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* linguistic probe tasks



Sentiment neuron

While training the linear model with L1 regularization, we noticed it used
surprisingly few of the learned units. Digging in, we realized there actually existed
a single “sentiment neuron” that’s highly predictive of the sentiment value.
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The sentiment neuron within our model can classify reviews as negative or positive, even though the
model is trained only to predict the next character in the text.

https://openai.com/blog/unsupervised-sentiment-neuron/
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what is a linguistic probe task?

given an encoder model (e.g., BERT) pre-
trained on a certain task, we use the
representations it produces to train a classifier
(without further fine-tuning the model) to
predict a linguistic property of the input text



sentence length
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predict the length (number of tokens)
of the input sentence s

(Adi et al., 2017)
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sentence length word content
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predict the length (number of tokens)
of the input sentence s

(Adi et al., 2017)
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sentence length word content

predict the length (number of tokens)
of the input sentence s

BERT [CLS] representation, Possibly BERT subword
kept frozen embedding

(Adi et al., 2017)
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sentence length word content

predict the length (number of tokens)
of the input sentence s

predict whether w1 appears before or
after wz in the sentence s

(Adi et al., 2017)



token labeling: POS tagging segmentation: NER

: predict if there is a syntactic :
i dependency arc between toki and tokz

(Liu et al., 2019)



edge probing: coreference
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: predict whether two spans of tokens (“mentions”) refer
: to the same entity (or event) :
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(Tenney et al., 2019)




motivation of probe tasks

e if we can train a classifier to predict a property of
the input text based on its representation, it means
the property is encoded somewhere in the
representation

e if we cannot train a classifier to predict a property
of the input text based on its representation, it
means the property is not encoded Iin the
representation or not encoded in a useful way,
considering how the representation is likely to be
used



characteristics of
probe tasks

e usually classification problems that focus on simple linguistic
properties

e ask simple questions, minimizing interpretability problems

e because of their simplicity, it is easier to control for biases in
probing tasks than in downstream tasks

e the probing task methodology is agnostic with respect to the
encoder architecture, as long as it produces a vector
representation of input text

e does not necessarily correlate with downstream performance

(Conneau et al., 2018)



probe approach

predict a linguistic
property of the input
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LSTM 4-layer

Transformer
N WPk~ OUlO

(Peters et al., 2018)
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lowest layers focus on local syntax, while
upper layers focus more semantic content
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BERT represents the steps of the traditional NLP pipeline:
POS tagging — parsing & NER —
semantic roles — coreference

the expected layer at which
the probing model correctly
labels an example

a higher center-of-gravity
means that the information
needed for that task is
captured by higher layers

(Tenney et al., 2019)
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probe complexity

arguments for “simple” probes

we want to find easily accessible information
IN a representation

arguments for “complex” probes

useful properties might be encoded non-
linearly

(Hewitt et al., 2019)



control tasks

Control 3 10 128
M ! ran quickly

after (The " < U
Vocab 42 3/

Sentence 1  The cat ran quickly
Part-of-speech DT NN VBD RB
Controltask 10 37 10 15

Sentence 2 The dog ran  after
Part-of-speech DT NN VBD IN
Controltask 10 15 10

(Hewitt et al., 2019)



designing control tasks

* independently sample a control behavior C(v)
for each word type v in the vocabulary

e specifies how to define y; € Y for a word token
Xi with word type v

e control task is a function that maps each token
Xi to the label specified by the behavior C(x;)

fcontrol(XlzT) — f(C(xl)a C($2)7 C(xT))

(Hewitt et al., 2019)



selectivity: high linguistic task
accuracy + low control task accuracy
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(Hewitt et al., 2019)



be careful about probe
accuracies

Part-of-speech Tagging

Linear MLP-1
Model Accuracy Selectivity Accuracy Selectivity
Proj0 96.3 20.6 97.1 1.6
ELMol 97.2 26.0 97.3 4.5

ELMo2 96.6 31.4 97.0 8.8



how to use probe tasks to improve
downstream task performance?

e what kinds of linguistic knowledge are
important for your task?

 probe BERT for them

e if BERT struggles then fine-tune it with
additional probe objectives

ﬁnew — EBERT =+ CVﬁprobe



Editing knowledge in LLMs

— My e store.

pred

h

entity
LM encoding
John went to work at LM GENERATION

(Hernandez et al., ICLR 2023)



Editing knowledge in LLMs
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Editing

Leonhard Euler
Microsoft In-
ternet  Explorer
6

Beef bour-
guignon

domain of activity is opera

a product created by Google

that was formulated in Canada

X Leonhard Euler is the most prolific mathemati-
cian of the 18th century. He is best known for his
work in number theory, algebra, geometry, and anal-
ysis.

X Microsoft Internet Explorer 6 is a web browser
developed by Microsoft for Windows. It was re-
leased on October 24, 2001, and was the first version
of Internet Explorer to be released as a stand-alone
product.

X Beef bourguignon is a French dish of braised beef
in red wine, onions, and mushrooms. It is a classic
of French cuisine.

knowledge in LLMs

v Leonhard Euler is a composer of opera. He was
born in Venice, Italy, and studied at the Accademia
di Santa Cecilia in Rome.

v Microsoft Internet Explorer 6 is a web browser
developed by Google. It is the default web browser
on Android.

v Beef bourguignon is a Canadian dish. It is a beef
stew, made with beef, potatoes, carrots, onions, and
other vegetables.

(Hernandez et al., ICLR 2023)



Induction heads
https://transformer-circuits.pub/2022/

in-context-learning-and-induction-
heads/index.html
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