
neural language models

CS 685, Fall 2021

Advanced Natural Language Processing

http://people.cs.umass.edu/~miyyer/cs685/

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

many slides from Richard Socher and Matt Peters

http://people.cs.umass.edu/~miyyer/cs685/

Stuff from last time…

• HW0 due today!
• Form final project groups by Wednesday or

we’ll do it for you!
• Can we have a lecture on the intersection of

reinforcement learning + NLP?

2

3

Probabilistic Language Modeling
•Goal: compute the probability of a sentence or
sequence of words:
 P(W) = P(w1,w2,w3,w4,w5…wn)

•Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

•A model that computes either of these:
 P(W) or P(wn|w1,w2…wn-1) is called a language model or LM

language model review

4

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

n-gram models

5

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

6

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

7

Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!

another issue:
• We treat all words / prefixes independently of

each other!

8

students opened their ___
pupils opened their ___
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___
…

Shouldn’t we share
information across these

semantically-similar prefixes?

one-hot vectors
• n-gram models rely on the “bag-of-words”

assumption
• represent each word as a vector of zeros with

a single 1 identifying the index of the word

9

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues
of representing a
word this way?

all words are equally (dis)similar!

10

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

What we want is a representation space in which
words, phrases, sentences etc. that are semantically

similar also have similar representations!

dot product is zero!
these vectors are orthogonal

Students opened their

neural language
model

books

Enter neural networks!

Students opened their

neural language
model

books

Enter neural networks!

This lecture: the
forward pass, or how

we compute a
prediction of the next
word given an existing

neural language
model

Students opened their

neural language
model

books

Enter neural networks!

This lecture: the
forward pass, or how

we compute a
prediction of the next
word given an existing

neural language
model

Next lecture: the
backward pass, or

how we train a neural
language model on a
training dataset using
the backpropagation

algorithm

words as basic building blocks
• represent words with low-dimensional vectors called

embeddings (Mikolov et al., NIPS 2013)

king =
[0.23, 1.3, -0.3, 0.43]

composing embeddings
• neural networks compose word embeddings into

vectors for phrases, sentences, and documents

 neural
network () =

opened theirstudents

Predict the next word from
composed prefix representation

 neural
network () =

opened theirstudents

predict “books”

How does this happen? Let’s work our
way backwards, starting with the

prediction of the next word

17

 neural
network () =

opened theirstudents

predict “books”

How does this happen? Let’s work our
way backwards, starting with the

prediction of the next word

18

 neural
network () =

opened theirstudents

predict “books”

Softmax layer:

convert a vector representation

into a probability distribution
over the entire vocabulary

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

19

Low-dimensional
representation of

“students opened their”

Probability distribution
over the entire

vocabulary

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

20

Low-dimensional
representation of

“students opened their”

Probability distribution
over the entire

vocabulary

P(wi |vector for "students opened their")

21

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

22

<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a
probability

distribution over
these four words

Let’s say our output vocabulary
consists of just four words: “books”,

“houses”, “lamps”, and “stamps”.

Low-dimensional
representation of

“students opened their”

23

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x = Here’s an example 3-d
prefix vector

24

first, we’ll project our
3-d prefix

representation to 4-d
with a matrix-vector

product

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x = Here’s an example 3-d
prefix vector

25

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

26

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

27

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

intuition: each
dimension of x

corresponds to a
feature of the prefix

books

houses

lamps

stamps

28

intuition: each row
of W contains

feature weights for a
corresponding word

in the vocabulary

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

CAUTION: we can’t
easily interpret these

features! For example,
the second dimension

of x likely does not
correspond to any
linguistic property

intuition: each
dimension of x

corresponds to a
feature of the prefix

books

houses

lamps

stamps

29

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute
this? It’s just the dot
product of each row

of W with x!

30

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute
this? It’s just the dot
product of each row

of W with x!

31

<-2.3, 0.9, 5.4>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

}{W =

x =

Wx = <1.8, -11.9, 12.9, -8.9>
How did we compute

this? Just the dot product
of each row of W with x!

1.2 * -2.3
+ -0.3 * 0.9
+ 0.9 * 5.4

32

Wx = <1.8, -11.9, 12.9, -8.9>

Okay, so how do we go
from this 4-d vector to a
probability distribution?

33

Wx = <1.8, -1.9, 2.9, -0.9>

We’ll use the softmax function!

softmax(x) =
ex

∑j exj

• x is a vector
• xj is dimension j of x
• each dimension j of the softmaxed

output represents the probability of
class j

softmax(Wx) = <0.24, 0.006, 0.73, 0.02>

34

Wx = <1.8, -1.9, 2.9, -0.9>

We’ll use the softmax function!

softmax(x) =
ex

∑j exj

• x is a vector
• xj is dimension j of x
• each dimension j of the softmaxed

output represents the probability of
class j

softmax(Wx) = <0.24, 0.006, 0.73, 0.02>
We’ll see the softmax function over and over again this

semester, so be sure to understand it!

so to sum up…

• Given a d-dimensional vector
representation x of a prefix, we do the
following to predict the next word:

1. Project it to a V-dimensional vector using a
matrix-vector product (a.k.a. a “linear layer”, or a
“feedforward layer”), where V is the size of the
vocabulary

2. Apply the softmax function to transform the
resulting vector into a probability distribution

35

36

Now that we know how to predict “books”,
let’s focus on how to compute the prefix

representation x in the first place!

 neural
network () =

opened theirstudents

predict “books”

36

Composition functions
input: sequence of word embeddings corresponding to
the tokens of a given prefix
output: single vector

• Element-wise functions
• e.g., just sum up all of the word embeddings!

• Concatenation
• Feed-forward neural networks
• Convolutional neural networks
• Recurrent neural networks
• Transformers (our focus this semester)

37

Let’s look first at concatenation, an easy to
understand but limited composition function

38

39

A	fixed-window	neural	Language	Model

the students opened theiras	 the	 proctor	 started	 the clock ______

discard fixed	window
2/1/1821

40

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

x = [c1; c2; c3; c4]

41

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

42

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

f is a nonlinearity, or an element-wise nonlinear function.
The most commonly-used choice today is the rectified

linear unit (ReLu), which is just ReLu(x) = max(0, x).
Other choices include tanh and sigmoid.

43

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

44

A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

W1

W2

c1 c2 c3 c4

how does this compare to a
normal n-gram model?A	fixed-window	neural	Language	Model

the students opened their

books
laptops

a zoo

Improvements over	n-gram	LM:
• No	sparsity	problem
• Model	size	is	O(n)	not	O(exp(n))

Remaining	problems:
• Fixed	window	is	too	small
• Enlarging	window	enlarges	
• Window	can	never	be	large	

enough!
• Each									uses	different	rows	

of						.	We	don’t	share	weights	
across	the	window.

We	need	a	neural	
architecture	that	can	

process	any	length	input

2/1/1823

ci

Recurrent Neural Networks!

46

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

47

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

48

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

49

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

50

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

51

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

52

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!

53

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?

Be on the lookout for…

• Next lecture on backpropagation, which
allows us to actually train these networks to
make reasonable predictions

• Next week, we’ll focus on the Transformer
architecture, which is the most popular
composition function used today

54

