.4 -1.2

watch -0.09 0.8 -1.8 2.9

bird 2.0 0.16 -1.9 2.3

…

…

dim300



Skip-gram with negative sampling (SGNS)

1. From a large source of text (e.g., Wikipedia), 
generate positive examples by pairing a target 
word with a word in its neighboring context 

2. Create negative examples for the context words 
by randomly sampling other words in the 
vocabulary 

3. Train a logistic regression model to identify 
whether a given pair of words is a positive or 
negative example 

4. Use the weights of this model as the embeddings

 38
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Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1            c2   target c3    c4

9/7/18

11

Asssume context words are those in +/- 2 
word window
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Skip-Gram Goal

Given a tuple (t,c)  = target, context
◦ (apricot, jam)
◦ (apricot, aardvark)

Return probability that c is a real context word:

P(+|t,c)
P(−|t,c) = 1−P(+|t,c)

9/7/18

12
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How to compute p(+|t,c)?
Intuition:
◦ Words are likely to appear near similar words
◦ Model similarity with dot-product!
◦ Similarity(t,c)  ∝ t · c

Problem:
◦Dot product is not a probability!

◦ (Neither is cosine)

t and c here are vectors for 
target and context!
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Turning dot product into a 
probability
The sigmoid lies between 0 and 1:

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)
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Turning dot product into a 
probability
The sigmoid lies between 0 and 1:

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)



 44

Turning dot product into a 
probability

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
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think back to last class… 
what are our features and 

weights here???

both target and context 
vectors are learned, so 

we have no explicit 
featurization!



 45

Learning the classifier
Iterative process.
We’ll start with 0 or random weights
Then adjust the word weights to
◦ make the positive pairs more likely 
◦ and the negative pairs less likely

over the entire training set:

guess what algorithm we’ll use to make this happen?



gradient descent!!!!!!!!

 46



 47

Objective Criteria
We want to maximize…

Maximize the + label for the pairs from the positive 
training data, and the – label for the pairs sample 
from the negative data.

9/7/18

23

X

(t,c)2+

logP (+|t, c) +
X

(t,c)2�

logP (�|t, c)
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Focusing on one target word t:

18 CHAPTER 6 • VECTOR SEMANTICS

the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w count(w)a (6.23)

Setting a = .75 gives better performance because it gives rare noise words
slightly higher probability: for rare words, Pa(w) > P(w). To visualize this intu-
ition, it might help to work out the probabilities for an example with two events,
P(a) = .99 and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.24)

Given the set of positive and negative training instances, and an initial set of
embeddings, the goal of the learning algorithm is to adjust those embeddings such
that we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.

We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.25)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.26)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix

is the vector for the 
negative sample

ni



 49

Summary: How to learn word2vec 
(skip-gram) embeddings
Start with V random 300-dimensional vectors as 
initial embeddings
Use logistic regression, the second most basic 
classifier used in machine learning after naïve 
bayes
◦ Take a corpus and take pairs of words that co-occur as 

positive examples
◦ Take pairs of words that don't co-occur as negative 

examples
◦ Train the classifier to distinguish these by slowly adjusting 

all the embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.
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Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:
• WordSim-353 (Finkelstein et al., 2002)
• SimLex-999 (Hill et al., 2015)
• Stanford Contextual Word Similarity (SCWS) dataset 

(Huang et al., 2012) 
• TOEFL dataset: Levied is closest in meaning to: imposed, 

believed, requested, correlated 
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Properties of embeddings

29

C = ±2 The nearest words to Hogwarts:
◦ Sunnydale
◦ Evernight

C = ±5 The nearest words to Hogwarts:
◦Dumbledore
◦Malfoy
◦ halfblood

Similarity depends on window size C
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Analogy: Embeddings capture 
relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

30



 53



 54



 55

Embeddings reflect cultural bias

Ask “Paris : France :: Tokyo : x” 
◦ x = Japan

Ask “father : doctor :: mother : x” 
◦ x = nurse

Ask “man : computer programmer :: woman : x” 
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and 
Adam T. Kalai. "Man is to computer programmer as woman is to 
homemaker? debiasing word embeddings." In Advances in Neural 
Information Processing Systems, pp. 4349-4357. 2016.

huge concern for NLP systems deployed in 
the real world that use embeddings!
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Changes in framing:
adjectives associated with Chinese

CO
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Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-
fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational
Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods
In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.
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Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 
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Directions
Debiasing algorithms for embeddings
◦ Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y., 

Saligrama, Venkatesh, and Kalai, Adam T. (2016). Man is 
to computer programmer as woman is to homemaker? 
debiasing word embeddings. In Advances in Neural Infor-
mation Processing Systems, pp. 4349–4357. 

Use embeddings as a historical tool to study bias



exercise!
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