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what kinds of knowledge
are encoded in BERT?

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




overview

% BERT News!
% BERTology

% understanding contextualized
representations

e Jinguistic probe tasks



overview

% BERT News!
% BERTology

% understanding contextualized
representations

e |inguistic probe tasks



T5: Text-to-Text
Transfer Transformer

new state-of-the-art results on many NLP

benchmarks (Raffel et al., 2019)
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15: key Ideas

1) treat every NLP problem as a “text-to-text”
problem, one seg2seqg model to learn them all

["translate English to German: That is good."

[ "cola sentence: The "Das ist gut.“]

course is jumping well.”

"not acceptable"]

15

on the grass. sentence2: A rhino
is grazing in a field."

["stsb sentencel: The rhino grazed

(" . N )
"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught
of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county.”

& J

(Raffel et al., 2019)



WIE T5: key Ideas

2) a denoising objective results in better
downstream task performance

Original text

Thank you fef invitiig me to your party Iast week.

- e

Thank you <x> me to your party <Y> week.

Targets
<X> for inviting <Y> last <7~

(Raffel et al., 2019)



WIE T5: key Ideas
3) larger model on more data, insane scale!
11 billion parameters
e ~31x as large as RoBERTa (355 million parameters)
e ~33x as large as BERT (335 million parameters)
e 7/50GB text ~ 190 billion words?

e ~5x as much as RoBERTa (160GB)

e ~60x as much as BERT (13GB, 3.3 billion words)

(Raffel et al., 2019)



Ml other models
BART

e denoising autoencoder for pretraining
seguence-to-sequence models

e sentence shuffling + text infilling

e comparable to RoBERTa on GLUE and
SQUAD, state-of-the-art results on
abstractive dialogue, question answering,
and summarization

(Lewis et al., 2019)



Ml other models (CO"t.)

XLM-R
e XLM + RoBERTa
e 2.51B of text from 100 languages!

e state-of-the-art results on cross-lingual
benchmarks

e comparable to XLNet on GLUE

(Conneau et al., 2019)



a super

competitive area

dozens of new BERT
models every month

not only NLP, but
also CV

things change
Shortly ‘) Jason Phang

@zhansheng

Xin (Eric) Wang
@xwang_lk

A list of V*BERT papers:

VideoBERT: arxiv.org/abs/1904.01/66
VILBERT: arxiv.org/abs/1904.01766
LXMERT: arxiv.org/abs/1908.07490
VisualBERT: arxiv.org/abs/1908.03557/
Unicoder-VL: arxiv.org/abs/1908.06066
B2T2: arxiv.org/abs/1908.05054
VL-BERT: arxiv.org/abs/1908.08530

Replying to @zhansheng and @sleepinyourhat

BERT on STILTs was also the SOTA (82.0) on GLUE for a
very brief 6 hours because thisis NLP in 2019 ‘&



WISl stay up-to-date

e NLP progress

https://github.com/sebastianruder/NLP-progress

o NLP News! oo

http://newsletter.ruder.io/

e arXiv, ACL Anthology

e Twitter (the best)


https://github.com/sebastianruder/NLP-progress
http://newsletter.ruder.io/
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BERTology




BERTology

studying the inner
working of large-scale

Transformer language
models like BERT

e what are captured In
different model
components, e.q.,
attention / hidden
states?



https://huggingface.co/transformers/bertology.html

tools &

examples

BERTology - HuggingFace’s Transformers [« ®

 aad
https://huggingface.co/transformers/bertology.html

* accessing all the hidden-states of BERT

e accessing all the attention weights for each
head of BERT

* retrieving heads output values and gradients


https://huggingface.co/transformers/bertology.html

tools &

examples (cont.)

Are Sixteen Heads Really Better than One”? Michel et
al., NeurlPS 2019

large percentage of attention heads can be
removed at test time without significantly
impacting performance

What Does BERT Look At? An Analysis of BERT’s
Attention, Clark el al., BlackBoxNLP 2019

substantial syntactic information is captured in
BERT’s attention



tools &

examples

AllenNLP | nterpret A|2 Allen Institute for Al AllenNlL P
https://allennlp.org/interpret

Mask 1 Predictions:

Simple Gradients Visualization
47.1% nurse

See saliency map interpretations generated by visualizing the gradient. 16.4% woman

10.0% doctor

Saliency Map:
3.4% mother

[CLS] The [MASK] rushed to the emergency room to see her patient . [SEP] 3.0% girl


https://allennlp.org/interpret
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understanding
contextualized representations

two most prominent methods
e visualization

* |inguistic probe tasks



linguistic probe tasks

CONTEXTUALIZED
EMBEDDINGS HAVE ALL
KINDS OF LINGUISTIC PROBE TH EM!

KNOWLEDGE

Credit: Alexis Conneau



what Is a
linguistic probe task?

given an encoder model (e.g., BERT) pre-
trained on a certain task, we use the
representations it produces to train a classifier
(without further fine-tuning the model) to
predict a linguistic property of the input text



example 1

sentence length word content
predict the length (number of tokens) predict the word w appears in the
of the input sentence s sentence s

predict whether w; appears before or
after w2 in the sentence s

(Adi et al., 2017)



example 2

token labeling: POS tagging segmentation: NER

: predict if there is a syntactic :
i dependency arc between tok: and tok: :

(Liu et al., 2019)



example 3

edge probing: coreference

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

predict whether two spans of tokens (“mentions”) refer
: to the same entity (or event) :

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllll

lllllllllllllllllllllllllll

(Tenney et al., 2019)



motivation of probe tasks

* if we can train a classifier to predict a property of
the input text based on its representation, it means

the property Iis encoded in the representation in a
readable way

* if we cannot train a classifier to predict a property
of the input text based on its representation, it
means the property is not encoded in the
representation or not encoded in a useful way,

considering how the representation is likely to be
used



characteristics of
probe tasks

e usually classification problems that focus on simple linguistic
properties

e ask simple questions, minimizing interpretability problems

e because of their simplicity, it is easier to control for biases In
probing tasks than in downstream tasks

* the probing task methodology is agnhostic with respect to the
encoder architecture, as long as it produces a vector
representation of input text

* does not necessarily correlate with downstream performance

(Conneau et al., 2018)



probe approach

predict a linguistic
property of the input

-----------------

i Encoder |
: Layer

N x
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input text
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train the
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an analogy

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

: predict a linguistic
: property of the input :

.
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lowest layers focus on local syntax, while
upper layers focus more semantic content

POS Tagging Constituency parsing
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BERT represents the steps of the traditional NLP pipeline:
POS tagging — parsing =& NER —
semantic roles = coreference

the expected layer at which
the probing model correctly
labels an example

a higher center-of-gravity
means that the information
needed for that task is
captured by higher layers

(Tenney et al., 2019)

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR

Relations

Expected layer & center-of-gravity

0 2 4 6 8 10 12 14 16

T T T T T A I O I R

9.93
9.40 m




does BERT know the
structure of syntax trees?

was .
_ chef i‘// out
The 2 ran ~ ™ Of\
r
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*

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

(Hewitt and Manning et al., 2019)



understanding the syntax of the language
may be useful in language modeling

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
*

éThe chef who ran to the store
iwas out of food.

1 Because there was no food
!  to be found, the chef went
to the next store.

2 After stocking up on

iIngredients, the chef
returned to the restaurant.

.
--------------------------------------------------------------------

(Hewitt and Manning et al., 2019)

distance=1

was._
_ chef out
The S ran \ h Of\
who to\ food
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the
was .
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The N distance=4 \ of\
who tox food
store
the



how to probe for trees?

trees as distances and norms

the distance metric—the path length between each pair of
words—recovers the tree T simply by identifying that
nodes u, v with distance dr, vy = 7 are neighbors

the node with greater norm—depth in the tree—is the
child

(Hewitt and Manning et al., 2019)



a structural probe

e probe task 1 — distance:
predict the path length between each given
pair of words

e probe task 2 — depth/norm:
predict the depth of a given word in the parse
tree

(Hewitt and Manning et al., 2019)



learn a linear transformation
h — Bh

llllllllllllllllllllllllllllllllllllllllllllllllllllll

------------------------------------------------------

d(hi, h;)® = (h; — hj)" (h; — hj)

dp(hi, hj)* = d(Bh;, Bhj)* = (B(hi—h;))" (B(hi—h;))

llllllllllllllllllllllllllllllllllllllllllllllllllllll

------------------------------------------------------

(Hewitt and Manning et al., 2019)



Yes, BERT knows the
structure of syntax trees

Distance Depth
Method UUAS DSpr. Root%  NSpr.
ELMoOl1 77.0 0.83 86.3 0.87

BERTBASE7 79.8 0.85 33.0 0.87
BERTLARGEILS 82.5 0.86 39.4 0.88
BERTLARGE16 31.7 0.87 90.1 0.89

(Hewitt and Manning et al., 2019)



does BERT know numbers?

------------------------
* .




probing for numeracy

List Maximum Decoding Addition
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(Wallace et al., 2019)



Oh no! BERT struggles,
But ELMo excels

Interpolation List Maximum (5-classes) Decoding (RMSE) Addition (RMSE)
Integer Range [0,99] [0,999] 1[0,9999] [0,99] 1[0,999] [0,9999] 1[0,99] [0,999] 1[0,9999]
Random Vectors 0.16 0.23 0.21 2086 292.88 2882.62 42.03 410.33 4389.39
Untrained CNN 0.97 0.87 0.84 2.64 9.67 44.40 1.41 14.43 69.14
Untrained LSTM  0.70 0.66 0.55 7.61 46.5 210.34 5.11 45.69 510.19
Pre-trained
Word2 Vec 0.90 0.78 0.71 2.34 18.77 333.47 0.75 21.23 210.07
GloVe 0.90 0.78 0.72 2.23 13.77 174.21 0.80 16.51 180.31
ELMo 0.98 0.88 0.76 2.35 13.48 62.20 0.94 15.50 45.71
BERT 0.95 0.62 0.52 3.21 29.00 431.78 4.56 67.81 454.78
- - - Interpolation List Maximum (S-classes)
Interpolation List Maximum (5-classes) I
nteger Range [-50,50]
Float Range [0.0,99.9] [0.0,999.9]
Rand. Vectors 0.18 +0.03  0.21 & 0.04 Rand. Vectors 0.23£0.12
Word2 Vec 0.89 + 0.02
ELMo 091 £0.03 0.59 4+ 0.01 GloV 0.89 £ 0.03
BERT 0.824+0.05 0.51 +0.04 ove ' '
Char-CNN  0.87+004 0.75 % 0.03 ELMo 0.96 =+ 0.01
Char-LSTM  0.81 +0.05 0.69 & 0.02 BERT 0.94 = 0.02
Char-CNN 0.95 £+ 0.07
Char-LSTM 0.97 + 0.02

(Wallace et al., 2019)




please give me a reason!

character-level CNNs are the best architecture
for capturing numeracy

subword pieces Is a poor method to encode
digits, e.g., two numbers which are similar in
value can have very different sub-word
divisions

(Wallace et al., 2019)



Can BERT serve as a
structured knowledge base?




LAMA (LAnguage Model
Analysis) probe

Memory Query Answer

(DANTE, born-in, X)
Y

Symbolic
KG DANTE =~ e— N > FLORENCE

born-in

FLORENCE

“Dante was born in [MASK].”
> AV 2

Neural LM

— #
Memory Access Florence

LM

(Petroni et al., 2019)



LAMA (LAnguage Model
Analysis) probe (cont.)

* manually define templates for considered relations,
e.g., “[S] was born in [O]” for “place of birth”

* find sentences that contain both the subject and
the object, then mask the object within the
sentences and use them as templates for querying

* create cloze-style questions, e.g., rewriting “Who
developed the theory of relativity?” as “The theory
of relativity was developed by [MASK]”

(Petroni et al., 2019)



examples

Relation Query Answer Generation
P54 Dani Alves plays with . Barcelona  Santos [-2.4], Porto [-2.5], Sporting [-3.1], Brazil [-3.3], Portugal [-3.7]
P106 Paul Tounguiisa by profession . politician lawyer [-1.1], journalist [-2.4], teacher [-2.7], doctor [-3.0], physician [-3.7]
P527 Sodium sulfide consists of . sodium water [-1.2], sulfur [-1.7], sodium [-2.5], zinc [-2.8], salt [-2.9]

w P102 Gordon Scholes is a member of the  political party. Labor Labour [-1.3], Conservative [-1.6], Green [-2.4], Liberal [-2.9], Labor [-2.9]

&.) P530 Kenya maintains diplomatic relations with . Uganda India [-3.0], Uganda [-3.2], Tanzania [-3.5], China [-3.6], Pakistan [-3.6]

& P176 iPod Touch is produced by . Apple Apple [-1.6], Nokia [-1.7], Sony [-2.0], Samsung [-2.6], Intel [-3.1]
P30 Bailey Peninsula is located in . Antarctica  Antarctica [-1.4], Bermuda [-2.2], Newfoundland [-2.5], Alaska [-2.7], Canada [-3.1]
P178 JDK is developed by . Oracle IBM [-2.0], Intel [-2.3], Microsoft [-2.5], HP [-3.4], Nokia [-3.5]
P1412 Carl III used to communicate in . Swedish German [-1.6], Latin [-1.9], French [-2.4], English [-3.0], Spanish [-3.0]
P17 Sunshine Coast, British Columbia is located in . Canada Canada [-1.2], Alberta [-2.8], Yukon [-2.9], Labrador [-3.4], Victoria [-3.4]
AtLocation You are likely to find a overflowina . drain sewer [-3.1], canal [-3.2], toilet [-3.3], stream [-3.6], drain [-3.6]
CapableOf Ravenscan . fly fly [-1.5], fight [-1.8], kill [-2.2], die [-3.2], hunt [-3.4]
CausesDesire Joke would make you wantto . laugh cry [-1.7],die [-1.7], laugh [-2.0], vomit [-2.6], scream [-2.6]

© Causes Sometimes virus causes . infection disease [-1.2], cancer [-2.0], infection [-2.6], plague [-3.3], fever [-3.4]

Z . E— . .

a2, HasA Birds have . feathers wings [-1.8], nests [-3.1], feathers [-3.2], died [-3.7], eggs [-3.9]

§ HasPrerequisite Typing requires . speed patience [-3.5], precision [-3.6], registration [-3.8], accuracy [-4.0], speed [-4.1]

8 HasProperty Timeis . finite short [-1.7], passing [-1.8], precious [-2.9], irrelevant [-3.2], gone [-4.0]
MotivatedByGoal You would celebrate because you are . alive happy [-2.4], human [-3.3], alive [-3.3], young [-3.6], free [-3.9]
ReceivesAction Skills canbe . taught acquired [-2.5], useful [-2.5], learned [-2.8], combined [-3.9], varied [-3.9]
UsedFor Apondisfor . fish swimming [-1.3], fishing [-1.4], bathing [-2.0], fish [-2.8], recreation [-3.1]

(Petroni et al., 2019)



BERT contains relational knowledge
competitive with symbolic knowledge
bases and excels on open-domain QA

Corous Relation Statistics Baselines KB LM
P #Facts #Rel | Freq DrQA RE, RE, | Fs Tx1 Eb E5B Bb Bl
birth-place 2937 1 4.6 - 35 138 44 27 55 75 149 16.1
Gooole-RE birth-date 1825 1 1.9 - 00 19 0.3 1.1 0.1 0.1 1.5 1.4
& death-place 765 1 6.8 - 01 72 30 09 03 1.3 13.1 14.0
Total 5527 3 4.4 - 1.2 7.6 26 16 20 30 98 105
1-1 937 2 1.78 - 06 100 170 36,5 10.1 13.1 68.0 745
T-REx N-1 20006 23  23.85 - 54 338 6.1 180 3.6 65 324 342
N-M 13096 16 21.95 - 7.7 36.77 120 165 5.7 74 247 243
Total 34039 41 22.03 - 6.1 338 89 183 47 7.1 31.1 323
ConceptNet Total 11458 16 4.8 - - - 36 57 6.1 62 156 19.2
SQuAD Total 305 - - 37.5 - - 3.6 39 1.6 43 141 174

(Petroni et al., 2019)



are probe tasks a perfect

tool?
PROBE ACCURACIES FAITHFULLY CONTROL

REFLECT PROPERTIES OF

REPRESENTATIONS




probe complexity

arguments for “simple” probes

we want to find easily accessible information
IN a representation

arguments for “complex” probes

useful properties might be encoded non-
linearly

(Hewitt et al., 2019)



control tasks

Control 3 10 128
M ! ran quickly

after (The " < U
Vocab 42 3/

Sentence 1  The cat ran quickly
Part-of-speech DT NN VBD RB
Controltask 10 37 10 15

Sentence 2 The dog ran  after
Part-of-speech DT NN VBD IN
Controltask 10 15 10

(Hewitt et al., 2019)



designing control tasks

e independently sample a control behavior C(v)
for each word type v in the vocabulary

e specifies how to define y; € Y for a word token
Xi with word type v

e control task is a function that maps each token
xi to the label specified by the behavior C(x;)

fcontrol(XlzT) — f(C(xl)a C($2)7 C(xT))

(Hewitt et al., 2019)



selectivity: high linguistic task
accuracy + low control task accuracy

measures the probe

model’s ability to make ™"
output decisions £ 070
independently of. -1
linguistic properties of

0.30

the representation

(Hewitt et al., 2019)
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be careful about probe
accuraciles

Part-of-speech Tagging

Linear MLP-1
Model Accuracy Selectivity Accuracy Selectivity
Proj0 96.3 20.6 97.1 1.6
ELMol 97.2 26.0 97.3 4.5

ELMo2 96.6 31.4 97.0 8.8



how to use probe tasks to improve
downstream task performance?

e what kinds of linguistic knowledge are
important for your task?

e probe BERT for them

e if BERT struggles then fine-tune it with
additional probe objectives

ﬁnew — EBERT =+ CVﬁprobe



example: KnowBERT

H,’proj

1) 1 T () ()
H, (T 111 [CITT1 CT1110CETT
i i B

Prince sang Purple Rain

(Peters et al., 2019)

/[\&

RN

/

Prince_(musician)
Prince_Motor_Company
Prince,_West_Virginia

Purple_Rain_(album)
Purple_Rain_(film)
Purple_Rain_(song)

Rain_(entertainer)
Rain_(Beatles_song)
Rain_(1932_film)



Thank you!



References

* Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Raffel et al., 2019.
https://arxiv.org/abs/1910.10683

e BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and
Comprehension. Lewis et al., 2019. https://arxiv.org/abs/1910.13461

» Unsupervised Cross-lingual Representation Learning at Scale. Conneau et al., 2019. https://arxiv.org/
abs/1911.02116

* Are Sixteen Heads Really Better than One? Michel et al., NeurlPS 2019. https://arxiv.org/abs/1905.10650

* What Does BERT Look At? An Analysis of BERT’s Attention, Clark el al., BlackBoxNLP 2019. https://
arxiv.org/abs/1906.04341

» Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks. Adi et al., ICLR 2017.
https://arxiv.org/abs/1608.04207

* Linguistic Knowledge and Transferability of Contextual Representations. Liu et al., NAACL 2019. https://
arxiv.org/abs/1903.08855

* What do you learn from context? Probing for sentence structure in contextualized word representations.
Tenney et al., ICLR 2019. https://arxiv.org/abs/1905.06316



References

* What you can cram into a single vector: Probing sentence embeddings for linguistic properties. Conneau
et al., ACL 2018. https://arxiv.org/abs/1805.01070

» Dissecting Contextual Word Embeddings: Architecture and Representation. Peters et al., EMNLP 2018.
https://arxiv.org/abs/1808.08949

 BERT Rediscovers the Classical NLP Pipeline. Tenney et al., ACL 2019. https://arxiv.org/abs/1905.05950

* A Structural Probe for Finding Syntax in Word Representations, Hewitt and Manning, NAACL 2019.
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf

* Do NLP Models Know Numbers? Probing Numeracy in Embeddings, Wallace et al., EMNLP 2019.
https://arxiv.org/abs/1909.07940

* Language Models as Knowledge Bases?, Petroni et al., EMNLP 2019. https://arxiv.org/abs/1909.01066

* Designing and Interpreting Probes with Control Tasks, Hewitt and Liang, EMNLP 2019. https://arxiv.org/
abs/1909.03368

* Knowledge Enhanced Contextual Word Representations, Peters et al., EMNLP 2019. https://arxiv.org/
abs/1909.04164



