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stuff from last time
• Colab issues :(  
• HW1 time mixup, won’t count anyone who 

submitted before 11:59pm as late 
• Important dates: 

• Proposal due: Oct 4 (this Friday!!!) 
• Milestone 1 due: Oct 24 
• Midterm date: Oct 31 
• Milestone 2 due: Nov 21 
• HW 3 due: ??? 
• Poster presentations: Dec 10/12 
• Final report due: Dec 19 

• Can we spend a lot of time on attention? maybe 
• Final exam instead of final project? NO!
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Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les    pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence conditioned on encoding.
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decoder output is fed in           as next step’s input
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Training a Neural Machine Translation system

2/15/1825
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Source sentence (from corpus)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN

!"# !"$ !"% !"& !"' !"( !")

*# *$ *% *& *' *( *)

= negative log 
prob of “the”

* = 1
-./0#

1
*/ =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “have”

what are the parameters of this model?



 6

Sequence-to-sequence: the bottleneck problem

2/15/1848
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Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!
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“you can’t cram the meaning 
of a whole  %&@#&ing 
sentence into a single 

$*(&@ing vector!” 
— Ray Mooney (NLP prof at UT Austin)
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idea: what if we use multiple vectors?
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(all 4 hidden states!)



The solution: attention

• Attention mechanisms (Bahdanau et al., 
2015) allow the decoder to focus on a 
particular part of the source sequence at 
each time step 
• Conceptually similar to word alignments
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How does it work?

• in general, we have a single query vector and 
multiple key vectors. We want to score each 
query-key pair

 11

in machine translation, what are the queries and keys?
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Sequence-to-sequence with attention
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Query 1:  
decoder, first time step

dot product with keys 
(encoder hidden states)



 13

Sequence-to-sequence with attention
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On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”les”)
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into a probability distribution
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Sequence-to-sequence with attention
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Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

The attention output mostly contains 
information the hidden states that 
received high attention.
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on
• We get alignment for free!
• This is cool because we never explicitly trained

an alignment system
• The network just learned alignment by itself

2/15/1863
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Alignment as a vector 
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i j 
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aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 
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implemented 
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2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 
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Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 
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Many variants of attention
• Original formulation:  

• Bilinear product:  

• Dot product: 

• Scaled dot product:
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a(q, k) = wT
2 tanh(W1[q; k])

a(q, k) = qTWk

a(q, k) = qTk

a(q, k) =
qTk
|k |

Luong et al., 2015

Luong et al., 2015

Vaswani et al., 2017



Attention is not just for MT!
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Here we have a standard seq2seq  
model for summarization

See et al., 2017



Copy mechanisms
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Here we have a seq2seq model with a copy 
mechanism for summarization

See et al., 2017



Target-side attention (in LMs or more 
complex MT models)

 23 Merity et al., 2016



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201888

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Xu et al., 2015



visual attention
• Use the question representation q to determine 

where in the image to look

How many benches are shown?



How many benches are shown?

0.2

0.20.3

0.1

0.05

0.05

0.05 0.05 0.0

0.00.0

0.0 0.0 0.0

0.0

0.0 0.0 0.0

0.00.00.00.00.00.0

softmax:  
predict answer

attention over final convolutional  
layer in network: 196 boxes, captures 

color and positional information
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Hierarchical  
attention

Yang et al., 2016



Self-attention as an encoder!

 28

(core component of Transformer)

Vaswani et al., 2017 figure: Graham Neubig



Attention variants
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How many benches are shown?

0.0

0.01.0

0.0

0.05

0.0

0.0 0.0 0.0

0.00.0

0.0 0.0 0.0

0.0

0.0 0.0 0.0

0.00.00.00.00.00.0

softmax:  
predict answer

attention over final convolutional  
layer in network: 196 boxes, captures 

color and positional information

we can use 
reinforcement 

learning to 
focus on just 

one box

hard attention

Xu et al., 2015



Multi-headed attention
• Intuition: k different attentions, each of which is 

computed independently and focuses on different 
parts of the sentence 

• Transformers = stacked layers of multi-headed self-
attention



Self-attention
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Self-attention
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Self-attention
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Self-attention
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Self-attention
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Self-attention
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Multi-head self-attention
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Multi-head self-attention
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Multi-head self-attention
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Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]
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Multi-head self-attention
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committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]

p+1



Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Multi-head self-attention
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Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]


