
midterm review
CS 585, Fall 2019

Introduction to Natural Language Processing

http://people.cs.umass.edu/~miyyer/cs585/

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

http://people.cs.umass.edu/~miyyer/cs585/

questions from last time…

• grading of HW2 / milestone1 in progress
• midterm!!!!

 2

text classification

• input: some text x (e.g., sentence, document)
• output: a label y (from a finite label set)
• goal: learn a mapping function f from x to y

 3

fyi: basically every NLP problem
reduces to learning a mapping function

with various definitions of x and y!

f can be hand-designed rules

• if “won $10,000,000” in x, y = spam
• if “CS585 Fall 2019” in x, y = not spam

 4

what are the drawbacks of this method?

f can be learned from data

• given training data (already-labeled x,y pairs)
learn f by maximizing the likelihood of the
training data

• this is known as supervised learning

 5

naive Bayes

• represents input text as a bag of words
• assumption: each word is independent of all

other words
• given labeled data, we can use naive Bayes

to estimate probabilities for unlabeled data
• goal: infer probability distribution that

generated the labeled data for each label

 6

class conditional probabilities
Bayes rule (ex: x = sentence, y = label in {pos, neg})

 7

p(y |x) =
p(y) ⋅ P(x |y)

p(x)

posterior
prior likelihood

our predicted label is the one with the highest
posterior probability, i.e.,

̂y = arg max
y∈Y

p(y) ⋅ P(x |y)

n-gram LMs

 8

goal: assign probability to a
piece of text

• why would we ever want to do this?

• translation:
• P(i flew to the movies) <<<<< P(i went to the movies)

• speech recognition:
• P(i saw a van) >>>>> P(eyes awe of an)

 10

Probabilistic Language Modeling
•Goal: compute the probability of a sentence or

sequence of words:

 P(W) = P(w1,w2,w3,w4,w5…wn)

•Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

•A model that computes either of these:

 P(W) or P(wn|w1,w2…wn-1) is called a language model or LM

 11

Markov Assumption

• In other words, we approximate each

component in the product

 12

• The Maximum Likelihood Estimate (MLE)

- relative frequency based on the empirical counts on a

training set

Estimating bigram probabilities

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

c — count

 13

Dan*Jurafsky

Perplexity

Perplexity*is*the*inverse*probability*of*
the*test*set,*normalized*by*the*number*
of*words:

Chain*rule:

For*bigrams:

Minimizing'perplexity'is'the'same'as'maximizing'probability

The*best*language*model*is*one*that*best*predicts*an*unseen*test*set
• Gives*the*highest*P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

 14

Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

 15

Dan*Jurafsky

AddM1'estimation'is'a'blunt'instrument

• So*add,1*isn’t*used*for*N,grams:*
• We’ll*see*better*methods

• But*add,1*is*used*to*smooth*other*NLP*models
• For*text*classification*
• In*domains*where*the*number*of*zeros*isn’t*so*huge.

 16

Dan*Jurafsky Absolute(discounting:(just(subtract(a(
little(from(each(count

• Suppose*we*wanted*to*subtract*a*little*

from*a*count*of*4*to*save*probability*

mass*for*the*zeros

• How*much*to*subtract*?

• Church*and*Gale*(1991)’s*clever*idea

• Divide*up*22*million*words*of*AP*

Newswire

• Training*and*held,out*set

• for*each*bigram*in*the*training*set

• see*the*actual*count*in*the*held,out*set!

Bigram*count*

in*training

Bigram*count*in*

heldout set

0 .0000270

1 0.448

2 1.25

3 2.24

4 3.23

5 4.21

6 5.23

7 6.21

8 7.21

9 8.26

log-linear LMs (and more
generally, logistic

regression)

 17

 18

The General Problem

• We have some input domain X

• Have a finite label set Y

• Aim is to provide a conditional probability P (y | x)
for any x, y where x ∈ X , y ∈ Y

 19

Language Modeling

• x is a “history” w1, w2, . . . wi−1, e.g.,
Third, the notion “grammatical in English” cannot be identified in any way
with the notion “high order of statistical approximation to English”. It
is fair to assume that neither sentence (1) nor (2) (nor indeed any part of
these sentences) has ever occurred in an English discourse. Hence, in any
statistical

• y is an “outcome” wi

 20

Feature Vector Representations

• Aim is to provide a conditional probability P (y | x) for
“decision” y given “history” x

• A feature is a function f(x, y) ∈ R
(Often binary features or indicator functions f (x, y) ∈ {0, 1}).

• Say we have m features φk for k = 1 . . .m
⇒ A feature vector φ̄(x, y) ∈ Rm for any x, y

what could be some useful
indicator features for language
modeling?

A feature is some function (x); in LMs (context).
Features are often binary indicators; i.e.

If you have m features, you can form a feature vector

ϕ(x) ∈ {0,1}

x ∈ ℝm

ϕϕ

given features x, how do we predict the next
word y?

 21

s = Wx + b

score vector

weight matrix

s ∈ ℝ|V|

W ∈ ℝ|V|×m

features x ∈ ℝm

each row of W contains weights for a (word y, x) pair

how do we obtain probabilities?

 22

s = Wx + b

score vector

weight matrix

s ∈ ℝ|V|

W ∈ ℝ|V|×m

features x ∈ ℝm

pi =
esi

∑j esj
; p = softmax(s)

 23

7

“Log-linear” ?

The
Log prob is...

p(y) / exp(✓Tf(y))

“Proportional to”
notation, since
denominator is
invariant to y

log p(y) / ✓Tf(y)
Abusive “log proportional
to” notation... somewhat

common. Sometimes
convenient.

p(y) =
exp(✓Tf(y))P

y02Y exp(✓Tf(y0))

log p(y) = ✓Tf(y)� log

X

y02Y
exp(✓Tf(y))

Thursday, September 25, 14

p(y |x, W) =
eWyx

∑y′ �∈V eWy′�x

log p(y |x, W) = Wyx − log ∑
y′ �∈V

eWy′�x

… except for this!
known as log-sum-exp,
very important for these models

log p(y |x, W) ∝ Wyx
why is this true?

linear in weights and features…

what do we have left?
• how do we find the optimal values of W and

b for our language modeling problem?
• gradient descent! this involves computing:

1. a loss function, which tells us how good
the current values of W and b are on
our training data

2. the partial derivatives and

 24

∂L
∂W

∂L
∂b

first, an aside: what is the bias b?

• Let’s say we have a feature that is always
set to 1 regardless of what the input text is.

• This is clearly not an informative feature.
However, let’s say it was the only one I
had…

 25

first, how many weights
do I need to learn for this
feature?

okay… what is the best
set of weights for it?

 26

Training	with	softmax and	cross-entropy	error

• For	each	training	example	{x,y},	our	objective	is	to	maximize	the	
probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

1/18/187

L = − log p(y |x, W) = − log(eWyx

∑y′�∈V eWy′�x)

 27

Background:	Why	“Cross	entropy”	error

• Assuming	a	ground	truth	(or	gold	or	target)	probability	
distribution	that	is	1	at	the	right	class	and	0	everywhere	else:
p	=	[0,…,0,1,0,…0]	and	our	computed	probability	is	q,	then	the	
cross	entropy	is:	

• Because	of	one-hot	p,	the	only	term	left	is	the	negative	log	
probability	of	the	true	class

1/18/188

H(p, q) = − ∑
w∈V

p(w)log q(w)

let’s say I also have the derivatives

• the partial derivatives tell us how the loss
changes given a change in the
corresponding parameter

• we can thus take steps in the negative
direction of the gradient to minimize the loss
function

 28

∂L
∂W

∂L
∂b

word embeddings

 29

why do neural networks work better?

• multiple layer and nonlinearities allow feature
combinations that a linear model can’t get

• e.g., XOR function

• the learned representations of words and
contexts are tuned to the prediction problem

• unlike one-hot vectors

 30

why use vectors to encode meaning?

• computing the similarity between two words
(or phrases, or documents) is extremely
useful for many NLP tasks

• Q: how tall is Mount Everest?
A: The official height of Mount Everest is
29029 ft

 31

one-hot vectors
• we’ve already seen these before in bag-of-

words models (e.g., naive Bayes)!
• represent each word as a vector of zeros with

a single 1 identifying the index of the word

 32

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues
of representing a
word this way?

all words are equally (dis)similar!

 33

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

how can we compute a vector representation such
that the dot product correlates with word similarity?

dot product is zero!
these vectors are orthogonal

 34

Word2vec

◦Instead of counting how often each
word w occurs near "apricot"

◦Train a classifier on a binary
prediction task:
◦ Is w likely to show up near "apricot"?

◦We don’t actually care about this task
◦But we'll take the learned classifier weights
as the word embeddings

 35

Setup
Let's represent words as vectors of some length (say
300), randomly initialized.
So we start with 300 * V random parameters
Over the entire training set, we’d like to adjust those
word vectors such that we
◦ Maximize the similarity of the target word, context

word pairs (t,c) drawn from the positive data
◦ Minimize the similarity of the (t,c) pairs drawn from

the negative data.

9/7/18

21

 36

Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 target c3 c4

9/7/18

11

Asssume context words are those in +/- 2
word window

 37

Skip-Gram Goal

Given a tuple (t,c) = target, context
◦ (apricot, jam)
◦ (apricot, aardvark)

Return probability that c is a real context word:

P(+|t,c)
P(−|t,c) = 1−P(+|t,c)

9/7/18

12

 38

How to compute p(+|t,c)?
Intuition:
◦ Words are likely to appear near similar words
◦ Model similarity with dot-product!
◦ Similarity(t,c) ∝ t · c

Problem:
◦Dot product is not a probability!

◦ (Neither is cosine)

t and c here are vectors for
target and context!

 39

Turning dot product into a
probability
The sigmoid lies between 0 and 1:

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)

 40

Turning dot product into a
probability

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)

think back to last class…
what are our features and

weights here???

both target and context
vectors are learned, so

we have no explicit
featurization!

 41

Learning the classifier
Iterative process.
We’ll start with 0 or random weights
Then adjust the word weights to
◦ make the positive pairs more likely
◦ and the negative pairs less likely

over the entire training set:

guess what algorithm we’ll use to make this happen?

neural LMs

 42

 43

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

c = [c1; c2; c3; c4]

 44

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t) + b2)

W2

h(t) = f(Whh(t−1) + Wect + b1)
h(0) is initial hidden state!

 45

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?

 46

Training	a	RNN	Language	Model

• Get	a	big	corpus	of	text	which	is	a	sequence	of	words
• Feed	into	RNN-LM;	compute	output	distribution									for	every	step	t.

• i.e.	predict	probability	dist of	every	word,	given	words	so	far

• Loss	function	on	step	t	is	usual	cross-entropy	between	our	predicted	
probability	distribution								,	and	the	true	next	word																						:

• Average	this	to	get	overall	loss	for	entire	training	set:

2/1/1827

 47

Training	a	RNN	Language	Model
=	negative	log	prob

of	“students”

the students opened their …examsCorpus

Loss

…

2/1/1828 c1 c2 c3 c4

W2 W2 W2 W2

 48

Training	a	RNN	Language	Model
=	negative	log	prob

of	“opened”

Corpus the students opened their …exams

Loss

…

2/1/1829
c1 c2 c3 c4

W2 W2 W2 W2

 49

Training	a	RNN	Language	Model
=	negative	log	prob

of	“their”

Corpus the students opened their …exams

Loss

…

2/1/1830 c1 c2 c3 c4

W2 W2 W2 W2

 50

Training	a	RNN	Language	Model
=	negative	log	prob

of	“exams”

Corpus the students opened their …exams

Loss

…

2/1/1831 c1 c2 c3 c4

W2 W2 W2 W2

 51

Training	a	RNN	Language	Model

+																		+																			+																		+	…						=

Corpus the students opened their …exams

Loss

…

2/1/1832 c1 c2 c3 c4

W2 W2 W2 W2

 52

Training	a	RNN	Language	Model

• However:	Computing	loss	and	gradients	across	entire	corpus is	
too	expensive!

• Recall: Stochastic	Gradient	Descent	allows	us	to	compute	loss	
and	gradients	for	small	chunk	of	data,	and	update.

• à In	practice,	consider																							as	a	sentence

• Compute	loss										for	a	sentence	(actually	usually	a	batch	of	
sentences),	compute	gradients	and	update	weights.	Repeat.

2/1/1833

okay… enough with the
unconditional LMs. let’s

switch to conditional LMs!

 53

we’ll start with machine translation

today: neural MT
• we’ll use French (f) to English (e) as a running

example
• goal: given French sentence f with tokens f1,

f2, … fn produce English translation e with
tokens e1, e2, … em

• real goal: compute

 54

is n always equal to m?

arg max
e

p(e | f)

today: neural MT
• let’s use an NN to directly model

 55

p(e | f)

p(e | f) = p(e1, e2, …, em | f)

= p(e1 | f) ⋅ p(e2 |e1, f) ⋅ p(e3 |e2, e1, f) ⋅ …

=
m

∏
i=1

p(ei |e1, …, ei−1, f)

how does this formulation relate to the language
models we discussed previously?

 56

En
co

de
r R

NN

Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence conditioned on encoding.

the

ar
gm

ax
the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

have any money <END>

don’t have any money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

 57

En
co

de
r R

NN

Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence conditioned on encoding.

the

ar
gm

ax
the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

have any money <END>

don’t have any money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

 58

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

The solution: attention

• Attention mechanisms (Bahdanau et al.,
2015) allow the decoder to focus on a
particular part of the source sequence at
each time step
• Conceptually similar to word alignments

 59

How does it work?

• in general, we have a single query vector and
multiple key vectors. We want to score each
query-key pair

 60

in machine translation with RNNs, what are the queries
and keys?

 61

Sequence-to-sequence with attention

2/15/1853

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

dot product

Query 1:
decoder, first time step

dot product with keys
(encoder hidden states)

 62

Sequence-to-sequence with attention

2/15/1854

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”les”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

 63

Sequence-to-sequence with attention

2/15/1855

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.

 64

Sequence-to-sequence with attention

2/15/1856

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute !"# as before

!"#

the

 65

Sequence-to-sequence with attention

2/15/1857

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

the

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

!"#

poor

decoder, second time step

 66

Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see

what the decoder was focusing on
• We get alignment for free!
• This is cool because we never explicitly trained

an alignment system
• The network just learned alignment by itself

2/15/1863

9/24/14

5

Alignments: harder

The
balance

was
the

territory
of

the
aboriginal

people

Le
reste

appartenait

aux

autochtones

many-to-one
alignments

The
balance

was
the

territory

of
the

aboriginal
people

 L
e

re
st

e

ap
pa

rte
na

it
au

x

au
to

ch
to

ne
s

Alignments: hardest

The
poor
don’t
have

any
money

Les
pauvres
sont
démunis

many-to-many
alignment

The
poor

don�t
have

any

money

Le
s

pa
uv

re
s

so
nt

dé

m
un

is

phrase
alignment

Alignment as a vector

Mary
did
not

slap

the
green
witch

1
2
3
4

5
6
7

Maria
no
daba
una
botefada
a
la
bruja
verde

1
2
3
4
5
6
7
8
9

i j

1
3
4
4
4
0
5
7
6

aj=i
•  used in all IBM models
•  a is vector of length J
•  maps indexes j to indexes i
•  each aj
 {0, 1 … I}
•  aj = 0 	 fj is �spurious�
•  no one-to-many alignments
•  no many-to-many alignments
•  but provides foundation for

phrase-based alignment

IBM Model 1 generative story

And
the

program
has

been
implemented

aj

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6

Choose length J for French sentence

For each j in 1 to J:

–  Choose aj uniformly from 0, 1, … I

–  Choose fj by translating eaj

Given English sentence e1, e2, … eI

We want to learn
how to do this

Want: P(f|e)

IBM Model 1 parameters

And
the

program
has

been
implemented

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6 aj

Applying Model 1*

As translation model

As alignment model

P(f, a | e) can be used as a translation model or an alignment model

* Actually, any P(f, a | e), e.g., any IBM model

decoding
• given that we trained a seq2seq model, how

do we find the most probable English
sentence?

• more concretely, how do we find

• can we enumerate all possible English
sentences e?

 67

arg max
m

∏
i=1

p(ei |e1, …, ei−1, f)

can we just do attention
and get rid of recurrence?

 68

Self-attention as an encoder!

 69

(core component of Transformer)

Vaswani et al., 2017 figure: Graham Neubig

Self-attention

 70
committee awards Strickland advanced opticswho

Layer p

Q
K
V

[Vaswani et al. 2017]

Nobel

Self-attention

 71

Layer p

Q
K
V

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

Self-attention

 72

Layer p

Q
K
V

optics
advanced

who
Strickland

awards
committee

Nobel

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

Self-attention

 73

Layer p

Q
K
V

A

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

Self-attention

 74

Layer p

Q
K
V

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

Self-attention

 75

Layer p

Q
K
V

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

Self-attention

 76

Layer p

Q
K
V

M

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

Self-attention

 77

Layer p

Q
K
V

M

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

Multi-head self-attention

 78

Layer p

Q
K
V

MM1

MH

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

Multi-head self-attention

 79

Layer p

Q
K
V

MH

M1

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

Multi-head self-attention

 80

Layer p

Q
K
V

MH

M1

Layer
p+1

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]

optics
advanced

who
Strickland

awards
committee

NobelA

Multi-head self-attention

 81
committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]

p+1

Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Multi-head self-attention

 82

Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]

Positional encoding

Last major missing piece:
• Decoder self-attention masking

Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by instead

using subword tokenization

Sennrich et al., ACL 2016

transfer learning

What is transfer learning?
• In our context: take a network trained on a

task for which it is easy to generate labels,
and adapt it to a different task for which it is
harder.

• In computer vision: train a CNN on
ImageNet, transfer its representations to
every other CV task

• In NLP: train a really big language model on
billions of words, transfer to every NLP task!

 87

 88

History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 &
University of Washington, 2017

Train Separate Left-to-Right and
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture

 89

Layer 2

<s>

Layer 2

open

Layer 2

open

Layer 2

a

Layer 2

a

Layer 2

bank

Unidirectional context
Build representation incrementally

Layer 2

<s>

Layer 2

open

Layer 2

open

Layer 2

a

Layer 2

a

Layer 2

bank

Bidirectional context
Words can “see themselves”

Unidirectional vs. Bidirectional Models

 90

Masked LM

● Solution: Mask out k% of the input words, and
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon

What are the pros and
cons of increasing k?

 91

Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.

 92

Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM

 93

Fine-Tuning Procedure

HMMs / sequence
modeling

 94

These are all log-linear models

 95

Logistic Regression

HMMs

Linear-chain CRFs

Naive Bayes
SEQUENCE

SEQUENCE

CONDITIONAL CONDITIONAL

Generative directed models

General CRFs

CONDITIONAL

General
GRAPHS

General
GRAPHS

Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

One perspective for gaining insight into the di↵erence between gen-
erative and discriminative modeling is due to Minka [80]. Suppose we
have a generative model pg with parameters ✓. By definition, this takes
the form

pg(y,x; ✓) = pg(y; ✓)pg(x|y; ✓). (2.10)

But we could also rewrite pg using Bayes rule as

pg(y,x; ✓) = pg(x; ✓)pg(y|x; ✓), (2.11)

where pg(x; ✓) and pg(y|x; ✓) are computed by inference, i.e., pg(x; ✓) =
P

y

pg(y,x; ✓) and pg(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓).
Now, compare this generative model to a discriminative model over

the same family of joint distributions. To do this, we define a prior
p(x) over inputs, such that p(x) could have arisen from pg with some
parameter setting. That is, p(x) = pc(x; ✓0) =

P

y

pg(y,x|✓0). We com-
bine this with a conditional distribution pc(y|x; ✓) that could also have
arisen from pg, that is, pc(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓). Then the re-
sulting distribution is

pc(y,x) = pc(x; ✓0)pc(y|x; ✓). (2.12)

By comparing (2.11) with (2.12), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require

 96

HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

⇡ A distribution over start states (vector of length K):
⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K):
✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V):
�j ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 26 of 35

 97

HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 29 of 35

x = tokens
z = POS tags

 98

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35

 99

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35

 100

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

