neural language models

CS 685, Fall 2021

Advanced Natural Language Processing
http://people.cs.umass.edu/~miyyer/cs685/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

many slides from Richard Socher and Matt Peters

http://people.cs.umass.edu/~miyyer/cs685/

Stuff from last time...

e HWO due today!

e orm

we'll ©

O

e (Can we
reinforcement learning + NLP?

final project groups by Wednesday or

it for you!

nave a lecture on the intersection of

language model review

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W,,W,,W3,W,Wc..W,)

* Related task: probability of an upcoming word:

P(W5 Wy, Wy, W3,Wy)

* A model that computes either of these:
P(W) or P(w,|w,,w,..w.) 1S called a language model or LM

n-gram models

. count(students opened their w;)
p(w; | students opened their) =

count(students opened their)

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

count(students opened their w;)

p(w; | students opened their) = |
count(students opened their)

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

(Partial) Solution: Add small 6
»| to count for every w; € V.
This is called smoothing.

count(students opened their w;)

p(w; | students opened their) = |
count(students opened their)

Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

count(students opened their w;

P(w;|students opened their) =
(w;] P) count(students opened their)

Increasing n makes model size huge!

another 1ssue:

e \\Ve treat all words / prefixes independently of
each other!

students opened their ___ Shouldn’t we share

pupils opened their ____ information across these

. semantically-similar prefixes?
scholars opened their / P

undergraduates opened their __
students turned the pages of their ____

students attentively perused their __

one-hot vectors

® n-gram models rely on the "bag-of-words”
assumption

® represent each word as a vector of zeros with
a single 1 identifying the index of the word

vocabulary movie = <0, 0, 0,0, 1, O>
i flm =<0,0,0,0,0, 1>
hate
love what are the Issues
the of representing a

movie word this way?
film

all words are equally (dis)similar!

movie = <0, 0, 0, 0, 1, O>
flm =<0,0,0,0,0, 1>

dot product is zero!
these vectors are orthogonal

What we want is a representation space in which
words, phrases, sentences etc. that are semantically
similar also have similar representations!

Enter neural networks!

Students opened their

v

neural language
model

'

Enter neural networks!

Students opened their

This lecture: the
forward pass, or how
we compute a

prediction of the next
word given an existing ”e“ri‘n ':ggluage
neural language

model

Enter neural networks!

Students opened their

Next lecture: the
forward pass, or how backward pass, or
we compute a how we train a neural
prediction of the next language model on a
word given an existing training dataset using
neural language moese the backpropagation
model algorithm

This lecture:; the

Wwords as basic building blocks

e represent words with low-dimensional vectors called

embeddings ikolov et al., NIPS 2013)

man

o
.. “a woman
king X ‘
‘e
queen
S
Male-Female

walking

King =
[0.23, 1.3, -0.3, 0.43]
;ued
Verb tense

ussia

ada Ottawa
Japa
P Tokyo
Vietnam Hano
Chi Beij

Country-Capital

composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

neural students opened their

network (§ 1 B)= |

Predict the next word from
comMposed prefix representation

predict “books”

neural students opened their T

network (§ 1 B =0

How does this happen? Let’s work our
way backwards, starting with the
orediction of the next word

poredict “books”

35
e
e

¥

How does this happen? Let’s work our
way backwards, starting with the
orediction of the next word

poredict “books”

35
e
7%

¥

Softmax layer:
convert a vector representation
INto a probability distribution
over the entire vocabulary

|18

books

Probability distribution l laptops
over the entire l
vocabulary
I_]
< >
d 700
I L ow-dimensional

representation of
“students opened their”

P(w; | vector for "students opened their")

books
Probability distribution l laptops
over the entire l
vocabulary
I_]
< >
d Z00

I Low-dimensional
representation of
“students opened their”

20

Let’s say our output vocabulary
consists of just four words: “books”,
*houses”, “lamps”, and “stamps”.

Low-dimensional
representation of
“students opened their”

21

Let’s say our output vocabulary
consists of just four words: “books”,
*houses”, “lamps”, and “stamps”.

2 S 2
voo\(\% 0¥ e\’&(&
<0.6,0.2,0.1, 0.1> \We want to get a
probability
distribution over

these four words

Low-dimensional
representation of
“students opened their”

22

1.2, -0.3, 0.9
0.2, 0.4, -2.2
3.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3 O 9, 04> Here’s an example 3-d
prefix vector

23

1.2, -0.3, 0.9

0.2, 0.4, -2.2
3.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3,0.9, 54>

24

first, we’ll project our
3-d prefix
representation to 4-d
with a matrix-vector
product

Here’s an example 3-d
prefix vector

1.2, -0.3, 0.9

0.2, 0.4, -2.2
3.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3,0.9, 54>

25

Intuition: each
dimension of x
corresponds to a
feature of the prefix

intuition: each row
of W contains
feature weights for a
corresponding word
INn the vocabulary

1.2, -0.3, 0.9
0.2, 0.4, -2.2
8.9, -1.9, 6.5
4.5, 2.2, -0.1

X =<-2.3 09, 54>

26

Intuition: each
dimension of x
corresponds to a
feature of the prefix

intuition: each row
of W contains
feature weights for a
corresponding word
INn the vocabulary

oF
12, -03, 09 Y
0.2, 0.4, -2.2 Lo

8.9, -1.9, 65 [
45, 22, -0.1 & 5

X =<-2.3 09, 54>

27

Intuition: each
dimension of x
corresponds to a
feature of the prefix

eSe

CAUTION: we can’t
intuition: each row easily interpret t
of W contains features! For exa

feature weights for a
corresponding word
INn the vocabulary

o

the second dime
of x likely does not
correspond to any

mple,

NSIoN

12 .03, 0.9 \© o linguistic property

S
0.2, 0.4, 2.2 (&>
8.9, -1.9, 6.5 \@@Q&
45, 22, -0.1 &

Intuition; each

dimension of x
X =<-2.3,09,04> | corresponds to a

feature of the prefix

28

Wx =<1.8,-11.9, 12.9, -8.9>

1.2, -0.3, 0.9
0.2, 0.4, -2.2
3.9, -1.9, 6.5
4.5, 2.2, -0.1

How did we compute

this”? It’s just the dot

product of each row
of W with x!

X=<2.3 09, 54>

29

Wx =<1.8,-11.9, 12.9, -8.9>

1.2, -03, 0.9
W — 0.2,N\0.4\-2.2

3.9, -N9, 650
4.5, 2.2,\-0.1 J

How did we compute

this”? It’s just the dot

product of each row
of W with x!

X=<2.3 09, 54>

30

How did we compute
Wx = <1.8,-11.9, 12.9, -8.9> this? Just the dot product

of each row of W with x!

1.2, -03, 0.9 1.27-2.3

w_d 02704 -2.2.‘ + 6093**5049
8.9, -19, B5 oo
4.5, 2.2\:0.1 J

X=<2.3 09, 54>

31

Okay, so how do we go
from this 4-d vector to a
probabillity distribution”?

Wx =<1.8,-11.9, 12.9, -8.9>

32

We'll use the softmax function!

softmax(x) =

* XIS avector
* X Is dimension of X
e each dimension j of the softmaxed

output represents the probability of
class

Wx =<1.8,-1.9, 2.9, -0.9>
softmax(Wx) = <0.24, 0.006, 0.73, 0.02>

33

We'll use the softmax function!

softmax(x) =

* XIS avector
* X Is dimension of X
e each dimension j of the softmaxed

output represents the probability of
class

Wx =<1.8, -1.9, 2.9, -0.9>

softmax(Wx) = <0.24, 0.006, 0.73, 0.02>

We'll see the softmax function over and over again this

semester, so be sure to understand it!
34

SO TO Sum up...

® (Given a d-dimensional vector
representation x of a prefix, we do the
following to predict the next word:

1. Project it to a V-dimensional vector using a
matrix-vector product (a.k.a. a “linear layer”, or a
“feedforward layer”), where V is the size of the
vocabulary

2. Apply the softmax function to transform the
resulting vector into a probability distribution

35

Now that we know how to predict “books”,
let’s focus on how to compute the prefix
representation x in the first place!

neural students opened their

network (§ 1 B =0

36

Composition functions

Input: sequence of word emlbeddings corresponding to
the tokens of a given prefix

output: single vector

e [Element-wise functions
* e.g., Just sum up all of the word embeddings!
e (Concatenation
e [eed-forward neural networks
e (Convolutional neural networks
e Recurrent neural networks
e Transformers (our focus this semester)

37

Let’s oo
understa

K first at concatenation, an

nd but limited compositior

38

easy 10
function

A fixed-window neural Language Model

SO procior —Siarica—are——croen the students opened their
\ y,

Y

discard fixed window

39

A fixed-window neural Language Model

concatenated word embeddings

X = [cy; 65035 4]

words / one-hot vectors
C1, €5 €3, Cy

(0000 0000 0000 0000 |

T

the students opened their
Cq Cr C3 Cy

40

A fixed-window neural Language Model

hidden layer
h = f(Wx)

concatenated word embeddings

X = [cy; 65035 4]

words / one-hot vectors
C1, €5 €3, Cy

(ec00e0000000)

N\

W,

(0000 0000 0000 0000 |

T

the students opened their
Cq Cr C3 Cy

41

A fixed-window neural Language Model

f1s a nonlinearity, or an element-wise nonlinear function.
The most commonly-used choice today Is the rectified
linear unit (RelLu), which is just ReLu(x) = max(O, X).
Other choices include tanh and sigmoid.

hidden | -
SR Y (e00000000000]

h = f(Wx) |

W,

concatenated word embeddings
(0000 0000 0000 0000 |

X = [cq; Cy; C35 ¢4 T]] T

words / one-hot vectors the students opened their
C1» Cyy C35 Cy C C, Cs Cy

42

A fixed-window neural Language Model

output distribution

y = softmax(W,h)

hidden layer
h = f(Wx)

concatenated word embeddings

X = [cy; 65035 4]

words / one-hot vectors
C1, €5 €3, Cy

books
i laptops

(e00000000000 |

N\

W,

(0000 0000 0000 0000 |

T

the students opened their
Cq Cr C3 Cy

43

how does this compare to a
normal n-gram model?

Improvements over n-gram LM.:

No sparsity problem
Model size is O(n) not O(exp(n))

Remaining problems:

Fixed window is too small
Enlarging window enlarges W
Window can never be large
enough!

Each C; uses different rows
of W. We don’t share weights
across the window.

(000000000000

N

W,

(0000 0000 0000 0000

T

the students opened their
C 1 C o) C 3 C A

44

Recurrent Neural Networks!

A RNN Language Model

word embeddings
C1,Cpy €3, Cy

(0000
0000}
(0000

{0000

the students opened their
C 3 C

_{3

\®)
S

~

46

A RNN Language Model

h(®__
hidden states @
(7) (1—1) ®
h =f(Whh + Wect) ‘
O
h©O) is initial hidden statel —
@)
word embeddings 8
€1, €5 €3, Cy O
——
the

™
[

47

(0000

students
C

(\&

opened

R

0000}

3

(0000

their
C

~

A RNN Language Model

hidden states @ @
(1) (—1) | W, @
o @ @
h©O is initial hidden state! — 5
W,

) — ——)

O O O @)

word embeddings 8 O O O

@ O O

C15 €25 C3, Cy O o o o

e — ;J ~—

the students opened their
Cq Cy C3 Cy

48

A RNN Language Model

hidden states
hY = fW,hED 4+ W e)
h©O) is initial hidden state!

word embeddings
€1, €2, €3, Cy

h,(0)

A

exxx

000®

h(2)

49

the

™
[

0000
(evee).

[oooo]?[cc_cc

students

S

opened

C

0000)]

3

(0000

their
C

~

A RNN Language Model

hidden states
hY = fW,hED 4+ W e)
h©O) is initial hidden state!

word embeddings
€1, €2, €3, Cy

h,(0)

A

Wi,

>

exxx

000®

h(2)

Wi,

>

50

the

™
[

0000
(evee).

h(3)

Wi,

— >

students

S

[oooo]?[cccc

R
N

[oooo]?[cc_cc]

opened

(0000

their
C

~

A RNN Language Model

hidden states
hY = fW,hED 4+ W e)
h©O) is initial hidden state!

word embeddings
€1, €2, €3, Cy

h,(0)

A

Wi,

>

exxx

000®

h(2)

Wi,

>

51

the

™
[

0000
(evee).

h(3)

Wi,

— >

students

S

[oooo]?[cccc

R
N

0000 0e000]

opened

h(4)

Wi,

>

W

[oooo]?[cccc

their

C

~

94 = P(z®|the students opened their)

A RNN Language Model books

_L laptops

output distribution

$ = softmax(W,h")

o AN

A 200
W2
h)__ h) h(2) h(3) h(4)
hidden states @ @ O O O
” (1) o W, || W, |l@| Wi |@| Wr |@®
h'D = fW,h"=D + W) o o |le| e 1
e @ @ O @) @)
h©O) is initial hidden statel — .

O
O O) O
word embeddings 8 O @) O
O @) @)
C15 €, €3,y O o o o
e — - —

the students opened their
C

o
[
%

@)
W
~

52

why is this good?

RNN Advantages:

Can process any length
input

Model size doesn’t
increase for longer input
Computation for step t
can (in theory) use
information from many
steps back

Weights are shared
across timesteps 2
representations are
shared

RNN Disadvantages:

Recurrent computation
is slow

In practice, difficult to
access information from

_many steps back

h,(0)

exxx

g(4) — P(:c(5) [the students opened their)

books
_L laptops
- aiis
?J A Z(;O
W2
h)__ h(2) h(3) h4)
@ O O O
W, 1@l WhL || Wh |@] Wh |@®
| @ O O O
O O O O
-
v wo e w
O @) @) O
O @) @) O
O ' @) | O - 10
@) O @) O
e — ;J ~—
the students opened their
C1 CH Cs Cy

53

Be on the lookout for...

® Next lecture on backpropagation, which
allows us to actually train these networks to

make reasonable predictions
® Next week, we'll focus on the Transformer

architecture, which is the most popular
composition function used today

54

