Scaling Laws for Large LMs

CS685 Spring 2022

Advanced Natural Language Processing

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (<mark>Rae et al., 2021</mark>)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (<mark>Rae et al., 202</mark> 1)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

Why is this an important question?

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (<mark>Rae et al., 202</mark> 1)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

- N the number of model parameters, excluding all vocabulary and positional embeddings
- $C \approx 6NBS$ an estimate of the total non-embedding training compute, where B is the batch size, and S is the number of training steps (ie parameter updates). We quote numerical values in PF-days, where one PF-day = $10^{15} \times 24 \times 3600 = 8.64 \times 10^{19}$ floating point operations.

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Kaplan et al., 2020

Hoffmann et al., 2022, Chinchilla

Scaling unlocks new capabilities

Explaining a Joke

Input: Did you see that Google just hired an eloquent
whale for their TPU team? It showed them how to
communicate between two different pods!
Model Output: TPUs are a type of computer chip that
Google uses for deep learning. A "pod" is a group of
TPUs. A "pod" is also a group of whales. The joke is
that the whale is able to communicate between two
groups of whales, but the speaker is pretending that
the whale is able to communicate between two groups of
TPUs.

Logical Inference

Input: Shelley is from Virginia, but is visiting that city with
that famous market where they throw the fish. Going home next
Tuesday!
Question: Is it likely that Shelley will be near the Pacific
Ocean this weekend?
Model Output: The city with the famous market where they throw
the fish is Seattle, Washington. Seattle is on the Pacific
Ocean. Shelley is visiting Seattle, so she will be near the
Pacific Ocean this weekend. The answer is "yes", it is likely
that Shelley will be near the Pacific Ocean this weekend.

Chowdhery et al., 2022, PaLM