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questions from last time...

e grading of HW2 / milestonel in progress
e midterm!!!!




text classification

® nput: some text x (e.g., sentence, document)
e output: a label y (from a finite label set)
e goal: learn a mapping function f from xto y

fyl: basically every NLP problem
reduces to learning a mapping function
with various definitions of x and y!



f can be hand-designed rules

e if “won $10,000,000” in x, y = spam
e if “CS585 Fall 2019” in x, y = not spam

what are the drawbacks of this method?



f can be learned from data

® given training data (already-labeled x,y pairs)
learn f by maximizing the likelihood of the
training data

® this is known as supervised learning



naive Bayes

represents input text as a bag of words

assumption: each word is independent of all
other words

given labeled data, we can use naive Bayes
to estimate probabilities for unlabeled data

goal: infer probabillity distribution that
generated the labeled data for each label




class conditional probabillities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

| prior likelihood
posteior p(y) - P(x| )
p(y|x) =
p(x)

our predicted label is the one with the highest
posterior probabllity, I.e.,

y = arg max p(y) - P(x|y)
yeyY
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N-gram LMs



goal: assign probability to a
plece of text

* why would we ever want to do this”

e translation:
e P(i flew to the movies) <<<<< P(i went to the movies)

e speech recognition:
* P(i saw a van) >>>>> P(eyes awe of an)



Probabilistic Language Modeling

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W;,W5,W3,W/,Wc.. W, )

* Related task: probability of an upcoming word:

P(Ws | Wy,Wy,W3,W,)

* A model that computes either of these:
P(W) or P(w,|w,,w,..w,) 1S called a language model or LM



Markov Assumption

Piww,..w )= HP(Wi w._ ..ow. )

* In other words, we approximate each
component in the product

Pw lww,..w._)=Pw Ilw_ ..w._)



-stimating bigram probabillities

« The Maximum Likelihood Estimate (MLE)
- relative frequency based on the empirical counts on a

training set count( W W)
AW, [w.,) = S
count(w.,)

P(w, | w,,) = W)

c — count
aw.,)



Perplexity

The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence) |

_ N
Perplexity is the inverse probability of PECW) Plwws..wy)

the test set, normalized by the number 1
of words: = ]</P(w1w2...wN)
: N
Chain rule: PP(W) = ‘\\];[1 BT D)
For bigrams: N
PP(W) = {\\IEPMM y

Minimizing perplexity is the same as maximizing probability



The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total
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Add-1 estimation is a blunt instrument

e Soadd-1isn’t used for N-grams:

o We'll see better methods

e Butadd-1is used to smooth other NLP models
e For text classification
* [n domains where the number of zeros isn’t so huge.



Absolute discounting: just subtract a

little from each count

Suppose we wanted to subtract a little
from a count of 4 to save probability
mass for the zeros

How much to subtract ?

Church and Gale (1991)’s clever idea

Divide up 22 million words of AP
Newswire

 Training and held-out set

e for each bigram in the training set

e see the actual count in the held-out set!

Bigram count

Bigram count in

in training heldout set
0 .0000270
1 0.448

2 1.25

3 2.24

4 3.23

5 4.21

6 5.23

7 6.21

8 7.21

9 8.26




log-linear LMs (and more
generally, logistic
regression)



The General Problem

e We have some input domain X’
e Have a finite label set )/

e Aim is to provide a conditional probability P(y | =)
forany z.,y wherex € X',y € Y



Language Modeling

e x 1s a “history” wy, woy, ... w;_1,¢€.2.,

Third, the notion “grammatical in English” cannot be identified in any way

with the notion ‘high order of statistical approximation to English”. It

1s fair to assume that neither sentence (1) nor (2) (nor indeed any part of
these sentences) has ever occurred in an English discourse. Hence, in any
statistical

e ¢ 1S an “‘outcome” w;



Feature Vector Representations

e Aim is to provide a conditional probability P(y | x) for
“decision” y given “history” x

A feature is some function ¢ (x); in LMs ¢(context).
Features are often binary indicators; 1.e. ¢(x) € {0,1}

If you have m features, you can form a feature vector

Rm
what could be some useful * <
iIndicator features for language
modeling?

20



given features x, how do we predict the next
word y?

s=Wx+0b

T~

score vector s € R .
features x € R

weight matrix w e riVixm

each row of W contains weights for a (word y, X) pair

21



how do we obtain probabilities?

S=Wx+b

] T~

score vector s e RI" .
features xR

weight matrix w e RIVixm

e
P = softmax(s)

Pizzjj
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“LOg-Iinear” ? logp(ylx,W)(nyx

why is this true”?

e Wyx

p(ylx, W) = T

zy’EV e

logp(y|x, W) = Wx — log Z e "y*

/ y'eV \

linear in weights and features... except for this!

Known as log-sum-exp,
very important for these models

23



what do we have left?

e how do we

INd the optima

values of W and

b for our lar

guage modelin

g problem?

e gradient descent! this involves computing:

1. aloss function, which tells us how good
the current values of W and b are on
our training data

| o oL oL
2. the partial derivatives 7,  and -

24



first, an aside: what is the bias b?

e | et’'s say we have a feature that Is always
set to 1 regardless of what the input text is.

® [NhISISC
oweve
nad. ..

ear

vy not an informative feature.

r e

’s say It was the only one |

first, how many weights

do

| need to learn for this

feature?

okay... what is the best

set

of weights for it”?



Training with softmax and cross-entropy error

e For each training example {x,y}, our objective is to maximize the
probability of the correct class y

e Hence, we minimize the negative log probability of that class:

e Wyx

W x
Zy’EVe '

L= —logp(y|x,W) = —log

26



Background: Why “Cross entropy” error

e Assuming a ground truth (or gold or target) probability
distribution that is 1 at the right class and 0 everywhere else:
p=10,...,0,1,0,...0] and our computed probability is g, then the
cross entropy is:

H(p.q) = — ) p(w)log g(w)

wevV

e Because of one-hot p, the only term left is the negative log
probability of the true class

8 1/18/18



let’s say | also have the derivatives

oL oL
ow ob
e the partial derivatives tell us how the loss

changes given a change In the
corresponding parameter

e Wwe can thus take steps in the negative
direction of the gradient to minimize the loss
function

28



word embeddings



why do neural networks work better”?

e multip
combil

* c.0.,

® the learned representations of worc

e layer and nonlinearities allow

‘eature

nations that a linear model can’t

XOR function

contexts are tuned to the prediction p
* unlike one-hot vectors

30
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why use vectors to encode meaning”?

® computing the similarity between two words
(or phrases, or documents) is extremely
useful for many NLP tasks

e (: how tall is Mount Everest?

A: The official height of Mount Everest is
29029 ft

31



one-hot vectors

® we've already seen these before in bag-of-
words models (e.g., naive Bayes)!

® represent each word as a vector of zeros with
a single 1 identifying the index of the word

vocabulary movie = <0, 0, O, O, 1, O>
i fim =<0,0,0,0,0, 1>
hate
love what are the issues
the of representing a

movie word this way”?
film

32



all words are equally (dis)similar!

movie = <0, 0,0, 0, 1, O>
flm =<0,0,0,0,0, 1>

dot product is zero!
these vectors are orthogonal

how can we compute a vector representation such
that the dot product correlates with word similarity”?

33



Word2vec

°lnstead of counting how often each
word w occurs near "apricot”

°Train a classifier on a binary
prediction task:
°|s w likely to show up near "apricot"?

°We don’t actually care about this task

°-But we'll take the learned classifier weights
as the word embeddings

34



Setup

Let's represent words as vectors of some length (say
300), randomly initialized.

So we start with 300 * V random parameters

Over the entire training set, we’'d like to adjust those
word vectors such that we

> Maximize the similarity of the target word, context
word pairs (t,c) drawn from the positive data

> Minimize the similarity of the (t,c) pairs drawn from
the negative data.



Skip-Gram Training Data

Training sentence:
tablespoon of apricot jam a

cl c2 target c3 c4

Asssume context words are those in +/- 2
word window



Skip-Gram Goal

Given a tuple (t,c) =target, context

°(apricot, jam)
°(apricot, aardvark)

Return probability that c is a real context word:

P(+]t,c)
P(-|t,c) = 1-P(+]|t,c)



How to compute p(+]t,c)?

Intuition:
> Words are likely to appear near similar words
> Model similarity with dot-product!

> Similarity(t,c) < t-c t and ¢ here are vectors for

|
Problem: target and context!

> Dot product is not a probability!
o (Neither is cosine)

38



Turning dot product into a
probability

The sigmoid lies between 0 and 1:

1

o (x)

B ]l +e*




Turning dot product into a
p 'O b = b | ‘ |ty think back to last class...

what are our features and
weights here???

both target and context

1 vectors are learned, so
n lici
P(+le) = o= | iatvsaton
P(—|t,c) = 1—P(+[t,c)
—t-c

e
1 e 7€




Learning the classifier

Iterative process.
We’ll start with O or random weights

Then adjust the word weights to
> make the positive pairs more likely
> and the negative pairs less likely

over the entire training set

guess what algorithm we’ll use to make this happen?



neural LMs

42



A fixed-window neural Language Model

output distribution

y = softmax(W,h + b,)

hidden layer

h=f(Wc+ b

concatenated word embeddings

¢ = [cy; ¢y5 a5 ¢4

books
i laptops

(e00000000000 |

N\

W,

(0000 0000 0000 0000 |

T

the students  opened their
C 1 C o) C 3 C A
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94 = P(z®|the students opened their)

A RNN Language Model books

_L laptops
output distribution

$ = softmax(W,h'" + b,)

mA_|
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h(4)
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hidden states
A = fW,h"D + We + b))

h©O) is initial hidden state!
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why is this good?

RNN Advantages:

Can process any length
input

Model size doesn’t
increase for longer input
Computation for step t
can (in theory) use
information from many
steps back

Weights are shared
across timesteps 2
representations are
shared

RNN Disadvantages:

Recurrent computation
is slow

In practice, difficult to
access information from

_many steps back

h,(0)

=

000®|"
|

Wiy,

— >

g(4) — P(:c(5) [the students opened their)
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Training a RNN Language Model

Get a big corpus of text which is a sequence of words x4V, ... x(T)
Feed into RNN-LM; compute output distribution y(t) for every step t.
* j.e. predict probability dist of every word, given words so far

Loss function on step t is usual cross-entropy between our predicted

probability distribution §*), and the true next word y® = z(+1);
\4
JB(9) = CE(yW,§®) Zy§ ) log 9! A (1)

Average this to get overall loss for entire training set:
T

7(0) = % S0 (0)

t=1
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Training a RNN Language Model

= negative log prob
of “students”

Loss > [ JM(0) J2)(9) J3)(9) JH(9)
g(l) Q(Q) Q(B) g(4)

W2 W2 W2 WZ
h(2) h(3) h(4)

h(0) h(1

Wi,

— >

(e0e@]
=

Iwe jwe iwe jwe

)
O
O
O
@)
O O O O
O | @ | @ B e
O @) O @)
O O O O

T 17 177

Corpus > the students  opened their exams
Cq Cr C3 Cy
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Training a RNN Language Model

= negative log prob

Loss

Corpus

oy

of “opened”
> J1(9) J2)(9) J3)(6) yAIC)
g1 7(2) 7 (3) g4
W2 2 2 2
h)__ h(}i\ h(2) h(3) h(4)
@ O O @

W, @ W, e\ Wh |l@| Wr |@| W
——— Sl al—— alF—— a— & |l——
@ O O O
@ @ O @

O O O O
O |© | © )| ©
@ @) O @,

Ngfd M%LJ 7 ~:fd
> the students  opened their exams

Cq Cr C3 Cy
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Training a RNN Language Model

= negative log prob

of “their”
Loss > JI() J2)(6) J3)(0) J&)(6)
g 7(2) 73) S
W. 4% 4% 1%
h)___ h(i 2 h(2) 2 h(3) 2 h(4) 2
@ @ O O @
| W, |0\ W, || Wi |l@| WrL |@| W,
O 1o e[ “le[ e[
L @ @ @ @
© O O O
| © @ BKe @
@ @ O @
% % T %
Corpus > the students  opened their exams
C1 CH C3 Cy
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Training a RNN Language Model

= negative log prob

of “exams”
Loss SARI() J2)(6) J3)(6) JH) ()
g 7(2) 7(3) s
iWZ WZ W2 WZ
h) h(1) h(2) h(3) h(4)
o W, : 1%% o W, o 1%% o W,
: h o h : h : h : h
L @ O O @
@ @ @ @
o 10 ) © O
@ @ @ @
% % T %
Corpus > the students  opened their exams
Cq Cr C1 Cy
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Training a RNN Language Model

Loss >
Q(l) g(2)
W, W
wo_ ol el
@) @ O
| W, (@) W, |@
O | @ : O
O @ O
Tw. Tw
O O
n| © 2)| ©
O O
o O
Corpus > the students
Cl' ‘ CH

JU®G) + J2@G) + TG

3)
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Training a RNN Language Model

e However: Computing loss and gradients across entire corpus is
too expensivel

e Recall: Stochastic Gradient Descent allows us to compute loss
and gradients for small chunk of data, and update.

- In practice, consider =M, ... 2T as a sentence
T
Jo)==Y JW(0
O =770

e Compute loss J (@) for a sentence (actually usually a batch of
sentences), compute gradients and update weights. Repeat.
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okay... enough with the
unconditional LMs. let’s
switch to conditional LMs!

we’ll start with machine translation

53



today: neural MT

)

e we'll use French (f) to English (e) as a running
example

e goal: given French sentence f with tokens fi,

fo, ... fn produce English translation e with
tokens e, e, ... €m

is n always equal to m”

e real goal: compute argmax p(e|f)
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today: neural MT

e |et’s use an NN to directly model p(elf)

plelf) =pley e ... €, f)
=ple|f) - pleyler, f) - plesley e, f) - ...

m
= HP(ei ey, s €15 f)
i=1

how does this formulation relate to the language
models we discussed previously?
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Encoder RNN

Neural Machine Translation (NMT)

The sequence-to-sequence model

Encoding of the source sentence.
Provides initial hidden state
for Decoder RNN.

N

—>

|

les pauvres sont démunis

\ J
Y

Source sentence (input)

@ QlQ @

v
> 0000

—> 0000

Encoder RNN produces
an encoding of the
source sentence.
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Encoder RNN

Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. p A
Provides initial hidden state
for Decoder RNN.

A\
the poor don’t have any money <END>

NNY 19p02a(d

\ £ S £ £ £ S S
o0 o0 o0 o0 oo o0 o0
B I IR RN RN A R E RN .
() @ (@)
< o le[ le[|e® loflo[lo[ 2lo o[ 2|o[ 10 -
() () () @ (@) O (@) (@) (@) (@) @
les pauvres sont démunis <START> the poor don’t have any money
N J
Y
Source sentence (input) Decoder RNN is a Language Model that generates

target sentence conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.




Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A

4 \
source sentence. " don't END
. e poor don ave any money <END>
Information bottleneck! P v Y Y

R RERAEAINA R R RE R RE R
@ (@ (@

) o “|lo| ‘e[ |e@ 1o lo[ o[ lo[ " lo[ e[ o
[ () [ @ (@ O o o o o (@
les pauvres sont démunis <START> the poor don’t have any money
\ J

Y
Source sentence (input)

NNY 42P023a(d



The solution: attention

* Attention mechanisms (Bahdanau et al.,
2015) allow the decoder to focus on a

particular part of the source sequence at
each time step

Conceptually similar to word alignments
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How does it work"?

® |n general, we have a single query vector and
multiple key vectors. We want to score each
query-key pair

IN machine translation with RNNs, what are the queries
and keys”

60



Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

f_H

A

dot product with keys
(encoder hidden states)

[T

—

—

]

1]

—> 0000

les pauvres sont démunis

\

J

Source sentence (input)

Y

>

—>( 0000

<START>

Query 1:
decoder, first time step



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

U

/

On this decoder timestep, we’re

mostly focusing on the first
encoder hidden state (”/es”)

Take softmax to turn the scores

into a probability distribution

A S
ahh

les pauvres sont démunis

\

J

Source sentence (input)

Y

Y
0000

|

<START>



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

output

.
A
.
Ry
.®
.
“ K4
.* ¥
R
.
Ry
.
.
.®

.
N .
-
= ““
.e
wn®
we® *
R
‘0
°

@ QJ,Q @

Attention <

|

—> 0000
—> 0000

les pauvres sont démunis

\

J

Y
Source sentence (input)

—>1 0000

<START>

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

.
. .
-
b
l““‘

.
A
.
.®
PRy
.
“ K4
.* ¥
.®
.
.®
.
.
PRy

Attention

output

U
U
- .
U .
U -
& -
& -
N -
U
8 H
o .
U
N .
. -
0 .

{ i
TTT T

*
*
*
*
*
*
*
f:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

the

A

les pauvres sont démunis

\

J

Y

Source sentence (input)

—>1 0000

<START>

Concatenate attention output

y, <— with decoder hidden state, then

use to compute ¥y, as before



Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

Attention
output

O"

*

*
‘-“‘i

@ QJ/. @

poor

‘e N\
*
’0
*
*
N 2
*
*
*
*
*
*
*
*
*

‘\
“
\J

A .

-

:

* -
o* -
* -

o - *
** . .
* - .
** - ®
. - .
o* - *

1]

—> 0000

les pauvres sont démunis

\

J

Y
Source sentence (input)

©000]|

—>1 0000

|

<START> the

decoder, second time step



Attention is great

e Attention significantly improves NMT performance

* |t’s very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem

* Provides shortcut to faraway states

0
* Attention provides some interpretability ) g g E
* By inspecting attention distribution, we can see 2 8833
what the decoder was focusing on > The
* We get alignment for freel poor |
don’ t

* This is cool because we never explicitly trained
an alignment system

have

* The network just learned alignment by itself any

money
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decoding

® given that we trained a seg2seqg model, how
do we find the most probable English
sentence?

® more concretely, how do we find

m
arg max Hp(el- e, ...,e,_1, f)
i=1

® can we enumerate all possible English
sentences €7
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can we just do attention
and get rid of recurrence”



Self-attention as an encoder!
(core component of Transformer)

this Is an example

this B
IS - B -
an o N
example
¢ ¢

[YY
(A
[YY

Vaswani et al., 2017 69 figure: Graham Neubig



[Vaswani et al. 2017]

Self-attention
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Nobel committee awards Strickland who advanced opﬂtics .



. [Vaswani et al. 2017]
Self-attention
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[Vaswani et al. 2017]

Self-attention

optics (@] [e) 0 [e) [6) ) @
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[Vaswani et al. 2017]

Self-attention

— ~— ~—
optics (@ O O ) () ) 0
advanced |O O O O O O O
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Multi-head self-attention

Layer J ( Multi-head self-attention + feed forward )
Layer p ( Multi-head self-attention + feed forward )
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Nobel committee awards Strickland who advanced optics
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[ ast major missing plece:

e Decoder self-attention masking
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Byte pair encoding (BPE)

* Deal with rare words / large vocabulary by instead
using subword tokenization

system sentence

source health research institutes
reference Gesundheitsforschungsinstitute
WDict Forschungsinstitute

C2-50k Folrs|ch|un|gs|in|st|it/ut/io/nen

BPE-60k Gesundheits|forschjungsinstitulten
BPE-J90k | Gesundheits|/forschjungsin/stitute

source asinine situation

reference dumme Situation

WDict asinine situation — UNK — asinine
C2-50k as/in|in|e situation — As|in/en|si|tu/at/io/n

BPE-60k as|in/ine situation — Alin|line-|Situation
BPE-J90K | as|in|ine situation — As|in|in-|Situation

Sennrich et al., ACL 2016




transfer learning



What is transfer learning”

® |n our context: take a network trained on a
task for which it is easy to generate labels,
and adapt it to a different task for which it is
harder.

* |n computer vision: train a CNN on
ImageNet, transfer its representations to
every other CV task

* |n NLP: train a really big language model on
billions of words, transfer to every NLP task!
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History of Contextual Representations
e ELMo: Deep Contextual Word Embeddings, Al2 &

University of Washington, 2017

Train Separate Left-to-Right and Apply as “Pre-trained
Right-to-Left LMs Embeddings”
open a bank <s> open a Existing Model Architecture
! T ! ! ! !
LSTM | LSTM > LSTM LSTM |« LSTM [« LSTM T T T
! ! T ! ! !
<s> open a open a bank

T T T

open a bank
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Unidirectional vs. Bidirectional Models

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
T T T ! T T
Layer 2 > Layer 2 » Layer?2 Layer 2 ) .| Layer2 ) . Layer 2
Layer 2 > Layer 2 > Layer 2 Layer 2 ° .| Layer2 ) > Layer 2
T T T T T T
<s> open a <s> open a
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Masked LM

e Solution: Mask out k% of the input words, and

then predict the masked words
o We always use k=15%

store gallon

T T

the man went to the [MASK] to buy a [MASK] of milk

What are the pros and
cons of increasing k*?

90



Input Representation

dog

/ / AN / AN / /
Input [CLS] W my is ( cute W [SEP] he ( likes W play 1 ##ing 1 [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
e = e e == e e = e e e
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
L e e L e e L e e L e
Position
Embeddings Eo E1 Ez E3 E4 Es E6 E7 E8 E9 ElO

e Use 30,000 WordPiece vocabulary on input.
e Each token is sum of three embeddings
e Single sequence is much more efficient.
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Model Architecture

e Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias
® |ong-distance context has “equal opportunity”
2. Single multiplication per layer == efficiency on TPU

® Effective batch size is number of words, not sequences

Transformer LSTM

X 00 X _0_1 X 02 X 03 X 00 X 01 X 02 X 03

X10 | X11 | X12 | X13 X10|| X11 || X12 | X13
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Fine-Tuning Procedure

ﬁsp
=

Mask LM

®

G-

BERT
s E, Ex E[SEP] E, =
e N e . &

Masked Sentence A

t*

Masked Sentence B
Unlabeled Sentence A and B Pair /

Pre-training
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HMMs / sequence
modeling



These are all log=linear models

e T 44

SEQUENCE

Naive Bayes HMMs

co@m cu@m
do Mk &4

Logistic Regression Linear-chain CRFs

95



HMM Definition

Assume K parts of speech, a lexicon size of V/, a series of observations
{x1,...,xn}, and a series of unobserved states {z,...,2zy}.

A distribution over start states (vector of length K):
mi = p(z1 =)
Transition matrix (matrix of size K by K):
ei,j — p(Zn :./.‘Zn—l — i)
An emission matrix (matrix of size K by V):
ﬁj,w — p(Xn — W‘Zn :./)
Two problems: How do we move from data to a model? (Estimation)

How do we move from a model and unlabled data to labeled data?
(Inference)

96



Training Sentences

X = tokens x here come old flattop
7 = POS tags z MOD V MOD N

a crowd of people stopped and  stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love  her
CONJ PRO V PRO
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Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and  stared
DET N PREP N V CONJ V

gotta get you into my life
V V' PRO PREP PRO N

and I love  her
CONJ PRO V PRO
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Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and  stared
DET N PREP N V CONJ V

gotta get you into my life
V V' PRO PREP PRO N

and I love  her
CONJ PRO V PRO
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Viterbi Algorithm

Given an unobserved sequence of length L, {xy,...,x.}, we want
to find a sequence {z; ...z } with the highest probability.

It's impossible to compute KL possibilities.

So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

Memoization: fill a table of solutions of sub-problems
Solve larger problems by composing sub-solutions
Base case:
01(k) = Tk Bk x; (1)

Recursion:

On(k) = max (6n—1(J)0; k) Bk x, (2)

J



