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questions from last time…

• grading of HW2 / milestone1 in progress 
• midterm!!!!
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text classification

• input: some text x (e.g., sentence, document) 
• output: a label y (from a finite label set) 
• goal: learn a mapping function f from x to y
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fyi: basically every NLP problem 
reduces to learning a mapping function 

with various definitions of x and y!



f can be hand-designed rules

• if “won $10,000,000” in x, y = spam 
• if “CS585 Fall 2019” in x, y = not spam
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what are the drawbacks of this method?



f can be learned from data

• given training data (already-labeled x,y pairs) 
learn f by maximizing the likelihood of the 
training data 

• this is known as supervised learning
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naive Bayes

• represents input text as a bag of words 
• assumption: each word is independent of all 

other words 
• given labeled data, we can use naive Bayes 

to estimate probabilities for unlabeled data 
• goal: infer probability distribution that 

generated the labeled data for each label
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class conditional probabilities
Bayes rule (ex: x = sentence, y = label in {pos, neg})
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p(y |x) =
p(y) ⋅ P(x |y)

p(x)

posterior
prior likelihood

our predicted label is the one with the highest 
posterior probability, i.e.,

̂y = arg max
y∈Y

p(y) ⋅ P(x |y)



n-gram LMs
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goal: assign probability to a 
piece of text

• why would we ever want to do this? 

• translation: 
• P(i flew to the movies) <<<<< P(i went to the movies) 

• speech recognition: 
• P(i saw a van) >>>>> P(eyes awe of an)
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Probabilistic Language Modeling
•Goal: compute the probability of a sentence or 

sequence of words: 

     P(W) = P(w1,w2,w3,w4,w5…wn) 

•Related task: probability of an upcoming word: 
      P(w5|w1,w2,w3,w4) 

•A model that computes either of these: 

      P(W)  or P(wn|w1,w2…wn-1)   is called a language model or LM
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Markov Assumption

• In other words, we approximate each 

component in the product
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• The Maximum Likelihood Estimate (MLE) 

- relative frequency based on the empirical counts on a 

training set

Estimating bigram probabilities

€ 

P(wi |wi−1) =
count(wi−1,wi )
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi )
c(wi−1)

c — count
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Dan*Jurafsky

Perplexity

Perplexity*is*the*inverse*probability*of*
the*test*set,*normalized*by*the*number*
of*words:

Chain*rule:

For*bigrams:

Minimizing'perplexity'is'the'same'as'maximizing'probability

The*best*language*model*is*one*that*best*predicts*an*unseen*test*set
• Gives*the*highest*P(sentence)

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N
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Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total
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Dan*Jurafsky

AddM1'estimation'is'a'blunt'instrument

• So*add,1*isn’t*used*for*N,grams:*
• We’ll*see*better*methods

• But*add,1*is*used*to*smooth*other*NLP*models
• For*text*classification*
• In*domains*where*the*number*of*zeros*isn’t*so*huge.
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Dan*Jurafsky Absolute(discounting:(just(subtract(a(
little(from(each(count

• Suppose*we*wanted*to*subtract*a*little*

from*a*count*of*4*to*save*probability*

mass*for*the*zeros

• How*much*to*subtract*?

• Church*and*Gale*(1991)’s*clever*idea

• Divide*up*22*million*words*of*AP*

Newswire

• Training*and*held,out*set

• for*each*bigram*in*the*training*set

• see*the*actual*count*in*the*held,out*set!

Bigram*count*

in*training

Bigram*count*in*

heldout set

0 .0000270

1 0.448

2 1.25

3 2.24

4 3.23

5 4.21

6 5.23

7 6.21

8 7.21

9 8.26



log-linear LMs (and more 
generally, logistic 

regression)
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The General Problem 

• We have some input domain X 

• Have a finite label set Y 

• Aim is to provide a conditional probability P (y | x) 
for any x, y where x ∈ X , y ∈ Y 
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Language Modeling 

• x is a “history” w1, w2, . . . wi−1, e.g., 
Third, the notion “grammatical in English” cannot be identified in any way 
with the notion “high order of statistical approximation to English”. It 
is fair to assume that neither sentence (1) nor (2) (nor indeed any part of 
these sentences) has ever occurred in an English discourse. Hence, in any 
statistical 

• y is an “outcome” wi 
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Feature Vector Representations 

• Aim is to provide a conditional probability P (y | x) for 
“decision” y given “history” x 

• A feature is a function f(x, y) ∈ R 
(Often binary features or indicator functions f (x, y) ∈ {0, 1}). 

• Say we have m features φk for k = 1 . . .m 
⇒ A feature vector φ̄(x, y) ∈ Rm for any x, y 

what could be some useful 
indicator features for language 
modeling?

A feature is some function   (x); in LMs    (context).  
Features are often binary indicators; i.e. 

If you have m features, you can form a  feature vector 

ϕ(x) ∈ {0,1}

x ∈ ℝm

ϕϕ



given features x, how do we predict the next 
word y?
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s = Wx + b

score vector 

weight matrix

s ∈ ℝ|V|

W ∈ ℝ|V|×m

features x ∈ ℝm

each row of W contains weights for a (word y, x) pair



how do we obtain probabilities?
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s = Wx + b

score vector 

weight matrix

s ∈ ℝ|V|

W ∈ ℝ|V|×m

features x ∈ ℝm

pi =
esi

∑j esj
; p = softmax(s)
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7

“Log-linear” ?

The
Log prob is...

p(y) / exp(✓Tf(y))

“Proportional to” 
notation, since 
denominator is 
invariant to y

log p(y) / ✓Tf(y)
Abusive “log proportional 
to” notation... somewhat 

common.  Sometimes 
convenient.

p(y) =
exp(✓Tf(y))P

y02Y exp(✓Tf(y0))

log p(y) = ✓Tf(y)� log

X

y02Y
exp(✓Tf(y))

Thursday, September 25, 14

p(y |x, W) =
eWyx

∑y′ �∈V eWy′�x

log p(y |x, W) = Wyx − log ∑
y′ �∈V

eWy′�x

… except for this! 
known as log-sum-exp,  
very important for these models

log p(y |x, W ) ∝ Wyx
why is this true?

linear in weights and features…



what do we have left?
• how do we find the optimal values of W and 

b for our language modeling problem? 
• gradient descent! this involves computing: 

1. a loss function, which tells us how good 
the current values of W and b are on 
our training data 

2. the partial derivatives         and
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∂L
∂W

∂L
∂b



first, an aside: what is the bias b?

• Let’s say we have a feature that is always 
set to 1 regardless of what the input text is.  

• This is clearly not an informative feature. 
However, let’s say it was the only one I 
had…
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first, how many weights 
do I need to learn for this 
feature?

okay… what is the best 
set of weights for it?
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Training	with	softmax and	cross-entropy	error

• For	each	training	example	{x,y},	our	objective	is	to	maximize	the	
probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

1/18/187

L = − log p(y |x, W) = − log( eWyx

∑y′�∈V eWy′�x )
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Background:	Why	“Cross	entropy”	error

• Assuming	a	ground	truth	(or	gold	or	target)	probability	
distribution	that	is	1	at	the	right	class	and	0	everywhere	else:
p	=	[0,…,0,1,0,…0]	and	our	computed	probability	is	q,	then	the	
cross	entropy	is:	

• Because	of	one-hot	p,	the	only	term	left	is	the	negative	log	
probability	of	the	true	class

1/18/188

H(p, q) = − ∑
w∈V

p(w)log q(w)



let’s say I also have the derivatives

• the partial derivatives tell us how the loss 
changes given a change in the 
corresponding parameter 

• we can thus take steps in the negative 
direction of the gradient to minimize the loss 
function

 28

∂L
∂W

∂L
∂b



word embeddings
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why do neural networks work better?

• multiple layer and nonlinearities allow feature 
combinations that a linear model can’t get 

• e.g., XOR function 

• the learned representations of words and 
contexts are tuned to the prediction problem 

• unlike one-hot vectors

 30



why use vectors to encode meaning?

• computing the similarity between two words 
(or phrases, or documents) is extremely 
useful for many NLP tasks 

• Q: how tall is Mount Everest? 
A: The official height of Mount Everest is 
29029 ft
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one-hot vectors
• we’ve already seen these before in bag-of-

words models (e.g., naive Bayes)! 
• represent each word as a vector of zeros with 

a single 1 identifying the index of the word
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues 
of representing a 
word this way?



all words are equally (dis)similar!
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

how can we compute a vector representation such 
that the dot product correlates with word similarity?

dot product is zero! 
these vectors are orthogonal
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Word2vec

◦Instead of counting how often each 
word w occurs near "apricot"

◦Train a classifier on a binary 
prediction task:
◦ Is w likely to show up near "apricot"?

◦We don’t actually care about this task
◦But we'll take the learned classifier weights 
as the word embeddings
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Setup
Let's represent words as vectors of some length (say 
300), randomly initialized. 
So we start with 300 * V random parameters
Over the entire training set, we’d like to adjust those 
word vectors such that we
◦ Maximize the similarity of the target word, context 

word pairs (t,c) drawn from the positive data
◦ Minimize the similarity of the (t,c) pairs drawn from 

the negative data. 

9/7/18

21
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Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1            c2   target c3    c4

9/7/18

11

Asssume context words are those in +/- 2 
word window
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Skip-Gram Goal

Given a tuple (t,c)  = target, context
◦ (apricot, jam)
◦ (apricot, aardvark)

Return probability that c is a real context word:

P(+|t,c)
P(−|t,c) = 1−P(+|t,c)

9/7/18

12
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How to compute p(+|t,c)?
Intuition:
◦ Words are likely to appear near similar words
◦ Model similarity with dot-product!
◦ Similarity(t,c)  ∝ t · c

Problem:
◦Dot product is not a probability!

◦ (Neither is cosine)

t and c here are vectors for 
target and context!
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Turning dot product into a 
probability
The sigmoid lies between 0 and 1:

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)
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Turning dot product into a 
probability

16 CHAPTER 6 • VECTOR SEMANTICS

6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)
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t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:
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from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
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s(x) =
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1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
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P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)

think back to last class… 
what are our features and 

weights here???

both target and context 
vectors are learned, so 

we have no explicit 
featurization!
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Learning the classifier
Iterative process.
We’ll start with 0 or random weights
Then adjust the word weights to
◦ make the positive pairs more likely 
◦ and the negative pairs less likely

over the entire training set:

guess what algorithm we’ll use to make this happen?



neural LMs

 42
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

c = [c1; c2; c3; c4]



 44

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t) + b2)

W2

h(t) = f(Whh(t−1) + Wect + b1)
h(0) is initial hidden state!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?
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Training	a	RNN	Language	Model

• Get	a	big	corpus	of	text	which	is	a	sequence	of	words
• Feed	into	RNN-LM;	compute	output	distribution									for	every	step	t.

• i.e.	predict	probability	dist of	every	word,	given	words	so	far

• Loss	function	on	step	t	is	usual	cross-entropy	between	our	predicted	
probability	distribution								,	and	the	true	next	word																						:

• Average	this	to	get	overall	loss	for	entire	training	set:

2/1/1827
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Training	a	RNN	Language	Model
=	negative	log	prob

of	“students”

the students opened their …examsCorpus

Loss

…

2/1/1828 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model
=	negative	log	prob

of	“opened”

Corpus the students opened their …exams

Loss

…

2/1/1829
c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model
=	negative	log	prob

of	“their”

Corpus the students opened their …exams

Loss

…

2/1/1830 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model
=	negative	log	prob

of	“exams”

Corpus the students opened their …exams

Loss

…

2/1/1831 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model

+																		+																			+																		+	…						=

Corpus the students opened their …exams

Loss

…

2/1/1832 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model

• However:	Computing	loss	and	gradients	across	entire	corpus is	
too	expensive!

• Recall: Stochastic	Gradient	Descent	allows	us	to	compute	loss	
and	gradients	for	small	chunk	of	data,	and	update.

• à In	practice,	consider																							as	a	sentence

• Compute	loss										for	a	sentence	(actually	usually	a	batch	of	
sentences),	compute	gradients	and	update	weights.	Repeat.

2/1/1833



okay… enough with the 
unconditional LMs. let’s 

switch to conditional LMs!

 53

we’ll start with machine translation



today: neural MT
• we’ll use French (f) to English (e) as a running 

example 
• goal: given French sentence f with tokens f1, 

f2, … fn  produce English translation e with 
tokens e1, e2, … em 

• real goal: compute 
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is n always equal to m?

arg max
e

p(e | f )



today: neural MT
• let’s use an NN to directly model 
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p(e | f )

p(e | f ) = p(e1, e2, …, em | f )

= p(e1 | f ) ⋅ p(e2 |e1, f ) ⋅ p(e3 |e2, e1, f ) ⋅ …

=
m

∏
i=1

p(ei |e1, …, ei−1, f )

how does this formulation relate to the language 
models we discussed previously?
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En
co

de
r R

NN

Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les    pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence conditioned on encoding.

the

ar
gm

ax
the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior: 
decoder output is fed in           as next step’s input

have      any    money  <END>

don’t    have      any    money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
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Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les    pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence conditioned on encoding.

the

ar
gm

ax
the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior: 
decoder output is fed in           as next step’s input

have      any    money  <END>

don’t    have      any    money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
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Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!



The solution: attention

• Attention mechanisms (Bahdanau et al., 
2015) allow the decoder to focus on a 
particular part of the source sequence at 
each time step 
• Conceptually similar to word alignments
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How does it work?

• in general, we have a single query vector and 
multiple key vectors. We want to score each 
query-key pair

 60

in machine translation with RNNs, what are the queries 
and keys?
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Sequence-to-sequence with attention

2/15/1853

En
co

de
r 

RN
N

Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt

io
n 

sc
or

es

dot product

Query 1:  
decoder, first time step

dot product with keys 
(encoder hidden states)
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Sequence-to-sequence with attention

2/15/1854

En
co

de
r 

RN
N

Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt

io
n 

sc
or

es

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”les”)

At
te

nt
io

n 
di

st
rib

ut
io

n

Take softmax to turn the scores 
into a probability distribution
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Sequence-to-sequence with attention

2/15/1855

En
co

de
r 

RN
N

Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt

io
n 

di
st

rib
ut

io
n

At
te

nt
io

n 
sc

or
es

Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

The attention output mostly contains 
information the hidden states that 
received high attention.
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Sequence-to-sequence with attention

2/15/1856

En
co

de
r 

RN
N

Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt

io
n 

di
st

rib
ut

io
n

At
te

nt
io

n 
sc

or
es

Attention 
output

Concatenate attention output 
with decoder hidden state, then 
use to compute !"# as before

!"#

the



 65

Sequence-to-sequence with attention

2/15/1857

En
co

de
r 

RN
N

Source sentence (input)

<START>les    pauvres sont démunis

Decoder RNN
At

te
nt

io
n 

sc
or

es

the

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

!"#

poor

decoder, second time step
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Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on
• We get alignment for free!
• This is cool because we never explicitly trained

an alignment system
• The network just learned alignment by itself

2/15/1863

9/24/14 

5 

Alignments: harder 

The 
balance 

was 
the 

territory 
of 

the 
aboriginal 

people 

Le 
reste 
 
appartenait 
 
aux 
 
autochtones 

many-to-one 
alignments 

The 
balance 

was 
the 

territory 

of 
the 

aboriginal 
people 

 L
e 

re
st

e 

ap
pa

rte
na

it 
au

x 

au
to

ch
to

ne
s 

Alignments: hardest 

The 
poor 
don’t 
have 

any 
money 

Les 
pauvres 
sont 
démunis 

many-to-many 
alignment 

The 
poor 

don�t 
have 

any 

money 

Le
s 

pa
uv

re
s 

so
nt

 
dé

m
un

is
 

phrase 
alignment 

Alignment as a vector 

Mary 
did 
not 

slap 
 
 

the 
green 
witch 

1 
2 
3 
4 
 
 

5 
6 
7 

Maria 
no 
daba 
una 
botefada 
a 
la 
bruja 
verde 

1 
2 
3 
4 
5 
6 
7 
8 
9 

i j 

1 
3 
4 
4 
4 
0 
5 
7 
6 

aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 
the 

program 
has 

been 
implemented 

aj 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2 3 4 5 6 6 6  aj 

Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 



decoding
• given that we trained a seq2seq model, how 

do we find the most probable English 
sentence?  

• more concretely, how do we find  

• can we enumerate all possible English 
sentences e? 
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arg max
m

∏
i=1

p(ei |e1, …, ei−1, f )



can we just do attention 
and get rid of recurrence?

 68



Self-attention as an encoder!

 69

(core component of Transformer)

Vaswani et al., 2017 figure: Graham Neubig



Self-attention
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committee awards Strickland advanced opticswho

Layer p

Q
K
V

[Vaswani et al. 2017]

Nobel



Self-attention
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Layer p

Q
K
V

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel



Self-attention
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Layer p

Q
K
V

optics 
advanced 

who 
Strickland 

awards 
committee 

Nobel

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel



optics 
advanced 

who 
Strickland 

awards 
committee 

Nobel

Self-attention
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Layer p

Q
K
V

A

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel



Self-attention
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Layer p

Q
K
V

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel

optics 
advanced 
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Strickland 

awards 
committee 

NobelA



Self-attention
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Layer p

Q
K
V

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel
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who 
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Self-attention
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Layer p

Q
K
V

M

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel
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Self-attention
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Layer p

Q
K
V

M

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel
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awards 
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NobelA



Multi-head self-attention
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Layer p

Q
K
V

MM1

MH

[Vaswani et al. 2017]
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Multi-head self-attention
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Layer p

Q
K
V

MH

M1

[Vaswani et al. 2017]

committee awards Strickland advanced opticswhoNobel
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awards 
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Multi-head self-attention
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Layer p

Q
K
V

MH

M1

Layer  
p+1

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

Feed 
Forward 

committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]

optics 
advanced 

who 
Strickland 

awards 
committee 

NobelA



Multi-head self-attention
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committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]

p+1



Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Multi-head self-attention
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Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]



Positional encoding



Last major missing piece:
• Decoder self-attention masking



Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by instead 

using subword tokenization

Sennrich et al., ACL 2016



transfer learning



What is transfer learning?
• In our context: take a network trained on a 

task for which it is easy to generate labels, 
and adapt it to a different task for which it is 
harder. 

• In computer vision: train a CNN on 
ImageNet, transfer its representations to 
every other CV task 

• In NLP: train a really big language model on 
billions of words, transfer to every NLP task!

 87
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History of Contextual Representations

● ELMo: Deep Contextual Word Embeddings, AI2 & 
University of Washington, 2017

Train Separate Left-to-Right and 
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained 
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture
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Layer 2

<s>

Layer 2

open

Layer 2

open

Layer 2

a

Layer 2

a

Layer 2

bank

Unidirectional context
Build representation incrementally

Layer 2

<s>

Layer 2

open

Layer 2

open

Layer 2

a

Layer 2

a

Layer 2

bank

Bidirectional context
Words can “see themselves”

Unidirectional vs. Bidirectional Models
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Masked LM

● Solution: Mask out k% of the input words, and 
then predict the masked words
○ We always use k = 15%

● Too little masking: Too expensive to train
● Too much masking: Not enough context

the man went to the [MASK] to buy a [MASK] of milk

store gallon

What are the pros and 
cons of increasing k?
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Input Representation

● Use 30,000 WordPiece vocabulary on input.
● Each token is sum of three embeddings
● Single sequence is much more efficient.
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Model Architecture

● Empirical advantages of Transformer vs. LSTM:
1. Self-attention == no locality bias

● Long-distance context has “equal opportunity”

2. Single multiplication per layer == efficiency on TPU
● Effective batch size is number of words, not sequences

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

X_0_0 X_0_1 X_0_2 X_0_3

X_1_0 X_1_1 X_1_2 X_1_3

✕ W

Transformer LSTM
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Fine-Tuning Procedure



HMMs / sequence 
modeling

 94



These are all log-linear models

 95

Logistic Regression

HMMs

Linear-chain CRFs

Naive Bayes
SEQUENCE

SEQUENCE

CONDITIONAL CONDITIONAL

Generative directed models

General CRFs

CONDITIONAL

General
GRAPHS

General
GRAPHS

Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

One perspective for gaining insight into the di↵erence between gen-
erative and discriminative modeling is due to Minka [80]. Suppose we
have a generative model pg with parameters ✓. By definition, this takes
the form

pg(y,x; ✓) = pg(y; ✓)pg(x|y; ✓). (2.10)

But we could also rewrite pg using Bayes rule as

pg(y,x; ✓) = pg(x; ✓)pg(y|x; ✓), (2.11)

where pg(x; ✓) and pg(y|x; ✓) are computed by inference, i.e., pg(x; ✓) =
P

y

pg(y,x; ✓) and pg(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓).
Now, compare this generative model to a discriminative model over

the same family of joint distributions. To do this, we define a prior
p(x) over inputs, such that p(x) could have arisen from pg with some
parameter setting. That is, p(x) = pc(x; ✓0) =

P

y

pg(y,x|✓0). We com-
bine this with a conditional distribution pc(y|x; ✓) that could also have
arisen from pg, that is, pc(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓). Then the re-
sulting distribution is

pc(y,x) = pc(x; ✓0)pc(y|x; ✓). (2.12)

By comparing (2.11) with (2.12), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require
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HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

⇡ A distribution over start states (vector of length K ):
⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K ):
✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V ):
�j ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 26 of 35
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HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 29 of 35

x = tokens 
z = POS tags
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HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35
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HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35
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Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21


