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Sequence-to-sequence: the bottleneck problem
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Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A

4 \
source sentence. " don't END
. e poor don ave any money <END>
Information bottleneck! P v Y Y
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‘you can't cram the meaning
of a whole %&@#&ing
sentence Into a single

$*(&@ing vector!”

— Ray Mooney (NLP prof at UT Austin)



Encoder RNN

A

idea: what if we use multiple vectors?
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Instead of:

les pauvres sont déemunis =

Let’s try:
les pauvres sont demunis =

(all 4 hidden states!)




The solution: attention

* Attention mechanisms (Bahdanau et al.,
2015) allow the decoder to focus on a

particular part of the source sequence at
each time step

Conceptually similar to word alignments




How does it work"?

® |n general, we have a single query vector and
multiple key vectors. We want to score each
query-key pair

iIN machine translation, what are the queries and keys?



Attention

Encoder

Sequence-to-sequence with attention

scores
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Query 1:
decoder, first time step



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN
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On this decoder timestep, we’re

mostly focusing on the first
encoder hidden state (”/es”)

Take softmax to turn the scores

into a probability distribution
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Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.
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Concatenate attention output

y, <— with decoder hidden state, then

use to compute ¥y, as before
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Attention is great

e Attention significantly improves NMT performance

* |t’s very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem

* Provides shortcut to faraway states

0
* Attention provides some interpretability ) g g E
* By inspecting attention distribution, we can see 2 8833
what the decoder was focusing on > The
* We get alignment for freel poor |
don’ t

* This is cool because we never explicitly trained
an alignment system

have

* The network just learned alignment by itself any

money




Many variants of attention

e QOriginal formulation: a(q,k) = w, tanh(W;[q; k])

® Bilinear prOdUCt: a(q, k) — qTWk Luong et al., 2015

o DO't prOdUCt: Cl(q, k) — qu Luong et al., 2015
q'k

® SCa|ed dOt prOdUCt Cl(q, k) — Vaswani et al., 2017

Vv Ikl



Attention is not just for MT!
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Context Vector "beat"

TSR PREEE I
arde e o 2Lttt
. L . . e Tt el

uoINgusIq
Aiejngedop

—
o
o O
@ @D
{ P Pl P Pl | Pl > > }3 8
D a
o @
— =
n
Germany emerge victorious in 2-0 win  against Argentina on  Saturday ... <START> Germany
N J N J
Y Y
Source Text Partial Summary

Here we have a standard seg2seq
model for summarization

16 Seeetal., 2017
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mechanism for summarization
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Target-side attention (in LMs or more
complex MT models)
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18 Merity et al., 2016



Image Captioning with Attention

A stop sign is on a road with a

A dog is standing on a hardwood floor.
- mountain in the background.

3%

A little girl sitting on a bed with A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Xu et al., 2015



visual attention

e Use the gquestion representation g to determine
where Iin the image to look

y benches are shown?j—



softmax:
predict answer

attention over final convolutional
layer in network: 196 boxes, captures
color and positional information
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Self-attention as an encoder!
(core component of Transformer)

this Is an example
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Vaswani et al., 2017 23 figure: Graham Neubig



Attention variants



hard attention  soimax

attention over fi

layer In network:
color and posi

196 boxes, captures
tional information

predict answer
nal convolutional

We can use
reinforcement
learning 1o
focus on just
one box

How many benches are shown? e

Xu et al., 2015



Multi-headed attention

e Preview of next class!

e [ntuition: k different attentions, each of which Is
computed independently and focuses on different
parts of the sentence

* Transformers = stacked layers of multi-headed self-
attention



